1
|
Maino C, Romano F, Franco PN, Ciaccio A, Garancini M, Talei Franzesi C, Scotti MA, Gandola D, Fogliati A, Bernasconi DP, Del Castello L, Corso R, Ciulli C, Ippolito D. Functional liver imaging score (FLIS) can predict adverse events in HCC patients. Eur J Radiol 2024; 180:111695. [PMID: 39197273 DOI: 10.1016/j.ejrad.2024.111695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
PURPOSE To assess the performance of FLIS in predicting adverse outcomes, namely post-hepatectomy liver failure (PHLF) and death, in patients who underwent liver surgery for malignancies. METHODS All consecutive patients who underwent liver resection and 1.5 T gadoxetic acid MR were enrolled. PHLF and overall survival (OS) were collected. Two radiologists with 18 and 8 years of experience in abdominal imaging, blinded to clinical data, evaluated all images. Radiologists evaluated liver parenchymal enhancement (EnQS), biliary contrast excretion (ExQS), and signal intensity of the portal vein relative to the liver parenchyma (PVsQs). Reliability analysis was computed with Cohen's Kappa. Cox regression analysis was calculated to determine which factors are associated with PHLF and OS. Area Under the Receiver Operating Characteristic curve (AUROC) was computed. RESULTS 150 patients were enrolled, 58 (38.7 %) in the HCC group and 92 (61.3 %) in the non-HCC group. The reliability analysis between the two readers was almost perfect (κ = 0.998). The multivariate Cox analysis showed that only post-surgical blood transfusions and major resection were associated with adverse events [HR=8.96 (7.98-9.88), p = 0.034, and HR=0.99 (0.781-1.121), p = 0.032, respectively] in the whole population. In the HCC group, the multivariable Cox analysis showed that blood transfusions, major resection and FLIS were associated with adverse outcomes [HR=13.133 (2.988-55.142), p = 0.009, HR=0.987 (0.244-1.987), p = 0.021, and HR=1.891 (1.772-3.471), p = 0.039]. The FLIS AUROC to predict adverse outcomes was 0.660 (95 %CIs = 0.484-0.836), with 87 % sensitivity and 33.3 % specificity (81.1-94.4 and 22.1-42.1). CONCLUSIONS FLIS can be considered a promising tool to preoperative depict patients at risk of PHLF and death.
Collapse
Affiliation(s)
- Cesare Maino
- Department of Diagnostic Radiology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, MB, Italy.
| | - Fabrizio Romano
- Department of Hepatobiliary Surgery, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, MB, Italy; Department of Medicine and Surgery, University of Milano Bicocca, Via Cadore 33, 20090 Monza, MB, Italy
| | - Paolo Niccolò Franco
- Department of Diagnostic Radiology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, MB, Italy
| | - Antonio Ciaccio
- Department of Gastroenterlogy, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, MB, Italy
| | - Mattia Garancini
- Department of Hepatobiliary Surgery, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, MB, Italy
| | - Cammillo Talei Franzesi
- Department of Diagnostic Radiology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, MB, Italy
| | - Mauro Alessandro Scotti
- Department of Hepatobiliary Surgery, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, MB, Italy
| | - Davide Gandola
- Department of Diagnostic Radiology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, MB, Italy
| | - Alessandro Fogliati
- Department of Hepatobiliary Surgery, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, MB, Italy
| | - Davide Paolo Bernasconi
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre-B4, School of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, Monza, MB 20900, Italy
| | - Lorenzo Del Castello
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre-B4, School of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, Monza, MB 20900, Italy
| | - Rocco Corso
- Department of Diagnostic Radiology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, MB, Italy
| | - Cristina Ciulli
- Department of Hepatobiliary Surgery, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, MB, Italy
| | - Davide Ippolito
- Department of Diagnostic Radiology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, MB, Italy; Department of Medicine and Surgery, University of Milano Bicocca, Via Cadore 33, 20090 Monza, MB, Italy
| |
Collapse
|
2
|
Reguram R, Ghonge A, Tse J, Dhanasekaran R. Practical approach to diagnose and manage benign liver masses. Hepatol Commun 2024; 8:e0560. [PMID: 39470338 PMCID: PMC11524743 DOI: 10.1097/hc9.0000000000000560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/04/2024] [Indexed: 10/30/2024] Open
Abstract
Benign liver lesions are among the most commonly diagnosed abnormalities in liver imaging. They are often discovered incidentally during routine examinations or imaging conducted for unrelated reasons. These can be solid lesions, such as hemangiomas, focal nodular hyperplasia, hepatic adenomas, or cystic lesions. Recent advancements in MRI technology, particularly with hepatocyte-specific contrast agents, have enhanced the characterization of these lesions, reducing the reliance on invasive tissue sampling. Nevertheless, tissue sampling retains a crucial role in the evaluation of indeterminate lesions or those with malignant potential. While most benign liver lesions are asymptomatic, some can become symptomatic, causing discomfort, pain, or bleeding, particularly if the lesion is large. A deep understanding of the molecular underpinnings of the lesions is crucial for tailoring patient management strategies, particularly in distinguishing lesions that require surgical intervention from those that can be monitored. For instance, the molecular subclassification of hepatic adenomas has provided mechanistic insights and identified certain subtypes that are at higher risk of malignancy. Most benign liver lesions can be safely monitored; however, in patients with cirrhosis or a known primary malignancy, a high index of suspicion for cancer is required. It is crucial to carefully evaluate any liver lesion identified in these patients to ensure that indeterminate lesions are not overlooked. Effective management of benign liver lesions involves a multidisciplinary team, including hepatologists, surgeons, and radiologists, ensuring a comprehensive and individualized approach to patient care. This review outlines the clinical presentation of common benign liver lesions, providing a diagnostic and management framework. Emphasis is placed on a personalized approach to minimize patient distress and optimize outcomes by leveraging imaging advancements and multidisciplinary collaboration.
Collapse
Affiliation(s)
- Reshma Reguram
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, California, USA
| | - Aishwarya Ghonge
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, California, USA
| | - Justin Tse
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Renumathy Dhanasekaran
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
3
|
Frenette C, Mendiratta-Lala M, Salgia R, Wong RJ, Sauer BG, Pillai A. ACG Clinical Guideline: Focal Liver Lesions. Am J Gastroenterol 2024; 119:1235-1271. [PMID: 38958301 DOI: 10.14309/ajg.0000000000002857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/25/2024] [Indexed: 07/04/2024]
Abstract
Focal liver lesions (FLLs) have become an increasingly common finding on abdominal imaging, especially asymptomatic and incidental liver lesions. Gastroenterologists and hepatologists often see these patients in consultation and make recommendations for management of multiple types of liver lesions, including hepatocellular adenoma, focal nodular hyperplasia, hemangioma, and hepatic cystic lesions including polycystic liver disease. Malignancy is important to consider in the differential diagnosis of FLLs, and healthcare providers must be familiar with the diagnosis and management of FLLs. This American College of Gastroenterology practice guideline uses the best evidence available to make diagnosis and management recommendations for the most common FLLs.
