1
|
Free Flap Outcome in Irradiated Recipient Sites: A Systematic Review and Meta-analysis. Plast Reconstr Surg Glob Open 2022; 10:e4216. [PMID: 35356041 PMCID: PMC8939917 DOI: 10.1097/gox.0000000000004216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/22/2022] [Accepted: 01/31/2022] [Indexed: 11/26/2022]
Abstract
The impact of previous radiotherapy on free flap outcome is still a subject of debate. Clinical investigations have come to divergent conclusions and the true effect of radiotherapy (XRT) on flap survival is not definitely known. Most studies investigating the factor often have their methodological limitations such as lack of statistical power as a consequence of the overall low failure rates together with few irradiated cases. This study will attempt to address the question whether previous radiotherapy is associated with a significantly higher incidence of flap failure or not.
Collapse
|
2
|
Lebaron-Jacobs L, Herrera-Reyes E. Basic concepts of radiation emergency medicine. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:S371-S390. [PMID: 34525459 DOI: 10.1088/1361-6498/ac270e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Nuclear and radiological accidents are not frequent but may lead to major consequences in the population. For the health systems, the need to handle a large number of victims will probably remain as an exception. However, a high number of affected victims can be expected in some terrorist scenarios. In addition, medical accidents in radiotherapy, fluoroscopy and diagnostic radiology have increased the number of patients with severe radiation injuries considerably, especially in developed countries. Given the increased use of ionising radiation for industrial and medical purposes and new technological applications emerging, the number of accidents may increase in the future. Consequently, the early identification and adequate management of these emergencies is a priority, as well as the need for medical preparedness, requiring knowledge about various emergency scenarios and planning appropriate responses to them before they occur. Unfortunately, medical professionals have a substantial knowledge gap in identifying and treating injured persons affected by ionising radiation. As managing radiation accidents is a very challenging process, exercises must be carried out to organise a well-trained multidisciplinary group of professionals to manage any radiation accident properly. Efforts on a continuously updated guidance system should be developed. In addition, new approaches to foster sustainable interdisciplinary and international cooperative networks on radiation injuries are necessary. Lessons learned from past nuclear and radiological emergencies have significantly contributed to strengthening scientific knowledge and increasing the available medical information on the effects of ionising radiation in the human body. In this context, radiation emergency medicine has emerged as a discipline that contributes to the diagnosis, treatment, medical follow-up and prognosis of persons affected by radiation injuries in a nuclear or a radiological emergency. In this paper, we review some relevant concepts related to the medical preparedness and multidisciplinary response required to attend to persons affected by these emergencies.
Collapse
Affiliation(s)
- Laurence Lebaron-Jacobs
- Fundamental Research Division at the French Atomic Energy Commission (CEA), Cadarache, France
| | - Eduardo Herrera-Reyes
- Health Division at the Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|
3
|
Gupta S, Gangenahalli G. Analysis of molecular switch between leukocyte and substrate adhesion in bone marrow endothelial cells. Life Sci 2019; 238:116981. [DOI: 10.1016/j.lfs.2019.116981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/03/2019] [Accepted: 10/16/2019] [Indexed: 01/26/2023]
|
4
|
Unthank JL, Ortiz M, Trivedi H, Pelus LM, Sampson CH, Sellamuthu R, Fisher A, Chua HL, Plett A, Orschell CM, Cohen EP, Miller SJ. Cardiac and Renal Delayed Effects of Acute Radiation Exposure: Organ Differences in Vasculopathy, Inflammation, Senescence and Oxidative Balance. Radiat Res 2019; 191:383-397. [PMID: 30901530 DOI: 10.1667/rr15130.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have previously shown significant pathology in the heart and kidney of murine hematopoietic-acute radiation syndrome (H-ARS) survivors of 8.7-9.0 Gy total-body irradiation (TBI). The goal of this study was to determine temporal relationships in the development of vasculopathy and the progression of renal and cardiovascular delayed effects of acute radiation exposure (DEARE) at TBI doses less than 9 Gy and to elucidate the potential roles of senescence, inflammation and oxidative stress. Our results show significant loss of endothelial cells in coronary arteries by 4 months post-TBI (8.53 or 8.72 Gy of gamma radiation). This loss precedes renal dysfunction and interstitial fibrosis and progresses to abnormalities in the arterial media and adventitia and loss of coronary arterioles. Major differences in radiation-induced pathobiology exist between the heart and kidney in terms of vasculopathy progression and also in indices of inflammation, senescence and oxidative imbalance. The results of this work suggest a need for different medical countermeasures for multiple targets in different organs and at various times after acute radiation injury to prevent the progression of DEARE.
Collapse
Affiliation(s)
- Joseph L Unthank
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Miguel Ortiz
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hina Trivedi
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Louis M Pelus
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Carol H Sampson
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Rajendran Sellamuthu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alexa Fisher
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hui Lin Chua
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Artur Plett
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Christie M Orschell
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Eric P Cohen
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Steven J Miller
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
5
|
Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci 2019; 9:25. [PMID: 30911370 PMCID: PMC6417034 DOI: 10.1186/s13578-019-0286-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/27/2019] [Indexed: 01/16/2023] Open
Abstract
The range of radiation threats we face today includes everything from individual radiation exposures to mass casualties resulting from a terrorist incident, and many of these exposure scenarios include the likelihood of additional traumatic injury as well. Radiation injury is defined as an ionizing radiation exposure inducing a series of organ injury within a specified time. Severity of organ injury depends on the radiation dose and the duration of radiation exposure. Organs and cells with high sensitivity to radiation injury are the skin, the hematopoietic system, the gastrointestinal (GI) tract, spermatogenic cells, and the vascular system. In general, acute radiation syndrome (ARS) includes DNA double strand breaks (DSB), hematopoietic syndrome (bone marrow cells and circulatory cells depletion), cutaneous injury, GI death, brain hemorrhage, and splenomegaly within 30 days after radiation exposure. Radiation injury sensitizes target organs and cells resulting in ARS. Among its many effects on tissue integrity at various levels, radiation exposure results in activation of the iNOS/NF-kB/NF-IL6 and p53/Bax pathways; and increases DNA single and double strand breaks, TLR signaling, cytokine concentrations, bacterial infection, cytochrome c release from mitochondria to cytoplasm, and possible PARP-dependent NAD and ATP-pool depletion. These alterations lead to apoptosis and autophagy and, as a result, increased mortality. In this review, we summarize what is known about how radiation exposure leads to the radiation response with time. We also describe current and prospective countermeasures relevant to the treatment and prevention of radiation injury.
