1
|
Medved M, Chatterjee A, Devaraj A, Harmath C, Lee G, Yousuf A, Antic T, Oto A, Karczmar GS. High spectral and spatial resolution MRI of prostate cancer: a pilot study. Magn Reson Med 2021; 86:1505-1513. [PMID: 33963782 PMCID: PMC8887834 DOI: 10.1002/mrm.28802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE High spectral and spatial resolution (HiSS) MRI is a spectroscopic imaging method focusing on water and fat resonances that has good diagnostic utility in breast imaging. The purpose of this work was to assess the feasibility and potential utility of HiSS MRI for the diagnosis of prostate cancer. METHODS HiSS MRI was acquired at 3 T from six patients who underwent prostatectomy, yielding a train of 127 phase-coherent gradient echo (GRE) images. In the temporal domain, changes in voxel intensity were analyzed and linear (R) and quadratic (R1, R2) quantifiers of signal logarithm decay were calculated. In the spectral domain, three signal scaling-independent parameters were calculated: water resonance peak width (PW), relative peak asymmetry (PRA), and relative peak distortion from ideal Lorentzian shape (PRD). Seven cancer and five normal tissue regions of interest were identified in correlation with pathology and compared. RESULTS HiSS-derived quantifiers, except R2, showed high reproducibility (coefficients of variation, 5%-14%). Spectral domain quantifiers performed better than temporal domain quantifiers, with receiver operator characteristic areas under the curve ranging from of 0.83 to 0.91. For temporal domain parameters, the range was 0.74 to 0.91. Low absolute values of the coefficients of correlation between monoexponential decay markers (R, PW) and resonance shape markers (PRA, PRD) were observed (range, 0.23-0.38). CONCLUSION The feasibility and potential diagnostic utility of HiSS MRI in the prostate at 3 T without an endorectal coil was confirmed. Weak correlation between well-performing markers indicates that complementary information could be leveraged to further improve diagnostic accuracy.
Collapse
Affiliation(s)
- Milica Medved
- Department of Radiology, University of Chicago, Chicago, Illinois, USA,Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, Illinois, USA
| | - Aritrick Chatterjee
- Department of Radiology, University of Chicago, Chicago, Illinois, USA,Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, Illinois, USA
| | - Ajit Devaraj
- Philips Research NA, Cambridge, Massachusetts, USA
| | - Carla Harmath
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Grace Lee
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Ambereen Yousuf
- Department of Radiology, University of Chicago, Chicago, Illinois, USA,Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, Illinois, USA
| | - Tatjana Antic
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Aytekin Oto
- Department of Radiology, University of Chicago, Chicago, Illinois, USA,Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, Illinois, USA
| | - Gregory S. Karczmar
- Department of Radiology, University of Chicago, Chicago, Illinois, USA,Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Blocker SJ, Cook J, Mowery YM, Everitt JI, Qi Y, Hornburg KJ, Cofer GP, Zapata F, Bassil AM, Badea CT, Kirsch DG, Johnson GA. Ex Vivo MR Histology and Cytometric Feature Mapping Connect Three-dimensional in Vivo MR Images to Two-dimensional Histopathologic Images of Murine Sarcomas. Radiol Imaging Cancer 2021; 3:e200103. [PMID: 34018846 DOI: 10.1148/rycan.2021200103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Purpose To establish a platform for quantitative tissue-based interpretation of cytoarchitecture features from tumor MRI measurements. Materials and Methods In a pilot preclinical study, multicontrast in vivo MRI of murine soft-tissue sarcomas in 10 mice, followed by ex vivo MRI of fixed tissues (termed MR histology), was performed. Paraffin-embedded limb cross-sections were stained with hematoxylin-eosin, digitized, and registered with MRI. Registration was assessed by using binarized tumor maps and Dice similarity coefficients (DSCs). Quantitative cytometric feature maps from histologic slides were derived by using nuclear segmentation and compared with registered MRI, including apparent diffusion coefficients and transverse relaxation times as affected by magnetic field heterogeneity (T2* maps). Cytometric features were compared with each MR image individually by using simple linear regression analysis