Collapse
Affiliation(s)
| | | | - Reena Salgia
- Department of Gastroenterology/Hepatology, Henry Ford Health, Detroit, Michigan, USA
| | - Robert J Wong
- Division of Gastroenterology and Hepatology, Veterans Affairs Palo Alto Health Care System and Stanford University School of Medicine, Palo Alto, California, USA
| | - Bryan G Sauer
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, Virginia, USA
| | - Anjana Pillai
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago Medical Center, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Hu J, Wang X, Prince M, Wang F, Sun J, Yang X, Wang W, Ye J, Chen L, Luo X. Gd-EOB-DTPA enhanced MRI based radiomics combined with clinical variables in stratifying hepatic functional reserve in HBV infected patients. Abdom Radiol (NY) 2024; 49:1051-1062. [PMID: 38294541 DOI: 10.1007/s00261-023-04176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024]
Abstract
PURPOSES To evaluate radiomics from Gd-EOB-DTPA enhanced MR combined with clinical variables for stratifying hepatic functional reserve in hepatitis B virus (HBV) patients. METHODS Our study included 279 chronic HBV patients divided 8:2 for training and test cohorts. Radiomics features were extracted from the hepatobiliary phase (HBP) MR images. Radiomics features were selected to construct a Rad-score which was combined with clinical parameters in two models differentiating hepatitis vs. Child-Pugh A and Child-Pugh A vs. B/C. Performances of these stratifying models were compared using area under curve (AUC). RESULTS Rad-score alone discriminated hepatitis vs. Child-Pugh A with AUC = 0.890, 0.914 and Child-Pugh A vs. B/C with AUC = 0.862, 0.865 for the training and test cohorts, respectively. Model 1 [Rad-score + clinical parameters for hepatitis vs. Child-Pugh A] showed AUC = 0.978 for the test cohort, which was higher than ALBI [albumin-bilirubin] and MELD [model for end-stage liver disease], with AUCs of 0.716, 0.799, respectively (p < 0.001, < 0.001). Model 2 [Rad-score + clinical parameters for Child-Pugh A vs. B/C] showed AUC of 0.890 in the test cohort, which was similar to ALBI (AUC = 0.908, p = 0.760), and higher than MELD (AUC = 0.709, p = 0.018). CONCLUSION Rad-score combined with clinical variables stratifies hepatic functional reserve in HBV patients.
Collapse
Affiliation(s)
- Jinghui Hu
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Xiaoxiao Wang
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Martin Prince
- Department of Radiology, Weill Medical College of Cornell University, 407 E61st Street, New York, NY, 10065, USA
| | - Fang Wang
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Yunjin Road 701, Xuhui District, Shanghai, 200232, China
| | - Jun Sun
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Xin Yang
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Wenjian Wang
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Jing Ye
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Lei Chen
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Yunjin Road 701, Xuhui District, Shanghai, 200232, China
| | - Xianfu Luo
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China.
| |
Collapse
|
5
|
Wan Q, Peng H, Liu F, Liu X, Cheng C, Tie C, Deng J, Lyu J, Jia Y, Wang Y, Zheng H, Liang D, Liu X, Zou C. Ability of dynamic gadoxetic acid-enhanced magnetic resonance imaging combined with water-specific T1 mapping to reflect inflammation in a rat model of early-stage nonalcoholic steatohepatitis. Quant Imaging Med Surg 2024; 14:1591-1601. [PMID: 38415124 PMCID: PMC10895110 DOI: 10.21037/qims-23-482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/23/2023] [Indexed: 02/29/2024]
Abstract
Background Gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA) has shown potential in reflecting the hepatic function alterations in nonalcoholic steatohepatitis (NASH). The purpose of this study was to evaluate whether Gd-EOB-DTPA combined with water-specific T1 (wT1) mapping can be used to detect liver inflammation in the early-stage of NASH in rats. Methods In this study, 54 rats with methionine- and choline-deficient (MCD) diet-induced NASH and 10 normal control rats were examined. A multiecho variable flip angle gradient echo (VFA-GRE) sequence was performed and repeated 40 times after the injection of Gd-EOB-DTPA. The wT1 of the liver and the reduction rate of wT1 (rrT1) were calculated. All rats were histologically evaluated and grouped according to the NASH Clinical Research Network scoring system. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expression of Gd-EOB-DTPA transport genes. Analysis of variance and least significant difference tests were used for multiple comparisons of quantitative results between all groups. Multiple regression analysis was applied to identify variables associated with precontrast wT1 (wT1pre), and receiver operating characteristic (ROC) analysis was performed to assess the diagnostic performance. Results The rats were grouped according to inflammatory stage (G0 =4, G1 =15, G2 =12, G3 =23) and fibrosis stage (F0 =26, F1 =19, F2 =9). After the infusion of Gd-EOB-DTPA, the rrT1 showed significant differences between the control and NASH groups (P<0.05) but no difference between the different inflammation and fibrosis groups at any time points. The areas under curve (AUCs) of rrT1 at 10, 20, and 30 minutes were only 0.53, 0.58, and 0.61, respectively, for differentiating between low inflammation grade (G0 + G1) and high inflammation grade (G2 + G3). The MRI findings were verified by qRT-PCR examination, in which the Gd-EOB-DTPA transporter expressions showed no significant differences between any inflammation groups. Conclusions The wT1 mapping quantitative method combined with Gd-EOB-DTPA was not capable of discerning the inflammation grade in a rat model of early-stage NASH.