Collapse
Affiliation(s)
- Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889 USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - Ayodele O. Olabisi
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889 USA
| |
Collapse
|
6
|
Lafargue A, Degorre C, Corre I, Alves-Guerra MC, Gaugler MH, Vallette F, Pecqueur C, Paris F. Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation. Free Radic Biol Med 2017; 108:750-759. [PMID: 28431961 DOI: 10.1016/j.freeradbiomed.2017.04.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/01/2017] [Accepted: 04/16/2017] [Indexed: 12/18/2022]
Abstract
Ionizing radiation causes oxidative stress, leading to acute and late cellular responses. We previously demonstrated that irradiation of non-proliferating endothelial cells, as observed in normal tissues, induces early apoptosis, which can be inhibited by pretreatment with Sphingosine-1-Phosphate. We now propose to better characterize the long-term radiation response of endothelial cells by studying the molecular pathways associated with senescence and its link with acute apoptosis. First, senescence was validated in irradiated quiescent microvascular HMVEC-L in a dose- and time-dependent manner by SA β-galactosidase staining, p16Ink4a and p21Waf1 expression, pro-inflammatory IL-8 secretion and DNA damage response activation. This premature aging was induced independently of Sphingosine 1-Phosphate treatment, supporting its non-connection with acute IR-induced apoptosis. Then, senescence under these conditions showed persistent activation of p53 pathway and mitochondrial dysfunctions, characterized by O2·- generation, inhibition of respiratory complex II activity and over-expression of SOD2 and GPX1 detoxification enzymes. Senescence was significantly inhibited by treatment with pifithrin-α, a p53 inhibitor, or by MnTBAP, a superoxide dismutase mimetic, validating those molecular actors in IR-induced endothelial cell aging. However, MnTBAP, but not pifithrin-α, was able to limit superoxide generation and to rescue the respiratory complex II activity. Furthermore, MnTBAP was not modulating p53 up-regulation, suggesting that IR-induced senescence in quiescent endothelial cells is provided by at least 2 different pathways dependent of the mitochondrial oxidative stress response and the p53 activation. Further characterization of the actors involved in the respiratory complex II dysfunction will open new pharmacological strategies to modulate late radiation toxicity.
Collapse
Affiliation(s)
| | | | - Isabelle Corre
- CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Marie-Clotilde Alves-Guerra
- Inserm UMR1016, Paris F-75014, France; CNRS UMR8104, Paris F-75014, France; Université Paris Descartes, Paris F-75014, France
| | | | - François Vallette
- CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France; Institut de Cancérologie de l'Ouest, Saint-Herblain F-44800, France
| | | | - François Paris
- CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France; Institut de Cancérologie de l'Ouest, Saint-Herblain F-44800, France.
| |
Collapse
|
7
|
Natarajan M, Aravindan N, Sprague EA, Mohan S. Hemodynamic Flow-Induced Mechanotransduction Signaling Influences the Radiation Response of the Vascular Endothelium. Radiat Res 2016; 186:175-88. [PMID: 27387860 DOI: 10.1667/rr14410.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hemodynamic shear stress is defined as the physical force exerted by the continuous flow of blood in the vascular system. Endothelial cells, which line the inner layer of blood vessels, sense this physiological force through mechanotransduction signaling and adapt to maintain structural and functional homeostasis. Hemodynamic flow, shear stress and mechanotransduction signaling are, therefore, an integral part of endothelial pathophysiology. Although this is a well-established concept in the cardiovascular field, it is largely dismissed in studies aimed at understanding radiation injury to the endothelium and subsequent cardiovascular complications. We and others have reported on the differential response of the endothelium when the cells are under hemodynamic flow shear compared with static culture. Further, we have demonstrated significant differences in the gene expression of static versus shear-stressed irradiated cells in four key pathways, reinforcing the importance of shear stress in understanding radiation injury of the endothelium. This article further emphasizes the influence of hemodynamic shear stress and the associated mechanotransduction signaling on physiological functioning of the vascular endothelium and underscores its significance in understanding radiation injury to the vasculature and associated cardiac complications. Studies of radiation effect on endothelial biology and its implication on cardiotoxicity and vascular complications thus far have failed to highlight the significance of these factors. Factoring in these integral parts of the endothelium will enhance our understanding of the contribution of the endothelium to radiation biology. Without such information, the current approaches to studying radiation-induced injury to the endothelium and its consequences in health and disease are limited.
