1
|
Yi B, Jatczak J, Deng W, Poirier YP, Yao W, Witek ME, Molitoris JK, Zakhary MJ, Zhang B, Biswal NC, Ferris MJ, Mossahebi S. Is noncoplanar plan more robust to inter-fractional variations than coplanar plan in treating bilateral HN tumors with pencil-beam scanning proton beams? J Appl Clin Med Phys 2024; 25:e14186. [PMID: 37974385 PMCID: PMC10860533 DOI: 10.1002/acm2.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE Noncoplanar plans (NCPs) are commonly used for proton treatment of bilateral head and neck (HN) malignancies. NCP requires additional verification setup imaging between beams to correct residual errors of robotic couch motion, which increases imaging dose and total treatment time. This study compared the quality and robustness of NCPs with those of coplanar plans (CPs). METHODS AND MATERIALS Under an IRB-approved study, CPs were created retrospectively for 10 bilateral HN patients previously treated with NCPs maintaining identical beam geometry of the original plan but excluding couch rotations. Plan robustness to the inter-fractional variation (IV) of both plans was evaluated through the Dose Volume Histograms (DVH) of weekly quality assurance CT (QACT) sets (39 total). In addition, delivery efficiency for both plans was compared using total treatment time (TTT) and beam-on time (BOT). RESULTS No significant differences in plan quality were observed in terms of clinical target volume (CTV) coverage (D95) or organ-at-risk (OAR) doses (p > 0.4 for all CTVs and OARs). No significant advantage of NCPs in the robustness to IV was found over CP, either. Changes in D95 of QA plans showed a linear correlation (slope = 1.006, R2 > 0.99) between NCP and CP for three CTV data points (CTV1, CTV2, and CTV3) in each QA plan (117 data points for 39 QA plans). NCPs showed significantly higher beam delivery time than CPs for TTT (539 ± 50 vs. 897 ± 142 s; p < 0.001); however, no significant differences were observed for BOT. CONCLUSION NCPs are not more robust to IV than CPs when treating bilateral HN tumors with pencil-beam scanning proton beams. CPs showed plan quality and robustness similar to NCPs while reduced treatment time (∼6 min). This suggests that CPs may be a more efficient planning technique for bilateral HN cancer proton therapy.
Collapse
Affiliation(s)
- ByongYong Yi
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Maryland Proton Treatment CenterBaltimoreMarylandUSA
| | - Jenna Jatczak
- Maryland Proton Treatment CenterBaltimoreMarylandUSA
| | - Wei Deng
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Maryland Proton Treatment CenterBaltimoreMarylandUSA
| | - Yannick P. Poirier
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Maryland Proton Treatment CenterBaltimoreMarylandUSA
| | - Weiguang Yao
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Maryland Proton Treatment CenterBaltimoreMarylandUSA
| | - Matthew E. Witek
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Maryland Proton Treatment CenterBaltimoreMarylandUSA
| | - Jason K. Molitoris
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Maryland Proton Treatment CenterBaltimoreMarylandUSA
| | - Mark J. Zakhary
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Maryland Proton Treatment CenterBaltimoreMarylandUSA
| | - Baoshe Zhang
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Maryland Proton Treatment CenterBaltimoreMarylandUSA
| | - Nrusingh C. Biswal
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Maryland Proton Treatment CenterBaltimoreMarylandUSA
| | - Matthew J. Ferris
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Maryland Proton Treatment CenterBaltimoreMarylandUSA
| | - Sina Mossahebi
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Maryland Proton Treatment CenterBaltimoreMarylandUSA
| |
Collapse
|
2
|
Evaluation of the accuracy of a six-degree-of-freedom robotic couch using optical surface and cone beam CT images of an SRS QA phantom. JOURNAL OF RADIOTHERAPY IN PRACTICE 2023. [DOI: 10.1017/s1460396922000395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
Purpose:
To assess the accuracy of the Varian PerfectPitch six-degree-of-freedom (6DOF) robotic couch by using a Varian SRS QA phantom.