Collapse
Affiliation(s)
- Qian Wan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hao Peng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Feng Liu
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Xiaoyi Liu
- Departments of Radiology, Peking University People’s Hospital, Beijing, China
| | - Chuanli Cheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Changjun Tie
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jie Deng
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jianxun Lyu
- Department of Radiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yizhen Jia
- Departments of Research Services, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yi Wang
- Departments of Radiology, Peking University People’s Hospital, Beijing, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chao Zou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
6
|
Wang Q, Li C, Chen G, Feng K, Chen Z, Xia F, Cai P, Zhang L, Sparrelid E, Brismar TB, Ma K. Unsupervised Machine Learning of MRI Radiomics Features Identifies Two Distinct Subgroups with Different Liver Function Reserve and Risks of Post-Hepatectomy Liver Failure in Patients with Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:3197. [PMID: 37370807 DOI: 10.3390/cancers15123197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVE To identify subgroups of patients with hepatocellular carcinoma (HCC) with different liver function reserves using an unsupervised machine-learning approach on the radiomics features from preoperative gadoxetic-acid-enhanced MRIs and to evaluate their association with the risk of post-hepatectomy liver failure (PHLF). METHODS Clinical data from 276 consecutive HCC patients who underwent liver resections between January 2017 and March 2019 were retrospectively collected. Radiomics features were extracted from the non-tumorous liver tissue at the gadoxetic-acid-enhanced hepatobiliary phase MRI. The reproducible and non-redundant features were selected for consensus clustering analysis to detect distinct subgroups. After that, clinical variables were compared between the identified subgroups to evaluate the clustering efficacy. The liver function reserve of the subgroups was compared and the correlations between the subgroups and PHLF, postoperative complications, and length of hospital stay were evaluated. RESULTS A total of 107 radiomics features were extracted and 37 were selected for unsupervised clustering analysis, which identified two distinct subgroups (138 patients in each subgroup). Compared with subgroup 1, subgroup 2 had significantly more patients with older age, albumin-bilirubin grades 2 and 3, a higher indocyanine green retention rate, and a lower indocyanine green plasma disappearance rate (all p < 0.05). Subgroup 2 was also associated with a higher risk of PHLF, postoperative complications, and longer hospital stays (>18 days) than that of subgroup 1, with an odds ratio of 2.83 (95% CI: 1.58-5.23), 2.41(95% CI: 1.15-5.35), and 2.14 (95% CI: 1.32-3.47), respectively. The odds ratio of our method was similar to the albumin-bilirubin grade for postoperative complications and length of hospital stay (2.41 vs. 2.29 and 2.14 vs. 2.16, respectively), but was inferior for PHLF (2.83 vs. 4.55). CONCLUSIONS Based on the radiomics features of gadoxetic-acid-enhanced MRI, unsupervised clustering analysis identified two distinct subgroups with different liver function reserves and risks of PHLF in HCC patients. Future studies are required to validate our findings.
Collapse
Affiliation(s)
- Qiang Wang
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 141 86 Stockholm, Sweden
- Division of Radiology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Changfeng Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Geng Chen
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Kai Feng
- Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Zhiyu Chen
- Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Feng Xia
- Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Ping Cai
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Leida Zhang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Ernesto Sparrelid
- Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Torkel B Brismar
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 141 86 Stockholm, Sweden
- Division of Radiology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Kuansheng Ma
- Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| |
Collapse
|
7
|
Lu F, Du L, Chen W, Jiang H, Yang C, Pu Y, Wu J, Zhu J, Chen T, Zhang X, Wu C. T 1- T 2 dual-modal magnetic resonance contrast-enhanced imaging for rat liver fibrosis stage. RSC Adv 2022; 12:35809-35819. [PMID: 36545112 PMCID: PMC9749127 DOI: 10.1039/d2ra05913d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/02/2022] [Indexed: 12/16/2022] Open
Abstract
The development of an effective method for staging liver fibrosis has always been a hot topic of research in the field of liver fibrosis. In this paper, PEGylated ultrafine superparamagnetic iron oxide nanocrystals (SPIO@PEG) were developed for T 1-T 2 dual-modal contrast-enhanced magnetic resonance imaging (MRI) and combined with Matrix Laboratory (MATLAB)-based image fusion for staging liver fibrosis in the rat model. Firstly, SPIO@PEG was synthesized and characterized with physical and biological properties as a T 1-T 2 dual-mode MRI contrast agent. Secondly, in the subsequent MR imaging of liver fibrosis in rats in vivo, conventional T 1 and T 2-weighted imaging, and T 1 and T 2 mapping of the liver pre- and post-intravenous administration of SPIO@PEG were systematically collected and analyzed. Thirdly, by creative design, we fused the T 1 and T 2 mapping images by MATLAB and quantitively measured each rat's hepatic fibrosis positive pixel ratio (PPR). SPIO@PEG was proved to have an ultrafine core size (4.01 ± 0.16 nm), satisfactory biosafety and T 1-T 2 dual-mode contrast effects under a 3.0 T MR scanner (r 2/r 1 = 3.51). According to the image fusion results, the SPIO@PEG contrast-enhanced PPR shows significant differences among different stages of liver fibrosis (P < 0.05). The combination of T 1-T 2 dual-modal SPIO@PEG and MATLAB-based image fusion technology could be a promising method for diagnosing and staging liver fibrosis in the rat model. PPR could also be used as a non-invasive biomarker to diagnose and discriminate the stages of liver fibrosis.
Collapse
Affiliation(s)
- Fulin Lu
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000China,Department of Radiology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengdu 610072China
| | - Liang Du
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000China
| | - Wei Chen
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000China
| | - Hai Jiang
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000China
| | - Chenwu Yang
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000China
| | - Yu Pu
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000China
| | - Jun Wu
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000China
| | - Jiang Zhu
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000China
| | - Tianwu Chen
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000China
| | - Xiaoming Zhang
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000China
| | - Changqiang Wu
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000China
| |
Collapse
|
8
|
Tang G, Liu J, Liu P, Huang F, Shao X, Chen Y, Xie A. Evaluation of liver function in patients with liver cirrhosis and chronic liver disease using functional liver imaging scores at different acquisition time points. Front Genet 2022; 13:1071025. [PMID: 36561314 PMCID: PMC9765309 DOI: 10.3389/fgene.2022.1071025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose: This paper aims to explore whether functional liver imaging score (FLIS) based on Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) images at 5, 10, and 15 min can predict liver function in patients with liver cirrhosis or chronic liver disease and its association with indocyanine green 15-min retention rate (ICG-R15), Child-Pugh (CP) score, albumin-bilirubin (ALBI) score, and model for end-stage liver disease (MELD) score. In addition, it also examines the inter- and intra-observer consistency of FLIS and three FLIS parameters at three different time points. Methods: This study included 110 patients with chronic liver disease (CLD) or liver cirrhosis (LC) (93 men, 17 women; mean ± standard deviation = 56.96 ± 10.16) between July 2019 and May 2022. FLIS was assigned in accordance with the sum of the three hepatobiliary phase characteristics, all of which were scored on the 0-2 ordinal scale, including the biliary excretion, hepatic enhancement and portal vein signal intensity. FLIS was calculated independently by two radiologists using transitional and hepatobiliary phase images at 5, 10, and 15 min after enhancement. The relationship between FLIS and three FLIS quality scores and the degree of liver function were evaluated using Spearman's rank correlation coefficient. The ability of FLIS to predict hepatic function was investigated using receiver operating characteristic (ROC) curves. Results: Intra- and inter-observer intraclass correlation coefficients (ICCs) (ICC = 0.937-0.978, 95% CI = 0.909-0.985) for FLIS at each time point indicated excellent agreement. At each time point, FLIS had a moderate negative association with liver function classification (r = [-0.641]-[-0.428], p < 0.001), and weak to moderate correlation with some other clinical parameters except for creatinine (p > 0.05). FLIS showed moderate discriminatory ability between different liver function levels. The area under the ROC curves (AUCs) of FLIS at 5, 10, and 15 min after enhancement to predict ICG-R15 of 10% or less were 0.838, 0.802, and 0.723, respectively; those for predicting ICG-R15 greater than 20% were 0.793, 0.824, and 0.756, respectively; those for predicting ICG-R15 greater than 40% were 0.728, 0.755, and 0.741, respectively; those for predicting ALBI grade 1 were 0.734, 0.761, and 0.691, respectively; those for predicting CP class A cirrhosis were 0.806, 0.821, and 0.829, respectively; those for predicting MELD score of 10 or less were 0.837, 0.877, and 0.837, respectively. No significant difference was found in the AUC of FLIS at 5, 10 and 15 min (p > 0.05). Conclusion: FLIS presented a moderate negative correlation with the classification system of hepatic function at a delay of 5, 10, and 15 min, and patients with LC or CLD were appropriately stratified based on ICG-R15, ALBI grade, MELD score, and CP classification. In addition, the use of FLIS to evaluate liver function can reduce the observation time of the hepatobiliary period.