Collapse
Affiliation(s)
| | - Natarajan Aravindan
- c Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Eugene A Sprague
- b Medicine University of Texas Health Science Center, San Antonio, Texas 78229; and
| | | |
Collapse
|
8
|
Olszewska-Pazdrak B, McVicar SD, Rayavara K, Moya SM, Kantara C, Gammarano C, Olszewska P, Fuller GM, Sower LE, Carney DH. Nuclear Countermeasure Activity of TP508 Linked to Restoration of Endothelial Function and Acceleration of DNA Repair. Radiat Res 2016; 186:162-74. [PMID: 27388041 DOI: 10.1667/rr14409.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There is increasing evidence that radiation-induced damage to endothelial cells and loss of endothelial function may contribute to both acute radiation syndromes and long-term effects of whole-body nuclear irradiation. Therefore, several drugs are being developed to mitigate the effects of nuclear radiation, most of these drugs will target and protect or regenerate leukocytes and platelets. Our laboratory has demonstrated that TP508, a 23-amino acid thrombin peptide, activates endothelial cells and stem cells to revascularize and regenerate tissues. We now show that TP508 can mitigate radiation-induced damage to endothelial cells in vitro and in vivo. Our in vitro results demonstrate that human endothelial cells irradiation attenuates nitric oxide (NO) signaling, disrupts tube formation and induces DNA double-strand breaks (DSB). TP508 treatment reverses radiation effects on NO signaling, restores tube formation and accelerates the repair of radiation-induced DSB. The radiation-mitigating effects of TP508 on endothelial cells were also seen in CD-1 mice where systemic injection of TP508 stimulated endothelial cell sprouting from aortic explants after 8 Gy irradiation. Systemic doses of TP508 that mitigated radiation-induced endothelial cell damage, also significantly increased survival of CD-1 mice when injected 24 h after 8.5 Gy exposure. These data suggest that increased survival observed with TP508 treatment may be due to its effects on vascular and microvascular endothelial cells. Our study supports the usage of a regenerative drug such as TP508 to activate endothelial cells as a countermeasure for mitigating the effects of nuclear radiation.
Collapse
Affiliation(s)
- Barbara Olszewska-Pazdrak
- a Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas and
| | - Scott D McVicar
- a Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas and
| | | | - Stephanie M Moya
- a Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas and
| | - Carla Kantara
- a Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas and.,b Chrysalis BioTherapeutics, Inc., Galveston, Texas
| | - Chris Gammarano
- a Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas and
| | - Paulina Olszewska
- a Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas and
| | | | | | - Darrell H Carney
- a Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas and.,b Chrysalis BioTherapeutics, Inc., Galveston, Texas
| |
Collapse
|
9
|
Hérodin F, Voir D, Vilgrain I, Courçon M, Drouet M, Boittin FX. Soluble Vascular Endothelial Cadherin as a New Biomarker of Irradiation in Highly Irradiated Baboons with Bone Marrow Protection. HEALTH PHYSICS 2016; 110:598-605. [PMID: 27115227 DOI: 10.1097/hp.0000000000000481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Vascular endothelial cadherin is the main component of adherens junctions enabling cohesion of the endothelial monolayer in vessels. The extracellular part of vascular endothelial cadherin (VE-cadherin) can be cleaved, releasing soluble fragments in blood (sVE-cadherin). In some diseases with endothelial dysfunction, a correlation between increased blood sVE-cadherin levels and disease state has been proposed. Irradiation is known to induce endothelial damage, but new serum biomarkers are needed to evaluate endothelial damage after irradiation. Here, the authors investigated whether sVE-cadherin may be an interesting biomarker of irradiation in highly irradiated baboons with bone marrow protection. sVE-cadherin was detected in the plasma of young as well as old baboons. Plasma sVE-cadherin levels significantly decrease a few days after irradiation but recover in the late time after irradiation. Kinetic analysis of plasma sVE-cadherin levels suggests a correlation with white blood cell counts in both the acute phase of irradiation and during hematopoietic recovery, suggesting that plasma sVE-cadherin levels may be partly linked to the disappearance and recovery of white blood cells. Interestingly, after hematopoietic recovery was completed, sVE-cadherin levels were found to exceed control values, suggesting that plasma sVE-cadherin may represent a new biomarker of endothelial damage or neovascularization in the late time after irradiation.
Collapse
Affiliation(s)
- Francis Hérodin
- *Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France; †Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Institute of Life Science Research and Technologies, Biology of Cancer and Infection, Grenoble, France; University of Grenoble Alpes, Unité mixte de recherche-S1036, 17, rue des Martyrs, Grenoble, France
| | | | | | | | | | | |
Collapse
|
10
|
The extent of irradiation-induced long-term visceral organ damage depends on cranial/brain exposure. PLoS One 2015; 10:e0122900. [PMID: 25836679 PMCID: PMC4383625 DOI: 10.1371/journal.pone.0122900] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 02/25/2015] [Indexed: 11/19/2022] Open
Abstract
In case of high-dose radiation exposure, mechanisms controlling late visceral organ damage are still not completely understood and may involve the central nervous system. To investigate the influence of cranial/brain irradiation on late visceral organ damage in case of high-dose exposure, Wistar rats were irradiated at 12 Gy, with either the head and fore limbs or the two hind limbs protected behind a lead wall (head- and hind limbs-protected respectively), which allows long-term survival thanks to bone marrow protection. Although hind limbs- and head-protected irradiated rats exhibited similar hematopoietic and spleen reconstitution, a late body weight loss was observed in hind limbs-protected rats only. Histological analysis performed at this time revealed that late damages to liver, kidney and ileum were attenuated in rats with head exposed when compared to animals whose head was protected. Plasma measurements of inflammation biomarkers (haptoglobin and the chemokine CXCL1) suggest that the attenuated organ damage in hind limbs-protected rats may be in part related to reduced acute and chronic inflammation. Altogether our results demonstrate the influence of cranial/brain exposure in the onset of organ damage.
Collapse
|
11
|
Zorkina YA, Volgina NE, Gorlachev GE, Mel'nikov PA, Golanov AV, Potapov AA, Chekhonin VP. Effect of γ-irradiation on expression of tight and adherens junction protein mRNA on in vitro blood-brain barrier model. Bull Exp Biol Med 2014; 158:127-36. [PMID: 25408523 DOI: 10.1007/s10517-014-2708-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Indexed: 12/22/2022]
Abstract
We studied the effect of γ-irradiation on HUVEC endothelial cells co-cultured with allogeneic astrocytes. This 2D in vitro model of the blood-brain barrier has the same parameters as cerebral microvascular endothelial cells forming the blood-brain barrier and allows reproducing its functions in vivo. Dose-dependent changes in cell morphology and violation of monolayer integrity were observed. Real-time PCR and immunocytochemical analysis revealed changes in the expression of tight (ZO-1, claudin-5) and adherens junction protein (vascular endothelial cadherin, β-catenin) mRNA. Expression of tight and adherens junction proteins mRNA decreased in 2, 24, and 48 h after irradiation in doses of 2, 4, and 6 Gy. Significant dose-dependent changes were found only for β-catenin mRNA expression in 2 h after exposition. This model of blood-brain barrier in vitro can be used for studying the molecular mechanisms regulating permeability of cerebral endothelium under normal conditions and after pathological exposures, e.g. γ-irradiation.