Methods:
The stereotactic radiosurgery (SRS) phantom has five tungsten carbide BBs each with 7·5 mm in diameter arranged with the known geometry. Optical surface images and cone beam CT (CBCT) images of the phantom were taken at different pitch, roll and rotation angles. The pitch, roll, and rotation angles were varied from −3 to 3 degrees by inputs from the linac console. A total of 39 Vision RT images with different rotation angle combinations were collected, and the Vision RT software was used to determine the rotation angles and translational shifts from those images. Eight CBCT images at most allowed rotational angles were analysed by in-house software. The software took the coordinates of the voxel of the maximum CT number inside a 7·5-mm sphere surrounding one BB to be the measured position of this BB. Expected BB positions at different rotation angles were determined by multiplying measured BB positions at zero pitch and roll values by a rotation matrix. Applying the rotation matrix to 5 BB positions yielded 15 equations. A linear least square method was used for regression analysis to approximate the solutions of those equations.
Results:
Of the eight calculations from CBCT images, the maximum rotation angle differences (degree) were 0·10 for pitch, 0·15 for roll and 0·09 for yaw. The maximum translation differences were 0·3 mm in the left–right direction, 0·5 mm in the anterior–posterior direction and 0·4 mm in the superior–inferior direction.
Conclusions:
The uncertainties of the 6-DOF couch were examined with the methods of optical surface imaging and CBCT imaging of the SRS QA phantom. The rotational errors were less than 0·2 degree, and the isocentre shifts were less than 0·8 mm.
Collapse
|
3
|
Rotational positional error-corrected linear set-up margin calculation technique for lung stereotactic body radiotherapy in a dual imaging environment of 4-D cone beam CT and ExacTrac stereoscopic imaging. Radiol Med 2021; 126:979-988. [PMID: 33900527 DOI: 10.1007/s11547-021-01355-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/08/2021] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Accurate calculation of set-up margin is a prerequisite to arrive at the most optimal clinical to planning target volume margin. The aim of this study was to evaluate the compatibility of different on-board and in-room stereoscopic imaging modalities by calculating the set-up margins (SM) in stereotactic body radiotherapy technique accounting and unaccounting for rotational positional errors (PE). Further, we calculated separate SMs one based on residual positional errors and another based on residual + intrafraction positional errors from the imaging data obtained in a dual imaging environment. MATERIALS AND METHODS A total of 22 lung cancer patients were included in this study. For primary image guidance, four-dimensional cone beam computed tomography (4-D CBCT) was used and stereoscopic ExacTrac was used as the auxiliary imaging. Following table position correction (TPC) based on the initial 4-D CBCT, another 4-D CBCT (post-TPC) and a pair of stereoscopic ExacTrac images were obtained. Further, during the treatment delivery, a series of ExacTrac images were acquired to identify the intrafraction PE. If a, b and c were the observed translational shifts in lateral (x-axis), longitudinal (y-axis) and vertical direction (z-axis) and α, β and γ were the rotational shifts in radians about the same axes, respectively, then the resultant translational vectors (A, B and C) were calculated on the basis of translational and rotational values. Set-up margins were calculated using residual errors post-TPC only and also using intrafraction positional errors in addition to the residual errors. RESULTS Residual and residual + intrafraction SM were calculated from a dataset of 82 CBCTs and 189 ExacTrac imaging sessions. CBCT-based mean ± SD shifts in translational and rotational directions were 0.3 ± 1.8 mm, 0.1 ± 1.8 mm, - 0.4 ± 1.6 mm, 0.1 ± 0.4°, 0.0 ± 1.0° and 0.3 ± 0.7°, respectively, and for ExacTrac - 0.1 ± 1.8 mm, 0.2 ± 2.4 mm, - 0.6 ± 1.8 mm, 0.1 ± 1.2°, - 0.2 ± 1.3° and - 0.1 ± 0.6°, respectively. Residual SM without considering the rotational correction in x, y and z directions were 5.0 mm, 4.5 mm and 4.4 mm; rotation-corrected SM were 4.4 mm, 4.0 mm and 5.5 mm, respectively. Residual plus intrafraction SM were 5.5 mm, 6.6 mm and 6.2 mm without considering the rotational corrections, whereas they were 5.0 mm, 6.3 mm and 6.2 mm with rotational errors accounted for. CONCLUSION Accurate calculation of set-up margin is required to find the clinical to planning target volume margin. Primary and auxiliary imaging margins fall in the range of 4.0 to 5.5 mm and 5.0 to 7.0 mm, respectively, indicating a higher SM for X-ray-based planar imaging techniques over three-dimensional cone beam images. This study established the degree of mutual compatibility between two different kinds of widely used set-up imaging modalities, on-board CBCT and in-room stereoscopic imaging ExacTrac. It also describes the technique to calculate the residual and residual plus intrafraction SM and its variation in a dual imaging environment accounting for rotational PE in stereotactic body radiotherapy of lung.