Collapse
Affiliation(s)
- Guixiang Tang
- Department of Radiology, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Jianbin Liu
- Department of Radiology, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Peng Liu
- Department of Radiology, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Feng Huang
- Department of Radiology, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Xunuo Shao
- School of Mathematics and Statistics, Hunan Normal University, Changsha, China
| | - Yao Chen
- Department of Radiology, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - An Xie
- Department of Radiology, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China,*Correspondence: An Xie,
| |
Collapse
|
9
|
Ding C, Jia J, Bai G, Zhou W, Shan W. Predictive value of Gd-EOB-DTPA -enhanced magnetic resonance imaging for post-hepatectomy liver failure: a systematic review and meta-analysis. Acta Radiol 2022; 64:1347-1356. [PMID: 36303435 DOI: 10.1177/02841851221134485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Accurate preoperative diagnosis of post-hepatectomy liver failure (PHLF) is particularly important to improve the prognosis of patients. Purpose To evaluate the predictive value of Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) for post-hepatectomy liver failure. Material and Methods A systematic search was performed in the PubMed, Embase, the Cochrane Library, and Web of Science databases to find relevant original articles published up to December 2021. The included studies were assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. The bivariate random-effects model was used to assess the diagnostic authenticity. Meta-regression analyses were performed to analyze the potential heterogeneity. Results In total, 13 articles were included. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and the area under the summary receiver operating characteristic curves were 88% (95% confidence interval [CI] = 0.80–0.94), 80% (95% CI = 0.73–0.86), 4.4 (95% CI = 3.3–5.9), 0.14 (95% CI = 0.08–0.25), 31 (95% CI = 17–57), and 0.91 (95% CI = 0.89–0.94), respectively. There was no publication bias and threshold effect in our study. Conclusion Gd-EOB-DTPA-enhanced MRI is a potentially useful for the prediction of PHLF after major hepatectomy.
Collapse
Affiliation(s)
- Cong Ding
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, PR China
| | - Jianye Jia
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, PR China
| | - Genji Bai
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, PR China
| | - Wei Zhou
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, PR China
| | - Wenli Shan
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, PR China
| |
Collapse
|
10
|
LeGout JD, Bolan CW, Bowman AW, Caserta MP, Chen FK, Cox KL, Sanyal R, Toskich BB, Lewis JT, Alexander LF. Focal Nodular Hyperplasia and Focal Nodular Hyperplasia-like Lesions. Radiographics 2022; 42:1043-1061. [PMID: 35687520 DOI: 10.1148/rg.210156] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Focal nodular hyperplasia (FNH) is a benign lesion occurring in a background of normal liver. FNH is seen most commonly in young women and can often be accurately diagnosed at imaging, including CT, MRI, or contrast-enhanced US. In the normal liver, FNH frequently must be differentiated from hepatocellular adenoma, which although benign, is managed differently because of the risks of hemorrhage and malignant transformation. When lesions that are histologically identical to FNH occur in a background of abnormal liver, they are termed FNH-like lesions. These lesions can be a source of diagnostic confusion and must be differentiated from malignancies. Radiologists' familiarity with the imaging appearance of FNH-like lesions and knowledge of the conditions that predispose a patient to their formation are critical to minimizing the risks of unnecessary intervention for these lesions, which are rarely symptomatic and carry no risk for malignant transformation. FNH is thought to form secondary to an underlying vascular disturbance, a theory supported by the predilection for formation of FNH-like lesions in patients with a variety of hepatic vascular abnormalities. These include abnormalities of hepatic outflow such as Budd-Chiari syndrome, abnormalities of hepatic inflow such as congenital absence of the portal vein, and hepatic microvascular disturbances, such as those that occur after exposure to certain chemotherapeutic agents. Familiarity with the imaging appearances of these varied conditions and knowledge of their association with formation of FNH-like lesions allow radiologists to identify with confidence these benign lesions that require no intervention. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Jordan D LeGout
- From the Department of Radiology (J.D.L., C.W.B., A.W.B., M.P.C., F.K.C., K.L.C., R.S., B.B.T., L.F.A.) and Department of Laboratory Medicine and Pathology (J.T.L.), Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| | - Candice W Bolan
- From the Department of Radiology (J.D.L., C.W.B., A.W.B., M.P.C., F.K.C., K.L.C., R.S., B.B.T., L.F.A.) and Department of Laboratory Medicine and Pathology (J.T.L.), Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| | - Andrew W Bowman
- From the Department of Radiology (J.D.L., C.W.B., A.W.B., M.P.C., F.K.C., K.L.C., R.S., B.B.T., L.F.A.) and Department of Laboratory Medicine and Pathology (J.T.L.), Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| | - Melanie P Caserta
- From the Department of Radiology (J.D.L., C.W.B., A.W.B., M.P.C., F.K.C., K.L.C., R.S., B.B.T., L.F.A.) and Department of Laboratory Medicine and Pathology (J.T.L.), Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| | - Frank K Chen
- From the Department of Radiology (J.D.L., C.W.B., A.W.B., M.P.C., F.K.C., K.L.C., R.S., B.B.T., L.F.A.) and Department of Laboratory Medicine and Pathology (J.T.L.), Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| | - Kelly L Cox
- From the Department of Radiology (J.D.L., C.W.B., A.W.B., M.P.C., F.K.C., K.L.C., R.S., B.B.T., L.F.A.) and Department of Laboratory Medicine and Pathology (J.T.L.), Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| | - Rupan Sanyal
- From the Department of Radiology (J.D.L., C.W.B., A.W.B., M.P.C., F.K.C., K.L.C., R.S., B.B.T., L.F.A.) and Department of Laboratory Medicine and Pathology (J.T.L.), Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| | - Beau B Toskich
- From the Department of Radiology (J.D.L., C.W.B., A.W.B., M.P.C., F.K.C., K.L.C., R.S., B.B.T., L.F.A.) and Department of Laboratory Medicine and Pathology (J.T.L.), Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| | - Jason T Lewis
- From the Department of Radiology (J.D.L., C.W.B., A.W.B., M.P.C., F.K.C., K.L.C., R.S., B.B.T., L.F.A.) and Department of Laboratory Medicine and Pathology (J.T.L.), Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| | - Lauren F Alexander
- From the Department of Radiology (J.D.L., C.W.B., A.W.B., M.P.C., F.K.C., K.L.C., R.S., B.B.T., L.F.A.) and Department of Laboratory Medicine and Pathology (J.T.L.), Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| |