Collapse
Affiliation(s)
- Ya A Zorkina
- V. P. Serbsky State Research Center for Social and Forensic Psychiatry, Moscow, Russia,
| | | | | | | | | | | | | |
Collapse
|
12
|
Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med 2014; 20:607-15. [PMID: 24793239 PMCID: PMC4060245 DOI: 10.1038/nm.3541] [Citation(s) in RCA: 718] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/20/2014] [Indexed: 12/13/2022]
Abstract
We describe a novel mechanism regulating the tumor endothelial barrier and T cell homing to tumors. Selective expression of the death mediator Fas ligand (FasL/CD95L) was detected in the vasculature of many human and mouse solid tumors but not in normal vasculature, and in these tumors it was associated with scarce CD8+ infiltration and predominance of FoxP3+ T regulatory (Treg) cells. Tumor-derived vascular endothelial growth factor A (VEGF-A), interleukin 10 (IL-10) and prostaglandin E2 (PGE2) cooperatively induced FasL expression on endothelial cells, which acquired the ability to kill effector CD8+ T cells, but not Treg cells, due to higher levels of cFLIP expression in Tregs. In the mouse, genetic or pharmacologic suppression of FasL produced a significant increase in the influx of tumor-rejecting CD8+ over FoxP3+ T cells. Pharmacologic inhibition of VEGF and PGE2 attenuated tumor endothelial FasL expression, produced a significant increase in the influx of tumor-rejecting CD8+ over FoxP3+ T cells, which was FasL-dependent, and led to CD8-dependent tumor growth suppression. Thus, tumor paracrine mechanisms establish a tumor endothelial death barrier, which plays a critical role in establishing immune tolerance and determining the fate of tumors.
Collapse
|
13
|
Corre I, Guillonneau M, Paris F. Membrane signaling induced by high doses of ionizing radiation in the endothelial compartment. Relevance in radiation toxicity. Int J Mol Sci 2013; 14:22678-96. [PMID: 24252908 PMCID: PMC3856084 DOI: 10.3390/ijms141122678] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/01/2013] [Accepted: 11/06/2013] [Indexed: 01/30/2023] Open
Abstract
Tumor areas can now be very precisely delimited thanks to technical progress in imaging and ballistics. This has also led to the development of novel radiotherapy protocols, delivering higher doses of ionizing radiation directly to cancer cells. Despite this, radiation toxicity in healthy tissue remains a major issue, particularly with dose-escalation in these new protocols. Acute and late tissue damage following irradiation have both been linked to the endothelium irrigating normal tissues. The molecular mechanisms involved in the endothelial response to high doses of radiation are associated with signaling from the plasma membrane, mainly via the acid sphingomyelinase/ceramide pathway. This review describes this signaling pathway and discusses the relevance of targeting endothelial signaling to protect healthy tissues from the deleterious effects of high doses of radiation.
Collapse
Affiliation(s)
- Isabelle Corre
- CRCNA-UMR Inserm U892-CNRS 6299-Institut de Recherche en Santé de l'Université de Nantes, Nantes 44007, France.
| | | | | |
Collapse
|
14
|
Rombouts C, Aerts A, Beck M, De Vos WH, Van Oostveldt P, Benotmane MA, Baatout S. Differential response to acute low dose radiation in primary and immortalized endothelial cells. Int J Radiat Biol 2013; 89:841-50. [PMID: 23692394 DOI: 10.3109/09553002.2013.806831] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The low dose radiation response of primary human umbilical vein endothelial cells (HUVEC) and its immortalized derivative, the EA.hy926 cell line, was evaluated and compared. MATERIAL AND METHODS DNA damage and repair, cell cycle progression, apoptosis and cellular morphology in HUVEC and EA.hy926 were evaluated after exposure to low (0.05-0.5 Gy) and high doses (2 and 5 Gy) of acute X-rays. RESULTS Subtle, but significant increases in DNA double-strand breaks (DSB) were observed in HUVEC and EA.hy926 30 min after low dose irradiation (0.05 Gy). Compared to high dose irradiation (2 Gy), relatively more DSB/Gy were formed after low dose irradiation. Also, we observed a dose-dependent increase in apoptotic cells, down to 0.5 Gy in HUVEC and 0.1 Gy in EA.hy926 cells. Furthermore, radiation induced significantly more apoptosis in EA.hy926 compared to HUVEC. CONCLUSIONS We demonstrated for the first time that acute low doses of X-rays induce DNA damage and apoptosis in endothelial cells. Our results point to a non-linear dose-response relationship for DSB formation in endothelial cells. Furthermore, the observed difference in radiation-induced apoptosis points to a higher radiosensitivity of EA.hy926 compared to HUVEC, which should be taken into account when using these cells as models for studying the endothelium radiation response.