Collapse
|
4
|
Rijken J, Crowe S, Trapp J, Kairn T. A review of stereotactic body radiotherapy for the spine. Phys Eng Sci Med 2020; 43:799-824. [DOI: 10.1007/s13246-020-00889-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
|
5
|
Prediction of VMAT delivery accuracy with textural features calculated from fluence maps. Radiat Oncol 2019; 14:235. [PMID: 31870403 PMCID: PMC6929348 DOI: 10.1186/s13014-019-1441-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/09/2019] [Indexed: 11/30/2022] Open
Abstract
Background Comprehensively textural feature performance test from volumetric modulated arc therapy (VMAT) fluences to predict plan delivery accuracy. Methods A total of 240 VMAT plans for various treatment sites were analyzed, with Trilogy and TrueBeam STx systems. Fluence maps superposed fluences at each control point per plan. The textural features were the angular second moment (ASM), inverse difference moment (IDM), contrast, variance, correlation, and entropy, calculated from fluence maps using three displacement distances. Correlation analysis of textural feature performance as predictors of VMAT delivery accuracy used global gamma passing rates with MapCHECK2 and ArcCHECK dosimeters, and mechanical delivery errors calculated from machine log files. Results Spearman’s rank correlation coefficients (r) of the ASM (d = 10) to the gamma passing rates with 1%/2 mm using the MapCHECK2 were 0.358 and 0.519, respectively (p < 0.001). For the ArcCHECK, they were 0.273 (p = 0.001) and 0.259 (p = 0.009), respectively. The r-values of the ASM (d = 10) to the Trilogy and TrueBeam STx MLC errors were − 0.843 and − 0.859, respectively (p < 0.001), and those to the MU delivery errors were − 0.482 and − 0.589, respectively (p < 0.001). The ASM (d = 10) showed better performance in predicting VMAT delivery accuracy. Conclusions The ASM (d = 10) calculated from VMAT plan fluence maps were strongly correlated with global gamma passing rates and MLC delivery errors, and can predict VMAT delivery accuracy.
Collapse
|
6
|
Sang Y, Shan G, Shao K, Hu F, Liu T. Dosimetric effect of different isocenter for nasopharyngeal carcinoma with volumetric modulated arc therapy. PRECISION RADIATION ONCOLOGY 2019. [DOI: 10.1002/pro6.1079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Yong Sang
- Department of Radiation PhysicsZhejiang Cancer Hospital Hangzhou Zhejiang China
- Key Laboratory of Radiation Oncology in Zhejiang Province Hangzhou Zhejiang China
| | - Guoping Shan
- Department of Radiation PhysicsZhejiang Cancer Hospital Hangzhou Zhejiang China
- Key Laboratory of Radiation Oncology in Zhejiang Province Hangzhou Zhejiang China
| | - Kainan Shao
- Department of Radiation PhysicsZhejiang Cancer Hospital Hangzhou Zhejiang China
- Key Laboratory of Radiation Oncology in Zhejiang Province Hangzhou Zhejiang China
| | - Fujun Hu
- Key Laboratory of Radiation Oncology in Zhejiang Province Hangzhou Zhejiang China
- Department of Radiation OncologyZhejiang Cancer Hospital Hangzhou Zhejiang China
| | - Tongxing Liu
- Key Laboratory of Radiation Oncology in Zhejiang Province Hangzhou Zhejiang China
- Department of Radiation OncologyZhejiang Cancer Hospital Hangzhou Zhejiang China
| |
Collapse
|
7
|
Barrett S, Thirion P, Harper D, Simpkin AJ, Leech M, Hickey K, Ryan L, Marignol L. Dosimetric impact of uncorrected systematic yaw rotation in VMAT for peripheral lung SABR. Rep Pract Oncol Radiother 2019; 24:520-527. [PMID: 31516398 DOI: 10.1016/j.rpor.2019.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/02/2019] [Accepted: 07/30/2019] [Indexed: 12/25/2022] Open
Abstract
Aim This study aimed to evaluate the dosimetric impact of uncorrected yaw rotational error on both target coverage and OAR dose metrics in this patient population. Background Rotational set up errors can be difficult to correct in lung VMAT SABR treatments, and may lead to a change in planned dose distributions. Materials and methods We retrospectively applied systematic yaw rotational errors in 1° degree increments up to -5° and +5° degrees in 16 VMAT SABR plans. The impact on PTV and OARs (oesophagus, spinal canal, heart, airway, chest wall, brachial plexus, lung) was evaluated using a variety of dose metrics. Changes were assessed in relation to percentage deviation from approved planned dose at 0 degrees. Results Target coverage was largely unaffected with the largest mean and maximum percentage difference being 1.4% and 6% respectively to PTV D98% at +5 degrees yaw.Impact on OARs was varied. Minimal impact was observed in oesophagus, spinal canal, chest wall or lung dose metrics. Larger variations were observed in the heart, airway and brachial plexus. The largest mean and maximum percentage differences being 20.77% and 311% respectively at -5 degrees yaw to airway D0.1cc, however, the clinical impact was negligible as these variations were observed in metrics with minimal initial doses. Conclusions No clinically unacceptable changes to dose metrics were observed in this patient cohort but large percentage deviations from approved dose metrics in OARs were noted. OARs with associated PRV structures appear more robust to uncorrected rotational error.