Collapse
|
11
|
Duan T, Jiang HY, Ling WW, Song B. Noninvasive imaging of hepatic dysfunction: A state-of-the-art review. World J Gastroenterol 2022; 28:1625-1640. [PMID: 35581963 PMCID: PMC9048786 DOI: 10.3748/wjg.v28.i16.1625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/17/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatic dysfunction represents a wide spectrum of pathological changes, which can be frequently found in hepatitis, cholestasis, metabolic diseases, and focal liver lesions. As hepatic dysfunction is often clinically silent until advanced stages, there remains an unmet need to identify affected patients at early stages to enable individualized intervention which can improve prognosis. Passive liver function tests include biochemical parameters and clinical grading systems (e.g., the Child-Pugh score and Model for End-Stage Liver Disease score). Despite widely used and readily available, these approaches provide indirect and limited information regarding hepatic function. Dynamic quantitative tests of liver function are based on clearance capacity tests such as the indocyanine green (ICG) clearance test. However, controversial results have been reported for the ICG clearance test in relation with clinical outcome and the accuracy is easily affected by various factors. Imaging techniques, including ultrasound, computed tomography, and magnetic resonance imaging, allow morphological and functional assessment of the entire hepatobiliary system, hence demonstrating great potential in evaluating hepatic dysfunction noninvasively. In this article, we provide a state-of-the-art summary of noninvasive imaging modalities for hepatic dysfunction assessment along the pathophysiological track, with special emphasis on the imaging modality comparison and selection for each clinical scenario.
Collapse
Affiliation(s)
- Ting Duan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Han-Yu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wen-Wu Ling
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
12
|
Wang Q, Kesen S, Liljeroth M, Nilsson H, Zhao Y, Sparrelid E, Brismar TB. Quantitative evaluation of liver function with gadoxetic acid enhanced MRI: Comparison among signal intensity-, T1-relaxometry-, and dynamic-hepatocyte-specific-contrast-enhanced MRI- derived parameters. Scand J Gastroenterol 2022:1-8. [PMID: 35108168 DOI: 10.1080/00365521.2022.2032321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
AIMS Three types of gadoxetic acid enhanced MRI parameters have been proposed to quantify liver function. However, until now there is no consensus on which one that has the greatest potential for use in clinical practice. This study was conducted to compare the efficacy of three types of gadoxetic acid enhanced MR parameters for quantitative assessment of liver function. METHODS Imaging data of 10 patients with chronic liver disease and 20 healthy volunteers were analyzed. Parameters based on signal intensity(SI), T1 changes or dynamic-hepatocyte-specific-contrast-enhancement MR were calculated. Their mutual correlations, discriminatory capacity between cirrhotic and healthy liver and correlations with Child-Pugh score and Model for end-stage liver-disease (MELD) were estimated. RESULTS The strongest correlations were observed between relative enhancement of the liver and T1 time at 20 min after contrast agent injection, and between liver-spleen contrast ratio at 20 min after contrast agent injection and hepatic uptake rate (|r|> 0.90, p < .05, both). All parameters but input-relative blood flow (p = 0.17) were significantly different between patient and control group (p < .05), with AUROCs of liver-to-muscle ratio (LMR), increase of LMR and hepatic extraction fraction greater than 0.90 (p < .05). Liver-to-spleen ratio, LMR and hepatic uptake index presented a strong correlation with Child-Pugh score and MELD (|r|> 0.8, p < .05). CONCLUSION Simple SI-based parameters were as good as more complex parameters in evaluating liver function at gadoxetic acid enhanced MR. In clinical routine LMR seems to be the easiest-to-use parameter for quantitative evaluation of liver function.
Collapse
Affiliation(s)
- Qiang Wang
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Savas Kesen
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Maria Liljeroth
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Henrik Nilsson
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Ying Zhao
- Experimental Cancer Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
- Clinical Research Center (KFC) and Center for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Ernesto Sparrelid
- Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Torkel B Brismar
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
13
|
Baek SE, Ul-Haq A, Kim DH, Choi HW, Kim MJ, Choi HJ, Kim H. Human Organic Anion Transporting Polypeptide 1B3 Applied as an MRI-Based Reporter Gene. Korean J Radiol 2020; 21:726-735. [PMID: 32410411 PMCID: PMC7231618 DOI: 10.3348/kjr.2019.0903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 12/22/2022] Open
Abstract
Objective Recent innovations in biology are boosting gene and cell therapy, but monitoring the response to these treatments is difficult. The purpose of this study was to find an MRI-reporter gene that can be used to monitor gene or cell therapy and that can be delivered without a viral vector, as viral vector delivery methods can result in long-term complications. Materials and Methods CMV promoter-human organic anion transporting polypeptide 1B3 (CMV-hOATP1B3) cDNA or CMV-blank DNA (control) was transfected into HEK293 cells using Lipofectamine. OATP1B3 expression was confirmed by western blotting and confocal microscopy. In vitro cell phantoms were made using transfected HEK293 cells cultured in various concentrations of gadoxetic acid for 24 hours, and images of the phantoms were made with a 9.4T micro-MRI. In vivo xenograft tumors were made by implanting HEK293 cells transfected with CMV-hOATP1B3 (n = 4) or CMV-blank (n = 4) in 8-week-old male nude mice, and MRI was performed before and after intravenous injection of gadoxetic acid (1.2 µL/g). Results Western blot and confocal microscopy after immunofluorescence staining revealed that only CMV-hOATP1B3-transfected HEK293 cells produced abundant OATP1B3, which localized at the cell membrane. OATP1B3 expression levels remained high through the 25th subculture cycle, but decreased substantially by the 50th subculture cycle. MRI of cell phantoms showed that only the CMV-hOATP1B3-transfected cells produced a significant contrast enhancement effect. In vivo MRI of xenograft tumors revealed that only CMV-hOATP1B3-transfected HEK293 tumors demonstrated a T1 contrast effect, which lasted for at least 5 hours. Conclusion The human endogenous OATP1B3 gene can be non-virally delivered into cells to induce transient OATP1B3 expression, leading to gadoxetic acid-mediated enhancement on MRI. These results indicate that hOATP1B3 can serve as an MRI-reporter gene while minimizing the risk of long-term complications.