Collapse
Affiliation(s)
- Charlotte Rombouts
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN) , Mol , Belgium
| | | | | | | | | | | | | |
Collapse
|
15
|
Sharma P, Templin T, Grabham P. Short term effects of gamma radiation on endothelial barrier function: uncoupling of PECAM-1. Microvasc Res 2012; 86:11-20. [PMID: 23220351 DOI: 10.1016/j.mvr.2012.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/15/2012] [Accepted: 11/26/2012] [Indexed: 12/24/2022]
Abstract
A limiting factor in the treatment of cancer with radiotherapy is the damage to surrounding normal tissue, particularly the vasculature. Vessel pathologies are a major feature of the side effects of radiotherapy and little is known about early events that could initiate subsequent diseases. We tested the hypothesis that gamma radiation has early damaging effects on the human endothelial barrier. Two models were used; Human Brain Microcapillary Endothelial Cells (HBMEC), and Human Umbilical Vein Endothelial Cells (HUVEC). Endpoints included Trans-Endothelial Electrical Resistance (TEER), barrier permeability to 10 kDa and 70 kDa tracer molecules, and the localization of F-actin, and junction proteins and the Platelet Endothelial Cell Adhesion Molecule (PECAM-1). Radiation induced a rapid and transient decrease in TEER at 3 h, with effects also seen at the radiotherapy doses. This dip in resistance correlated to the transient loss of PECAM-1 in discrete areas where cells often detached from the monolayer leaving gaps. Redistribution of PECAM-1 was also seen in 3-D human tissue models. By 6 h, the remaining cells had migrated to reseal the barrier, coincident with TEER returning to control levels. Resealed monolayers contained fewer cells per unit area and their barrier function was weakened as evidenced by an increased permeability over 24 h. This is the first demonstration of a transient and rapid effect of gamma radiation on human endothelial barriers that involves cell detachment and the loss of PECAM-1. Considering the association of cell adhesion molecules with vasculopathies, such an effect has the potential to be clinically relevant to the longer-term effects of radiotherapy.
Collapse
Affiliation(s)
- Preety Sharma
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
16
|
Blirando K, Hneino M, Martelly I, Benderitter M, Milliat F, François A. Mast cells and ionizing radiation induce a synergistic expression of inflammatory genes in endothelial cells by a mechanism involving p38α MAP kinase and (p65) NF-κB activation. Radiat Res 2012; 178:556-67. [PMID: 23088768 DOI: 10.1667/rr3058.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Vascular endothelium is a key compartment involved in the development of normal tissue toxicity associated with cancer radiation therapy, i.e., acute inflammation and late fibrosis. Radiation-induced endothelial cell activation has been extensively studied, and activated endothelial cells are characterized by increased expression of inflammatory mediators and adhesion molecules, and activation of the coagulation and thrombosis pathways. However, little is known about the role of vascular endothelium interaction with resident immune cells, such as mast cells on its response to irradiation. Here, we report that endothelial exposure to mast cell conditioned medium and irradiation induces a synergistic expression of many inflammatory genes including interleukin-6 and interleukin-8, CXCL2 and E-selectin. This synergy is blocked by the histamine H1 receptor antagonist mepyramine and partially mimicked by exogenous histamine addition before irradiation. Using pharmacological and molecular inhibition approaches, we show the p38α MAP kinase and p65 (NF-κB) dependence of the synergy. Moreover, our data show a link between both pathways, with p65 (NF-κB) being downstream of p38. These data highlight the possible exacerbation of the radiation-induced endothelial inflammatory response by its interactions with immune cells. It also suggest that p38α MAP kinase and p65 (NF-κB) inhibition in vascular endothelium may limit excessive tissue inflammation induced by radiation therapy, and thereby limit the associated acute and late tissue damage.
Collapse
Affiliation(s)
- Karl Blirando
- Laboratory of Radiopathology and Experimental Therapies, Institute for Radiological Protection and Nuclear Safety, 92265 Fontenay-aux-Roses, France
| | | | | | | | | | | |
Collapse
|
17
|
Hneino M, Blirando K, Buard V, Tarlet G, Benderitter M, Hoodless P, François A, Milliat F. The TG-interacting factor TGIF1 regulates stress-induced proinflammatory phenotype of endothelial cells. J Biol Chem 2012; 287:38913-21. [PMID: 22995913 DOI: 10.1074/jbc.m112.388389] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The endothelium contributes to the control of the tissue inflammatory response following stress and in particular after exposure to ionizing radiation. We previously showed that the TG-interacting factor 1 (TGIF1) plays a role in radiation-induced normal tissue injury. In this study we hypothesized that this protein could play a role in inflammation. The role of TGIF1 in the stress-induced proinflammatory phenotype was investigated in human endothelial cells. In HUVECs ionizing radiation induces TGIF1 expression as well as a proinflammatory phenotype associated with up-regulation of IL-6, IL-8, CXCL1, MIP-2, and MCP-1. TGIF1 overexpression enhances the radiation-induced proinflammatory phenotype whereas TGIF1 silencing limits both the TNF-α- and radiation-induced overexpression of proinflammatory cytokines. Interestingly, in vivo, in radiation-induced intestinal inflammation in mice, TGIF1 genetic deficiency is associated with a reduced radiation-induced overexpression of proinflammatory molecules. In HUVECs, TNF-α- and radiation-induced NF-κB pathway activation is not influenced by TGIF1 expression, whereas TGIF1 knockdown inhibits both TNF-α- and radiation-induced p38 MAPK pathway activation. This study demonstrates that TGIF1 plays a role in TNF-α- and radiation-induced inflammation and suggests that it could be a target in limiting this event in the vascular compartment.