Collapse
Affiliation(s)
- Sarah Barrett
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Ireland
| | | | - Dean Harper
- St Luke's Radiation Oncology Network, Dublin, Ireland
| | - Andrew J Simpkin
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | - Michelle Leech
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Ireland
| | - Kim Hickey
- St Luke's Radiation Oncology Network, Dublin, Ireland
| | - Laoise Ryan
- St Luke's Radiation Oncology Network, Dublin, Ireland
| | - Laure Marignol
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Ireland
| |
Collapse
|
8
|
Stieb S, Malla M, Graydon S, Riesterer O, Klöck S, Studer G, Tanadini-Lang S. Dosimetric influence of pitch in patient positioning for radiotherapy of long treatment volumes; the usefulness of six degree of freedom couch. Br J Radiol 2018; 91:20170704. [PMID: 30004794 DOI: 10.1259/bjr.20170704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE: Pitch, the rotation around the transversal axis of the patient during radiotherapy has little impact on the dose distribution of small spherical treatment volumes; however it might affect treatment of long volumes requiring a correction with a six degree of freedom couch. METHODS: We included 10 patients each with nasopharyngeal carcinoma (NPC) and esophageal cancer, treated with volumetric modulated arc therapy. Pitch was simulated by tilting the planning CT in ventral and dorsal direction by ± 1.5° and ± 3°. Verification plans were calculated on the tilted datasets and were compared to the original plan and the dose constraints of the organs at risk (OAR). RESULTS: The deviation in dose to the planning target volume is increasing with the degree of pitch with mean changes of up to 2% for NPC and 1% for esophageal cancer. The most affected OAR in NPC patients are brainstem (max. dose +6.0%) and spinal cord (max. dose +10.0%) when tilted by 3° dorsally and lenses (max. dose +3.3%), oral mucosa (mean dose +2.6%) and parotid glands (mean dose +4.3%) when tilted by 3° ventrally. For esophageal cancer patients, there was no significant change in dose to any OAR. Whereas for esophageal cancer, all tilted treatment plans were still clinically acceptable regarding OAR, 5 NPC plans would no longer be acceptable with a pitch of 1.5° ventral (N = 1), 3° ventral (N = 2) and 3° dorsal (N = 2). CONCLUSION: Planning target volume coverage in both tumor entities was only slightly affected, but pitch errors could be relevant for OAR in NPC patients. ADVANCES IN KNOWLEDGE: A correction with a six degree of freedom couch is recommended for NPC patients with a pitch mismatch of more than 1.5° to avoid exceeded doses to the OAR.