Collapse
Affiliation(s)
- Song Ee Baek
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Asad Ul-Haq
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dae Hee Kim
- Yonsei University College of Medicine, Seoul, Korea
| | | | - Myeong Jin Kim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Jin Choi
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Honsoul Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
14
|
Zhou IY, Catalano OA, Caravan P. Advances in functional and molecular MRI technologies in chronic liver diseases. J Hepatol 2020; 73:1241-1254. [PMID: 32585160 PMCID: PMC7572718 DOI: 10.1016/j.jhep.2020.06.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
MRI has emerged as the most comprehensive non-invasive diagnostic tool for liver diseases. In recent years, the value of MRI in hepatology has been significantly enhanced by a wide range of contrast agents, both clinically available and under development, that add functional information to anatomically detailed morphological images, or increase the distinction between normal and pathological tissues by targeting molecular and cellular events. Several classes of contrast agents are available for contrast-enhanced hepatic MRI, including i) conventional non-specific extracellular fluid contrast agents for assessing tissue perfusion; ii) hepatobiliary-specific contrast agents that are taken up by functioning hepatocytes and excreted through the biliary system for evaluating hepatobiliary function; iii) superparamagnetic iron oxide particles that accumulate in Kupffer cells; and iv) novel molecular contrast agents that are biochemically targeted to specific molecular/cellular processes for staging liver diseases or detecting treatment responses. The use of different functional and molecular MRI methods enables the non-invasive assessment of disease burden, progression, and treatment response in a variety of liver diseases. A high diagnostic performance can be achieved with MRI by combining imaging biomarkers.
Collapse
Affiliation(s)
- Iris Y. Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, USA,Institute for Innovation in Imaging (i3), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Onofrio A. Catalano
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, USA,Division of Abdominal Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; Harvard Medical School, Boston, MA, USA; Institute for Innovation in Imaging (i(3)), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
15
|
Yang L, Ding Y, Rao S, Chen C, Zeng M. T 1 Mapping on Gd-EOB-DTPA-Enhanced MRI for the Prediction of Oxaliplatin-Induced Liver Injury in a Mouse Model. J Magn Reson Imaging 2020; 53:896-902. [PMID: 32979019 DOI: 10.1002/jmri.27377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Oxaliplatin-induced liver injury (OILI) not only impairs hepatic regeneration but also increases postoperative morbidity and mortality. Therefore, noninvasive, accurate, and early diagnosis of OILI is mandatory. PURPOSE To evaluate the potential of T1 mapping on gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI for assessing OILI in a mouse model. STUDY TYPE Case control, animal model. ANIMAL MODEL Thirty oxaliplatin-treated mice and 10 control mice were included. FIELD STRENGTH Volumetric interpolated breath-hold examination sequence: 3T scanner with a phased-array animal 8-channel coil. T1 mapping before and at hepatobiliary phase (HBP) after injection of Gd-EOB-DTPA were undertaken. ASSESSMENT T1 relaxation times of the liver parenchyma were measured and the reduction rate (ΔT1 %) was calculated. Histological findings were used as a standard reference. STATISTICAL TESTS The Kruskal-Wallis test with pairwise comparisons using the Mann-Whitney U-test were applied to compare the parameters across groups. Spearman's rank correlation test and receiver operating characteristics (ROC) analyses were performed. Areas under the curves (AUCs) were compared using the DeLong method. RESULTS Histologically, mice were classified as normal (n = 10), hepatocellular degeneration without fibrosis (n = 16), and hepatocellular degeneration with fibrosis (n = 14). HBP T1 relaxation time increased with the severity of OILI (rho = 0.60, P < 0.05), and ΔT1 % decreased with the severity of OILI (rho = -0.78, P < 0.05). AUC was 0.92 for ΔT1 % in differentiating hepatocellular degeneration without fibrosis from normal liver, but HBP T1 relaxation time could not distinguish them (P = 0.09). AUCs were 0.96 and 0.95 for HBP T1 relaxation time, and 0.90 and 0.84 for ΔT1 % in discriminating OILI with fibrosis from normal liver and OILI without fibrosis. DATA CONCLUSION HBP T1 relaxation time and ΔT1 % of Gd-EOB-DTPA enhanced MRI was useful for assessing OILI. ΔT1 % may be more sensitive than HBP T1 relaxation time in detecting early stage of liver injury. LEVEL OF EVIDENCE 2. TECHNICAL EFFICACY STAGE 5.
Collapse
Affiliation(s)
- Li Yang
- Department of Radiology, Zhongshan, Hospital of Fudan University, Shanghai, China
| | - Ying Ding
- Department of Radiology, Zhongshan, Hospital of Fudan University, Shanghai, China
| | - Shengxiang Rao
- Department of Radiology, Zhongshan, Hospital of Fudan University, Shanghai, China
| | - Caizhong Chen
- Department of Radiology, Zhongshan, Hospital of Fudan University, Shanghai, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan, Hospital of Fudan University, Shanghai, China
| |
Collapse
|
16
|
Moosavi B, Shenoy-Bhangle AS, Tsai LL, Reuf R, Mortele KJ. MRI characterization of focal liver lesions in non-cirrhotic patients: assessment of added value of gadoxetic acid-enhanced hepatobiliary phase imaging. Insights Imaging 2020; 11:101. [PMID: 32960337 PMCID: PMC7509030 DOI: 10.1186/s13244-020-00894-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background To evaluate the added value of the hepatobiliary (HPB) phase in gadoxetic acid-enhanced magnetic resonance imaging (MRI) in characterizing newly discovered indeterminate focal liver lesions in non-cirrhotic patients. Results One-hundred and twenty-five non-cirrhotic patients (median age, 46 years; range, 20–85 years; 100 females) underwent gadoxetic acid-enhanced MRI, including the 20-min delayed HPB phase, for characterization of newly discovered focal liver lesions. Images were independently evaluated by two blinded, board-certified abdominal radiologists (R1 and R2) who characterized liver lesions without and with assessment of the HPB phase images in two separate readout sessions. Confidence in diagnosis was scored on a scale from 0 to 3. Inter-observer agreement was assessed using Cohen κ statistics. Change in diagnosis and confidence in diagnosis were evaluated by Wilcoxon signed rank test. There was no significant change in diagnosis before and after evaluation of the HPB phase for both readers (p = 1.0 for R1; p = 0.34 for R2). Confidence in diagnosis decreased from average 2.8 ± 0.45 to 2.6 ± 0.59 for R1 and increased from 2.6 ± 0.83 to 2.8 ± 0.46 for R2. Change in confidence was only statistically significant for R1 (p = 0.003) but not significant for R2 (p = 0.49). Inter-reader agreement in diagnosis was good without (k = 0.66) and with (k = 0.75) inclusion of the HPB phase images. Conclusions The added information obtained from the HPB phase of gadoxetic acid-enhanced MRI does not change the diagnosis or increase confidence in diagnosis when evaluating new indeterminate focal liver lesions in non-cirrhotic patients.