Collapse
Affiliation(s)
- Mohammad Hneino
- Laboratory of Radiopathology and Experimental Therapeutics, Institute for Radiological Protection and Nuclear Safety, 92262 Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Lee W, Ku SK, Bae JW, Bae JS. Inhibitory effects of lycopene on HMGB1-mediated pro-inflammatory responses in both cellular and animal models. Food Chem Toxicol 2012; 50:1826-33. [PMID: 22429818 DOI: 10.1016/j.fct.2012.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 02/27/2012] [Accepted: 03/02/2012] [Indexed: 01/01/2023]
Abstract
High mobility group box 1 (HMGB1) mediates proinflammatory responses in inflammatory diseases. Lycopene found in tomatoes and tomato products has anti-oxidant, anti-cancer and antiinflammatory effects. The potential anti-inflammatory roles of lycopene in HMGB1-mediated proinflammatory responses in both primary human umbilical vein endothelial cells (HUVECs) and animal were investigated. The anti-inflammatory effects of lycopene were determined including permeability, monocyte adhesion and migration, and activation of proinflammatory proteins and HMGB1 receptors on HMGB1 activated HUVECs. In the in vivo model, the anti-inflammatory effect of lycopene was assessed by monitoring vascular permeability and migration of leukocytes to the peritoneal cavity of mice injected with lycopene. Lycopene inhibited lipopolysaccharide (LPS)-mediated release of HMGB1, expression of HMGB1-mediated tumor necrosis factor (TNF)-secretory phospholipase A2 (sPLA2)-IIA, and HMGB1-mediated pro-inflammatory signaling responses in endothelial cells. It did this through down-regulation of cell surface expression of cell adhesion molecules (CAMs), HMGB1 receptors, toll-like receptor (TLR)-2, and -4, and receptors for advanced glycation end products (RAGE). These findings suggest that lycopene promotes barrier integrity, inhibits monocyte adhesion and migration to HMGB1 activating HUVECs by blocking activation of proinflammatory cytokines and expression of CAMs and HMGB1 receptors, thereby showing its usefulness as a therapy for vascular inflammatory diseases.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | |
Collapse
|
19
|
Gallet P, Phulpin B, Merlin JL, Leroux A, Bravetti P, Mecellem H, Tran N, Dolivet G. Long-term alterations of cytokines and growth factors expression in irradiated tissues and relation with histological severity scoring. PLoS One 2011; 6:e29399. [PMID: 22216271 PMCID: PMC3245280 DOI: 10.1371/journal.pone.0029399] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 11/28/2011] [Indexed: 02/06/2023] Open
Abstract
Purpose Beside its efficacy in cancer treatment, radiotherapy induces degeneration of healthy tissues within the irradiated area. The aim of this study was to analyze the variations of proinflammatory (IL-1α, IL-2, IL-6, TNF-α, IFN-γ), profibrotic (TGF-β1), proangiogneic (VEGF) and stem cell mobilizing (GM-CSF) cytokines and growth factors in an animal model of radiation-induced tissue degeneration. Materials and Methods 24 rats were irradiated unilaterally on the hindlimb at a monodose of 30 Gy. Six weeks (n = 8), 6 months (n = 8) and 1 year (n = 8) after irradiation the mediators expression in skin and muscle were analyzed using Western blot and the Bio-Plex® protein array (BPA) technology. Additional histological severity for fibrosis, inflammation, vascularity and cellularity alterations scoring was defined from histology and immnunohistochemistry analyses. Results A significant increase of histological severity scoring was found in irradiated tissue. Skin tissues were more radio-sensitive than muscle. A high level of TGF-β1 expression was found throughout the study and a significant relation was evidenced between TGF-β1 expression and fibrosis scoring. Irradiated tissue showed a chronic inflammation (IL-2 and TNF-α significantly increased). Moreover a persistent expression of GM-CSF and VEGF was found in all irradiated tissues. The vascular score was related to TGF-β1 expression and the cellular alterations score was significantly related with the level of IL-2, VEGF and GM-CSF. Conclusion The results achieved in the present study underline the complexity and multiplicity of radio-induced alterations of cytokine network. It offers many perspectives of development, for the comprehension of the mechanisms of late injuries or for the histological and molecular evaluation of the mode of action and the efficacy of rehabilitation techniques.
Collapse
Affiliation(s)
- Patrice Gallet
- EA4421 SiGReTO Nancy University, Faculty of Medicine, Vandoeuvre-lès-Nancy, France
| | - Bérengère Phulpin
- EA4421 SiGReTO Nancy University, Faculty of Medicine, Vandoeuvre-lès-Nancy, France
- Head and Neck Surgery and Dental Units, Oncologic Surgery Department, Centre Alexis Vautrin, Vandoeuvre-lès-Nancy, France
- * E-mail:
| | - Jean-Louis Merlin
- EA4421 SiGReTO Nancy University, Faculty of Medicine, Vandoeuvre-lès-Nancy, France
- Pathology and Tumor Biology Department, Centre Alexis Vautrin, Vandoeuvre-lès- Nancy, France
| | - Agnès Leroux
- EA4421 SiGReTO Nancy University, Faculty of Medicine, Vandoeuvre-lès-Nancy, France
- Pathology and Tumor Biology Department, Centre Alexis Vautrin, Vandoeuvre-lès- Nancy, France
| | - Pierre Bravetti
- Oral surgery department, Faculty of Dentistry, Nancy University, Nancy, France
| | - Hinda Mecellem
- Radiotherapy Department, Centre Alexis Vautrin, Vandoeuvre-lès-Nancy, France
| | - Nguyen Tran
- School of Surgery, INSERM U961, Faculty of Medicine, Nancy University, Vandoeuvre-lès-Nancy, France
- INSERM U961, Faculty of Medicine, Nancy University, Vandoeuvre-lès-Nancy, France
| | - Gilles Dolivet
- EA4421 SiGReTO Nancy University, Faculty of Medicine, Vandoeuvre-lès-Nancy, France
- Head and Neck Surgery and Dental Units, Oncologic Surgery Department, Centre Alexis Vautrin, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
20
|
RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration. Biochem Biophys Res Commun 2011; 414:750-5. [DOI: 10.1016/j.bbrc.2011.09.150] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 09/29/2011] [Indexed: 11/21/2022]
|
21
|
Macià I Garau M, Lucas Calduch A, López EC. Radiobiology of the acute radiation syndrome. Rep Pract Oncol Radiother 2011; 16:123-30. [PMID: 24376969 DOI: 10.1016/j.rpor.2011.06.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022] Open
Abstract