to identify the features of interest, and the goodness of fit was assessed on the basis of R2 values. Results Registration of MR images to histopathologic slide images resulted in mean DSCs of 0.912 for ex vivo MR histology and 0.881 for in vivo MRI. Triplicate repeats showed high registration repeatability (mean DSC, >0.9). Whole-slide nuclear segmentations were automated to detect nuclei on histopathologic slides (DSC = 0.8), and feature maps were generated for correlative analysis with MR images. Notable trends were observed between cell density and in vivo apparent diffusion coefficients (best line fit: R2 = 0.96, P < .001). Multiple cytoarchitectural features exhibited linear relationships with in vivo T2* maps, including nuclear circularity (best line fit: R2 = 0.99, P < .001) and variance in nuclear circularity (best line fit: R2 = 0.98, P < .001). Conclusion An infrastructure for registering and quantitatively comparing in vivo tumor MRI with traditional histologic analysis was successfully implemented in a preclinical pilot study of soft-tissue sarcomas. Keywords: MRI, Pathology, Animal Studies, Tissue Characterization Supplemental material is available for this article. © RSNA, 2021.
Collapse
Affiliation(s)
- Stephanie J Blocker
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - James Cook
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - Yvonne M Mowery
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - Jeffrey I Everitt
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - Yi Qi
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - Kathryn J Hornburg
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - Gary P Cofer
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - Fernando Zapata
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - Alex M Bassil
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - Cristian T Badea
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - David G Kirsch
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - G Allan Johnson
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| |
Collapse
|
3
|
García-Figueiras R, Baleato-González S, Padhani AR, Luna-Alcalá A, Vallejo-Casas JA, Sala E, Vilanova JC, Koh DM, Herranz-Carnero M, Vargas HA. How clinical imaging can assess cancer biology. Insights Imaging 2019; 10:28. [PMID: 30830470 PMCID: PMC6399375 DOI: 10.1186/s13244-019-0703-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023] Open
Abstract
Human cancers represent complex structures, which display substantial inter- and intratumor heterogeneity in their genetic expression and phenotypic features. However, cancers usually exhibit characteristic structural, physiologic, and molecular features and display specific biological capabilities named hallmarks. Many of these tumor traits are imageable through different imaging techniques. Imaging is able to spatially map key cancer features and tumor heterogeneity improving tumor diagnosis, characterization, and management. This paper aims to summarize the current and emerging applications of imaging in tumor biology assessment.
Collapse
Affiliation(s)
- Roberto García-Figueiras
- Department of Radiology, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain.
| | - Sandra Baleato-González
- Department of Radiology, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Anwar R Padhani
- Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England, HA6 2RN, UK
| | - Antonio Luna-Alcalá
- Department of Radiology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH, USA
- MRI Unit, Clínica Las Nieves, Health Time, Jaén, Spain
| | - Juan Antonio Vallejo-Casas
- Unidad de Gestión Clínica de Medicina Nuclear. IMIBIC. Hospital Reina Sofía. Universidad de Córdoba, Córdoba, Spain
| | - Evis Sala
- Department of Radiology and Cancer Research UK Cambridge Center, Cambridge, CB2 0QQ, UK
| | - Joan C Vilanova
- Department of Radiology, Clínica Girona and IDI, Lorenzana 36, 17002, Girona, Spain
| | - Dow-Mu Koh
- Department of Radiology, Royal Marsden Hospital & Institute of Cancer Research, Fulham Road, London, SW3 6JJ, UK
| | - Michel Herranz-Carnero
- Nuclear Medicine Department, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Galicia, Spain
- Molecular Imaging Program, IDIS, USC, Santiago de Compostela, Galicia, Spain
| | - Herbert Alberto Vargas
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, Radiology, 1275 York Av. Radiology Academic Offices C-278, New York, NY, 10065, USA
| |
Collapse
|