Collapse
Affiliation(s)
- Bardia Moosavi
- Department of Radiology, Hull Hospital, Gatineau, Quebec, J8Y1W7, Canada.
| | - Anuradha S Shenoy-Bhangle
- Division of Abdominal Imaging, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Leo L Tsai
- Division of Abdominal Imaging, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Robert Reuf
- Department of Radiology, Hull Hospital, Gatineau, Quebec, J8Y1W7, Canada.,Division of Abdominal Imaging, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Koenraad J Mortele
- Department of Radiology, Hull Hospital, Gatineau, Quebec, J8Y1W7, Canada.,Division of Abdominal Imaging, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| |
Collapse
|
17
|
Huh J, Ham SJ, Cho YC, Park B, Kim B, Woo CW, Choi Y, Woo DC, Kim KW. Gadoxetate-enhanced dynamic contrast-enhanced MRI for evaluation of liver function and liver fibrosis in preclinical trials. BMC Med Imaging 2019; 19:89. [PMID: 31729971 PMCID: PMC6858707 DOI: 10.1186/s12880-019-0378-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Background To facilitate translational drug development for liver fibrosis, preclinical trials need to be run in parallel with clinical research. Liver function estimation by gadoxetate-enhanced dynamic contrast-enhanced MRI (DCE-MRI) is being established in clinical research, but still rarely used in preclinical trials. We aimed to evaluate feasibility of DCE-MRI indices as translatable biomarkers in a liver fibrosis animal model. Methods Liver fibrosis was induced in Sprague-Dawley rats by thioacetamide (200 mg, 150 mg, and saline for the high-dose, low-dose, and control groups, respectively). Subsequently, DCE-MRI was performed to measure: relative liver enhancement at 3-min (RLE-3), RLE-15, initial area-under-the-curve until 3-min (iAUC-3), iAUC-15, and maximum-enhancement (Emax). The correlation coefficients between these MRI indices and the histologic collagen area, indocyanine green retention at 15-min (ICG-R15), and shear wave elastography (SWE) were calculated. Diagnostic performance to diagnose liver fibrosis was also evaluated by receiver-operating-characteristic (ROC) analysis. Results Animal model was successful in that the collagen area of the liver was the largest in the high-dose group, followed by the low-dose group and control group. The correlation between the DCE-MRI indices and collagen area was high for iAUC-15, Emax, iAUC-3, and RLE-3 but moderate for RLE-15 (r, − 0.81, − 0.81, − 0.78, − 0.80, and − 0.51, respectively). The DCE-MRI indices showed moderate correlation with ICG-R15: the highest for iAUC-15, followed by iAUC-3, RLE-3, Emax, and RLE-15 (r, − 0.65, − 0.63, − 0.62, − 0.58, and − 0.56, respectively). The correlation coefficients between DCE-MRI indices and SWE ranged from − 0.59 to − 0.28. The diagnostic accuracy of RLE-3, iAUC-3, iAUC-15, and Emax was 100% (AUROC 1.000), whereas those of RLE-15 and SWE were relatively low (AUROC 0.777, 0.848, respectively). Conclusion Among the gadoxetate-enhanced DCE-MRI indices, iAUC-15 and iAUC-3 might be bidirectional translatable biomarkers between preclinical and clinical research for evaluating histopathologic liver fibrosis and physiologic liver functions in a non-invasive manner.
Collapse
Affiliation(s)
- Jimi Huh
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, 138-736, Songpa-gu, Seoul, 05505, Korea.,Department of Radiology, Ajou University School of Medicine and Graduate School of Medicine, Ajou University Hospital, Yeongtong-gu, Suwon, 16499, Korea
| | - Su Jung Ham
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, 138-736, Songpa-gu, Seoul, 05505, Korea.,Center for Bioimaging of New Drug Development, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, 05505, Korea
| | - Young Chul Cho
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, 138-736, Songpa-gu, Seoul, 05505, Korea.,Center for Bioimaging of New Drug Development, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, 05505, Korea
| | - Bumwoo Park
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, 138-736, Songpa-gu, Seoul, 05505, Korea.,Center for Bioimaging of New Drug Development, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, 05505, Korea
| | - Bohyun Kim
- Department of Radiology, Ajou University School of Medicine and Graduate School of Medicine, Ajou University Hospital, Yeongtong-gu, Suwon, 16499, Korea
| | - Chul-Woong Woo
- Center for Bioimaging of New Drug Development, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, 05505, Korea
| | - Yoonseok Choi
- Center for Bioimaging of New Drug Development, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, 05505, Korea
| | - Dong-Cheol Woo
- Center for Bioimaging of New Drug Development, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, 05505, Korea
| | - Kyung Won Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, 138-736, Songpa-gu, Seoul, 05505, Korea. .,Center for Bioimaging of New Drug Development, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, 05505, Korea.
| |
Collapse
|
18
|
Mir FF, Tomaszewski RP, Shuboni-Mulligan DD, Mallett CL, Hix JML, Ether ND, Shapiro EM. Chimeric mouse model for MRI contrast agent evaluation. Magn Reson Med 2019; 82:387-394. [PMID: 30874333 DOI: 10.1002/mrm.27730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 01/31/2023]
Abstract
PURPOSE While rodents are the primary animal models for contrast agent evaluation, rodents can potentially misrepresent human organ clearance of newly developed contrast agents. For example, gadolinium (Gd)-BOPTA has ~50% hepatic clearance in rodents, but ~5% in humans. This study demonstrates the benefit of chimeric mice expressing human hepatic OATPs (organic anion-transporting polypeptides) to improve evaluation of novel contrast agents for clinical use. METHODS FVB (wild-type) and OATP1B1/1B3 knock-in mice were injected with hepatospecific MRI contrast agents (Gd-EOB-DTPA, Gd-BOPTA) and nonspecific Gd-DTPA. T1 -weighted dynamic contrast-enhanced MRI was performed on mice injected intravenously. Hepatic MRI signal enhancement was calculated per time point. Mass of gadolinium cleared per time point and percentage elimination by means of feces and urine were also measured. RESULTS Following intravenous injection of Gd-BOPTA in chimeric OATP1B1/1B3 knock-in mice, hepatic MRI signal enhancement and elimination by liver was more reflective of human hepatic clearance than that measured in wild-type mice. Gd-BOPTA hepatic MRI signal enhancement was reduced to 22% relative to wild-type mice. Gd-BOPTA elimination in wild-type mice was 83% fecal compared with 32% fecal in chimeric mice. Hepatic MRI signal enhancement and elimination for Gd-EOB-DTPA and Gd-DTPA were similar between wild-type and chimeric cohorts. CONCLUSION Hepatic MRI signal enhancement and elimination of Gd-EOB-DTPA, Gd-BOPTA, and Gd-DTPA in chimeric OATP1B1/1B3 knock-in mice closely mimics that seen in humans. This study provides evidence that the chimeric knock-in mouse is a more useful screening tool for novel MRI contrast agents destined for clinical use as compared to the traditionally used wild-type models.