ACUTE RADIATION SYNDROME OR ACUTE RADIATION SICKNESS IS CLASSICALLY SUBDIVIDED INTO THREE SUBSYNDROMES: the hematopoietic, gastrointestinal and neurovascular syndrome but many other tissues can be damaged. The time course and severity of clinical signs and symptoms are a function of the overall body volume irradiated, the inhomogeneity of dose exposure, the particle type, the absorbed dose and the dose rate. Classical pathophysiology explain the failure of each of these organs and the timing of appearance of their signs and symptoms due to radiation-induced cytocidal effects of a great number of parenchymal cells of hierarchically organized tissues. Contemporaneously, many other radiation-induced effects has been described and all of them may lead to tissue injury with their corresponding signs and symptoms that can be expressed after short or long period of time. Radiation-induced multi-organ involvement is thought to be due to radiation-induced systemic inflammatory response mediated by released pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Miquel Macià I Garau
- Radiation Oncology Department, Institut Català d'Oncologia, Hospital Duran i Reynals, Avda Granvía de l'Hospitalet, 199-203, 08907 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Anna Lucas Calduch
- Radiation Oncology Department, Institut Català d'Oncologia, Hospital Duran i Reynals, 08907 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Enric Casanovas López
- Hematology Department, Institut Català d'Oncologia, Hospital Duran i Reynals, 08907 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| |
Collapse
|
22
|
Gaugler MH, Drouet F, Krempf M. [Radiotherapy and atherosclerosis: current data and issues]. Med Sci (Paris) 2010; 26:740-6. [PMID: 20819712 DOI: 10.1051/medsci/2010268-9740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The continuous optimization of cancer treatment with radiotherapy raises the problem of long-term issue of patients treated and cured by ionizing radiation, with the possible occurrence of second cancers or nonmalignant complications. Among these, cardiovascular diseases are prevalent and may affect up to 40 % of patients depending on the location of the irradiation. Recent epidemiological studies show that this problem is underestimated and with no real prospective studies. The management of these patients with vascular risk, or with very high vascular risk for those with pre-existing traditional cardiovascular risk factors, remains to be determined. The pathophysiological mechanisms of radiation-induced atherosclerosis have not yet been clarified. Many efforts are still needed to identify patients at risk and to find or to propose an appropriate treatment. Prolonged vascular follow-up of patients after their radiotherapy should now be integrated into patterns of care, especially because the setting up of sophisticated technical platforms of radiotherapy do not necessarily solve the issue of cardiovascular risk after treatment. double dagger.
Collapse
|
23
|
Halle M, Ekström M, Farnebo F, Tornvall P. Endothelial activation with prothrombotic response in irradiated microvascular recipient veins. J Plast Reconstr Aesthet Surg 2010; 63:1910-6. [DOI: 10.1016/j.bjps.2009.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/23/2009] [Accepted: 12/02/2009] [Indexed: 10/19/2022]
|
24
|
Drouet M, Hérodin F. Radiation victim management and the haematologist in the future: time to revisit therapeutic guidelines? Int J Radiat Biol 2010; 86:636-48. [PMID: 20597842 DOI: 10.3109/09553001003789604] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The use of nuclear/radiation devices against the civilian population is now a realistic scenario. Haematopoietic syndrome is the primary therapeutic challenge in the case of whole body acute exposure over 2 Grays (Gy) whereas burns and combined injuries would be frequently observed in myelo-suppressed patients. Optimisation of scoring and treatments are important goals to achieve. CONCLUSION The European Response Category (RC) concept represents an attempt to integratively assess haematological/extrahematological radiation-induced lesions. Based on the frequently observed heterogeneity of bone marrow damage in accidental/intentional irradiations, the stimulation of residual stem cells using granulocyte Colony-stimulating factor remains the therapeutic standard after exposure to less than the lethal dose 50 % (Haematopoietic[H] score 3-H3). Allogeneic stem cell transplantation is indicated in case of medullary eradication (Haematopoietic score 4-H4) whereas extramedullary toxicity may determine the outcome. Especially in case of numerous casualties exhibiting acute radiation syndrome, the administration of survival factor combinations remains questionable, at least as a palliative treatment. In addition pleiotropic cytokines injection such as erythropoietin and keratinocyte growth factor and grafting multipotent mesenchymal stem cells - from underexposed bone marrow areas or fat tissues - could be proposed to prevent multiple organ failure syndrome development. Multi-disciplinary teams should be prepared to manage such patients.
Collapse
|
25
|
Banaz-Yaşar F, Tischka R, Iliakis G, Winterhager E, Gellhaus A. Cell Line Specific Modulation of Connexin43 Expression after Exposure to Ionizing Radiation. ACTA ACUST UNITED AC 2009; 12:249-59. [PMID: 16531320 DOI: 10.1080/15419060500514101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gap junctional intercellular communication plays a significant role in mediating radiation-induced bystander effects. However, the level of Cx43 itself is influenced by ionizing radiation, which could modify the bystander effect. Here we have investigated several cell lines for the modulation of Cx43 expression 24 h after irradiation with 5 Gy X-rays. The mouse endothelial cell line bEnd3 revealed a significantly elevated level of Cx43 already 15 min after exposure to X-rays, whereas human hybrid endothelial cells (EA.hy926) exhibited a transient downregulation of Cx43 mRNA. No obvious changes in the communication properties of the different cell lines could be observed after irradiation. The communication-deficient malignant human trophoblast cell line Jeg3 stably transfected with Cx43 did not reveal any induction of endogenous nor alteration in the exogenous Cx43 transcript level upon exposure to 5 Gy. Taken together, our data show a cell line specific modulation of Cx43 expression after exposure to X-rays.