Collapse
Affiliation(s)
- Sonja Stieb
- 1 Department of Radiation Oncology, University Hospital Zurich and University of Zurich , Zurich, , Switzerland.,2 Institute of Diagnostic and Interventional Radiology, University Hospital Zurich and University of Zurich , Zurich, , Switzerland
| | - Michelle Malla
- 1 Department of Radiation Oncology, University Hospital Zurich and University of Zurich , Zurich, , Switzerland
| | - Shaun Graydon
- 1 Department of Radiation Oncology, University Hospital Zurich and University of Zurich , Zurich, , Switzerland
| | - Oliver Riesterer
- 1 Department of Radiation Oncology, University Hospital Zurich and University of Zurich , Zurich, , Switzerland
| | - Stephan Klöck
- 1 Department of Radiation Oncology, University Hospital Zurich and University of Zurich , Zurich, , Switzerland
| | - Gabriela Studer
- 1 Department of Radiation Oncology, University Hospital Zurich and University of Zurich , Zurich, , Switzerland.,3 Institute for Radiation Oncology, Cantonal Hospital Lucerne , Lucerne , Switzerland
| | - Stephanie Tanadini-Lang
- 1 Department of Radiation Oncology, University Hospital Zurich and University of Zurich , Zurich, , Switzerland
| |
Collapse
|
9
|
Dosimetric effect of uncorrected rotations in lung SBRT with stereotactic imaging guidance. Phys Med 2017; 42:197-202. [DOI: 10.1016/j.ejmp.2017.09.135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/20/2017] [Accepted: 09/23/2017] [Indexed: 12/25/2022] Open
|
10
|
Park JM, Park SY, Kim HJ, Wu HG, Carlson J, Kim JI. A comparative planning study for lung SABR between tri-Co-60 magnetic resonance image guided radiation therapy system and volumetric modulated arc therapy. Radiother Oncol 2016; 120:279-85. [PMID: 27401404 DOI: 10.1016/j.radonc.2016.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/14/2016] [Accepted: 06/19/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE To compare the plan quality of tri-(60)Co magnetic-resonance image-guided radiation therapy (IGRT) to that of volumetric modulated arc therapy (VMAT) for lung stereotactic ablative radiotherapy (SABR). MATERIALS AND METHODS A total of 22 patients with lung tumors located in the lower lobe were selected retrospectively. For each patient, VMAT plans with linac and intensity-modulated radiation therapy (IMRT) plans with the tri-(60)Co system were generated with prescription doses of 60Gy (daily dose=15Gy). For both plan types, identical CT image sets and structures were used, with the exception of planning target volumes (PTV). The PTV for VMAT was generated from the internal target volume (ITV) while the PTV for the tri-(60)Co system was generated from the gross tumor volume (GTV). Clinically relevant dose-volumetric parameters were calculated and analyzed. RESULTS The average PTV volumes of tri-(60)Co plans and VMAT plans were 10.5±12.3cc vs. 27.2±23.5cc, respectively (p<0.001). The maximum and mean doses to PTVs were 64.0±2.6Gy vs. 62.5±0.9Gy (p=0.005) and 61.4±1.7Gy vs. 60.0±0.5Gy (p<0.001), respectively. The conformity and homogeneity indices were 1.89±0.38 vs. 1.01±0.40 (p<0.001) and 0.06±0.02 vs. 0.04±0.00 (p<0.001), respectively. No considerable differences for organs at risk (OARs) were observed between tri-(60)Co plans and VMAT plans. In terms of target conformity, integral dose and lung mean dose, the plan quality of tri-(60)Co plans was inferior to that of VMAT plans when the PTV volumes of tri-(60)Co plans were less than 10cc. However, all treatment plans of tri-(60)Co system were clinically acceptable. CONCLUSION For lung SABR, the quality of ITV-based VMAT plans was better than that of GTV-based tri-(60)Co plans especially when the PTV volumes of the tri-(60)Co plans were less than 10cc. If the breathing pattern of a patient is reproducible, VMAT is considered the optimal option for lung SABR, otherwise the tri-(60)Co IGRT should be considered due to the ability to monitor tumor motion during treatment.
Collapse
Affiliation(s)
- Jong Min Park
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Center for Convergence Research on Robotics, Advanced Institutes of Convergence Technology, Suwon, Republic of Korea
| | - So-Yeon Park
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Hak Jae Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hong-Gyun Wu
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joel Carlson
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Seoul National University Graduate School of Convergence Science and Technology, Seoul, Republic of Korea
| | - Jung-In Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Center for Convergence Research on Robotics, Advanced Institutes of Convergence Technology, Suwon, Republic of Korea.
| |
Collapse
|
11
|
Kim KS, Seo SJ, Lee J, Seok JY, Hong JW, Chung JB, Kim E, Choi N, Eom KY, Kim JS, Kim IA. Inclined head position improves dose distribution during hippocampal-sparing whole brain radiotherapy using VMAT. Strahlenther Onkol 2016; 192:473-80. [DOI: 10.1007/s00066-016-0973-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 04/05/2016] [Indexed: 11/28/2022]
|