Collapse
Affiliation(s)
- Faryal F Mir
- Michigan State University, Department of Radiology, East Lansing, Michigan.,Michigan State University Institute of Quantitative Health Science and Engineering, East Lansing, Michigan.,Michigan State University College of Osteopathic Medicine, East Lansing, Michigan
| | - Ryan P Tomaszewski
- Michigan State University, Department of Radiology, East Lansing, Michigan
| | - Dorela D Shuboni-Mulligan
- Michigan State University, Department of Radiology, East Lansing, Michigan.,Michigan State University Institute of Quantitative Health Science and Engineering, East Lansing, Michigan
| | - Christiane L Mallett
- Michigan State University, Department of Radiology, East Lansing, Michigan.,Michigan State University Institute of Quantitative Health Science and Engineering, East Lansing, Michigan
| | - Jeremy M L Hix
- Michigan State University, Department of Radiology, East Lansing, Michigan.,Michigan State University Institute of Quantitative Health Science and Engineering, East Lansing, Michigan
| | - Nicholas D Ether
- Michigan State University, Department of Pharmacology and Toxicology, East Lansing, Michigan
| | - Erik M Shapiro
- Michigan State University, Department of Radiology, East Lansing, Michigan.,Michigan State University Institute of Quantitative Health Science and Engineering, East Lansing, Michigan
| |
Collapse
|
19
|
Abstract
Many elegant inorganic designs have been developed to aid medical imaging. We know better now how to improve imaging due to the enormous efforts made by scientists in probe design and other fundamental sciences, including inorganic chemistry, physiochemistry, analytical chemistry, and biomedical engineering. However, despite several years being invested in the development of diagnostic probes, only a few examples have shown applicability in MRI in vivo. In this short review, we aim to show the reader the latest advances in the application of inorganic agents in preclinical MRI.
Collapse
|
20
|
Hepatocyte-specific contrast media: not so simple. Pediatr Radiol 2018; 48:1245-1255. [PMID: 30078050 DOI: 10.1007/s00247-018-4108-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/16/2018] [Accepted: 02/20/2018] [Indexed: 12/15/2022]
Abstract
Hepatocyte-specific contrast media are gadolinium chelates that are taken up by hepatocytes and partially cleared via the biliary tree. The absence of lesional uptake of the contrast media in the hepatobiliary phase is a marker of either the absence of hepatocytes or of poorly functioning, neoplastic hepatocytes. Uptake of the contrast media in the hepatobiliary phase, whether equal to or greater than background liver, reflects the presence of hepatocytes but does not equate to absence of neoplasia. Accurate diagnosis of liver lesions utilizing hepatocyte-specific contrast media requires an understanding of the mechanisms of uptake and clearance of the contrast media to avoid misdiagnosis. In this review we discuss the mechanisms of hepatocellular transport of hepatocyte-specific contrast media and utilize an understanding of those mechanisms to discuss the imaging appearance of a subset of hepatocellular lesions that can be seen in the pediatric and young adult liver. We pay particular attention to lesions that appear iso- to hyperintense in the hepatobiliary phase but have the potential for adverse clinical outcomes. We also discuss strategies for identifying these lesions.
Collapse
|
21
|
Can functional parameters from hepatobiliary phase of gadoxetate MRI predict clinical outcomes in patients with cirrhosis? Eur Radiol 2018; 28:4215-4224. [DOI: 10.1007/s00330-018-5366-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/12/2018] [Accepted: 02/01/2018] [Indexed: 12/26/2022]
|
22
|
Ba-Ssalamah A, Bastati N, Wibmer A, Fragner R, Hodge JC, Trauner M, Herold CJ, Bashir MR, Van Beers BE. Hepatic gadoxetic acid uptake as a measure of diffuse liver disease: Where are we? J Magn Reson Imaging 2016; 45:646-659. [PMID: 27862590 DOI: 10.1002/jmri.25518] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/05/2016] [Indexed: 02/06/2023] Open
Abstract
MRI has emerged as the most comprehensive noninvasive diagnostic tool for focal liver lesions and diffuse hepatobiliary disorders. The introduction of hepatobiliary contrast agents, most notably gadoxetic acid (GA), has expanded the role of MRI, particularly in the functional imaging of chronic liver diseases, such as nonalcoholic fatty liver disease (NAFLD). GA-enhanced MRI (GA-MRI) may help to distinguish between the two subgroups of NAFLD, simple steatosis and nonalcoholic steatohepatitis. Furthermore, GA-MRI can be used to stage fibrosis and cirrhosis, predict liver transplant graft survival, and preoperatively estimate the risk of liver failure should major resection be undertaken. The amount of GA uptake can be estimated, using static images, by the relative liver enhancement, hepatic uptake index, and relaxometry of T1-mapping during the hepatobiliary phase. On the contrary, the hepatic extraction fraction and liver perfusion can be measured on dynamic imaging. Importantly, there is currently no clear consensus as to which of these MR-derived parameters is the most suitable for assessing liver dysfunction. This review article aims to describe the current role of GA-enhanced MRI in quantifying liver function, primarily in diffuse hepatobiliary disorders. LEVEL OF EVIDENCE 3 J. Magn. Reson. Imaging 2017;45:646-659.
Collapse
Affiliation(s)
- Ahmed Ba-Ssalamah
- Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Austria
| | - Nina Bastati
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, General Hospital of Vienna (AKH), Austria
| | - Andreas Wibmer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Austria
| | - Romana Fragner
- Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Austria
| | - Jacqueline C Hodge
- Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, General Hospital of Vienna (AKH), Austria
| | - Christian J Herold
- Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Austria
| | - Mustafa R Bashir
- Department of Radiology and Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, North Carolina, USA.,Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, North Carolina, USA
| | - Bernard E Van Beers
- Laboratory of Imaging Biomarkers, UMR 1149, INSERM - University Paris Diderot and Department of Radiology, University Hospital Paris Nord - Beaujon, France
| |
Collapse
|