Collapse
|
26
|
Fliedner TM, Chao NJ, Bader JL, Boettger A, Case C, Chute J, Confer DL, Ganser A, Gorin NC, Gourmelon P, Graessle DH, Krawisz R, Meineke V, Niederwieser D, Port M, Powles R, Sirohi B, Weinstock DM, Wiley A, Coleman CN. Stem cells, multiorgan failure in radiation emergency medical preparedness: a U.S./European Consultation Workshop. Stem Cells 2009; 27:1205-11. [PMID: 19418462 PMCID: PMC3155414 DOI: 10.1002/stem.16] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The concern of the public regarding terrorist actions involving nuclear emergencies resulted in the reopening of the discussion regarding the best ways to cope with the inevitable health impairments. Medical experts from the US and from Europe considered it of importance to harmonize at an international level the diagnostic and therapeutic approaches regarding the radiation-induced health impairments. The present contribution is the result of the first U.S./European Consultation Workshop addressing approaches to radiation emergency preparedness and assistance, which was held recently at Ulm University, Ulm, Germany. Discussions dealt with the assessment of the extent of damage after total body exposure and, in particular, the quantity and quality of the damage to the hematopoietic stem cell pool. Secondly, the pathogenesis of the multiorgan failure was considered because of the organ-to-organ interactions. Thirdly, approaches were considered to harmonize the "triage-methods" used on an international level using the "Response Category" approach as developed for the European Communities. These discussions lead to the conclusion that there is a strong need for continuing education of physicians, nurses, and support personnel to address the issues posed by the management of patients suffering from radiation syndromes. Finally, the discussions expressed the need for more international cooperation in research and development of more refined methods to treat patients with any type of radiation syndromes.
Collapse
|
27
|
Salhotra S, Arora S, Trivedi SS, Bhattacharjee J. Influence of menopause on biochemical markers of endothelial dysfunction-A case-control pilot study in North Indian population. Maturitas 2009; 62:166-70. [PMID: 19157734 DOI: 10.1016/j.maturitas.2008.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Revised: 11/24/2008] [Accepted: 11/25/2008] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Menopause, an estrogen deficient state, is known to increase the cardiovascular risk. Lipid changes accompanying menopause account for only few cases of coronary artery disease (CAD). Endothelium-dependent nitric oxide-mediated vasodilatory mechanisms are also known to play a role in development of coronary artery disease, but studies in menopausal women are very few. This study was hence undertaken to see if nitric oxide (NO)-cyclic guanidine monophosphate (c-GMP) pathway is influenced by menopause. DESIGN This study was a hospital-based case-control study involving 100 women in age group 40-55 years. Of these, 50 women were postmenopausal and 50 were premenopausal. Women with known risk factors for CAD were excluded. Fasting blood samples from these women were collected and analyzed for estradiol levels, lipid profile, apolipoprotein B, plasma nitric oxide, c-GMP and platelet nitric oxide using standard kits and reagents. Statistical analysis was done on SPSS and two-tailed p-value <0.05 was considered significant. RESULT Postmenopausal women had significantly lower estradiol, plasma NO, and c-GMP levels as compared to premenopausal women (p<0.05). Cholesterol, low-density lipoprotein (LDL) cholesterol and apolipoprotein B (apo-B) levels were higher and HDL levels were lower in postmenopausal as compared to premenopausal women (p<0.05). Plasma NO showed a significant positive correlation with estradiol, HDL levels and negative correlation with apo-B levels. CONCLUSION Menopause tends to downregulate NO-c-GMP pathway resulting in endothelial dysfunction. The mechanism may be directly through estrogen receptors or indirectly through potentiation of dyslipidemia.
Collapse
Affiliation(s)
- Sangeeta Salhotra
- Department of Biochemistry, Lady Hardinge Medical College & Smt. Sucheta Kriplani Hospital, New Delhi, India
| | | | | | | |
Collapse
|
28
|
|
29
|
Jahan R, Solberg TD, Lee D, Medin P, Tateshima S, Sayre J, De Salles A, Vinters HV, Vinuela F. Stereotactic Radiosurgery of the Rete Mirabile in Swine: A Longitudinal Study of Histopathological Changes. Neurosurgery 2006; 58:551-8; discussion 551-8. [PMID: 16528197 DOI: 10.1227/01.neu.0000197335.93538.bd] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
OBJECTIVE:
Stereotactic radiosurgery is an established, effective treatment for brain arteriovenous malformations. The mechanisms of vessel occlusion in arteriovenous malformations has not been extensively evaluated. To better understand these mechanisms, we report histopathological changes in the swine rete mirabile after stereotactic radiosurgery.
METHODS:
Thirty-five swine were used, 15 as nonradiated controls and 20 as radiated. Two in the control group and five in the radiated group were sacrificed before the study endpoint. Tissue was obtained from 13 nonradiated (4 at 3 mo, 5 at 6 mo, 4 at 9 mo) and 15 radiated swine (2 at 3 mo, 3 at 6 mo, 10 at 9 mo) for histological, immunohistochemical, and morphometric analysis.
RESULTS:
Radiated vessels showed increasing intimal hyperplasia over the follow-up period. Histometrical analysis confirmed this with evidence of progressive luminal narrowing over the follow-up period. Immunohistochemical analysis showed intimal cells to be proliferating smooth muscle cells with surrounding extracellular collagen Type IV. Adventitial fibrosis composed of collagen Type IV was also seen with smooth muscle cells interspersed within the collagen matrix. The nonradiated animals showed no intimal hyperplasia or change in the appearance or size of the vessels over the same follow-up period. Adventitial fibrosis was minimal in the nonradiated animals.
CONCLUSION:
The vessels show an intimal response to radiation with progressive occlusion caused by migrating, proliferating smooth muscle cells, a likely source of the extracellular collagen in the intima. Cytokine mediated pathways likely produce these morphological changes. Future studies will be directed toward elucidating these underlying molecular mechanisms.
Collapse
Affiliation(s)
- Reza Jahan
- Division of Interventional Neuroradiology, Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|