1
|
Yan C, Lin J, Li H, Xu J, Zhang T, Chen H, Woodruff HC, Wu G, Zhang S, Xu Y, Lambin P. Cycle-Consistent Generative Adversarial Network: Effect on Radiation Dose Reduction and Image Quality Improvement in Ultralow-Dose CT for Evaluation of Pulmonary Tuberculosis. Korean J Radiol 2021; 22:983-993. [PMID: 33739634 PMCID: PMC8154783 DOI: 10.3348/kjr.2020.0988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/22/2020] [Accepted: 12/21/2020] [Indexed: 01/15/2023] Open
Abstract
Objective To investigate the image quality of ultralow-dose CT (ULDCT) of the chest reconstructed using a cycle-consistent generative adversarial network (CycleGAN)-based deep learning method in the evaluation of pulmonary tuberculosis. Materials and Methods Between June 2019 and November 2019, 103 patients (mean age, 40.8 ± 13.6 years; 61 men and 42 women) with pulmonary tuberculosis were prospectively enrolled to undergo standard-dose CT (120 kVp with automated exposure control), followed immediately by ULDCT (80 kVp and 10 mAs). The images of the two successive scans were used to train the CycleGAN framework for image-to-image translation. The denoising efficacy of the CycleGAN algorithm was compared with that of hybrid and model-based iterative reconstruction. Repeated-measures analysis of variance and Wilcoxon signed-rank test were performed to compare the objective measurements and the subjective image quality scores, respectively. Results With the optimized CycleGAN denoising model, using the ULDCT images as input, the peak signal-to-noise ratio and structural similarity index improved by 2.0 dB and 0.21, respectively. The CycleGAN-generated denoised ULDCT images typically provided satisfactory image quality for optimal visibility of anatomic structures and pathological findings, with a lower level of image noise (mean ± standard deviation [SD], 19.5 ± 3.0 Hounsfield unit [HU]) than that of the hybrid (66.3 ± 10.5 HU, p < 0.001) and a similar noise level to model-based iterative reconstruction (19.6 ± 2.6 HU, p > 0.908). The CycleGAN-generated images showed the highest contrast-to-noise ratios for the pulmonary lesions, followed by the model-based and hybrid iterative reconstruction. The mean effective radiation dose of ULDCT was 0.12 mSv with a mean 93.9% reduction compared to standard-dose CT. Conclusion The optimized CycleGAN technique may allow the synthesis of diagnostically acceptable images from ULDCT of the chest for the evaluation of pulmonary tuberculosis.
Collapse
Affiliation(s)
- Chenggong Yan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,The D-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Jie Lin
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haixia Li
- Clinical and Technical Solution, Philips Healthcare, Guangzhou, China
| | - Jun Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tianjing Zhang
- Clinical and Technical Solution, Philips Healthcare, Guangzhou, China
| | - Hao Chen
- Jiangsu JITRI Sioux Technologies Co., Ltd., Suzhou, China
| | - Henry C Woodruff
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Imaging, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Guangyao Wu
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Siqi Zhang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Imaging, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
2
|
Fletcher JG, Levin DL, Sykes AMG, Lindell RM, White DB, Kuzo RS, Suresh V, Yu L, Leng S, Holmes DR, Inoue A, Johnson MP, Carter RE, McCollough CH. Observer Performance for Detection of Pulmonary Nodules at Chest CT over a Large Range of Radiation Dose Levels. Radiology 2020; 297:699-707. [PMID: 32990514 DOI: 10.1148/radiol.2020200969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background There is a wide variation in radiation dose levels that can be used with chest CT in order to detect indeterminate pulmonary nodules. Purpose To compare the performance of lower-radiation-dose chest CT with that of routine dose in the detection of indeterminate pulmonary nodules 5 mm or greater. Materials and Methods In this retrospective study, CT projection data from 83 routine-dose chest CT examinations performed in 83 patients (120 kV, 70 quality reference mAs [QRM]) were collected between November 2013 and April 2014. Reference indeterminate pulmonary nodules were identified by two nonreader thoracic radiologists. By using validated noise insertion, five lower-dose data sets were reconstructed with filtered back projection (FBP) or iterative reconstruction (IR; 30 QRM with FBP, 10 QRM with IR, 5 QRM with FBP, 5 QRM with IR, and 2.5 QRM with IR). Three thoracic radiologists circled pulmonary nodules, rating confidence that the nodule was a 5-mm-or-greater indeterminate pulmonary nodule, and graded image quality. Analysis was performed on a per-nodule basis by using jackknife alternative free-response receiver operating characteristic figure of merit (FOM) and noninferiority limit of -0.10. Results There were 66 indeterminate pulmonary nodules (mean size, 8.6 mm ± 3.4 [standard deviation]; 21 part-solid nodules) in 42 patients (mean age, 51 years ± 17; 21 men and 21 women). Compared with the FOM for routine-dose CT (size-specific dose estimate, 6.5 mGy ± 1.8; FOM, 0.86 [95% confidence interval: 0.80, 0.91]), FOM was noninferior for all lower-dose configurations except for 2.5 QRM with IR. The sensitivity for subsolid nodules at 70 QRM was 60% (range, 48%-72%) and was significantly worse at a dose of 5 QRM and lower, whether or not IR was used (P < .05). Diagnostic image quality decreased with decreasing dose (P < .001) and was better with IR at 5 QRM (P < .05). Conclusion CT images reconstructed at dose levels down to 10 quality reference mAs (size-specific dose estimate, 0.9 mGy) had noninferior performance compared with routine dose in depicting pulmonary nodules. Iterative reconstruction improved subjective image quality but not performance at low dose levels. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by White and Kazerooni in this issue.
Collapse
Affiliation(s)
- Joel G Fletcher
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - David L Levin
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Anne-Marie G Sykes
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Rebecca M Lindell
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Darin B White
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Ronald S Kuzo
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Vighnesh Suresh
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Lifeng Yu
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Shuai Leng
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - David R Holmes
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Akitoshi Inoue
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Matthew P Johnson
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Rickey E Carter
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Cynthia H McCollough
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| |
Collapse
|
3
|
Lim WH, Choi YH, Park JE, Cho YJ, Lee S, Cheon JE, Kim WS, Kim IO, Kim JH. Application of Vendor-Neutral Iterative Reconstruction Technique to Pediatric Abdominal Computed Tomography. Korean J Radiol 2020; 20:1358-1367. [PMID: 31464114 PMCID: PMC6715563 DOI: 10.3348/kjr.2018.0715] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
Objective To compare image qualities between vendor-neutral and vendor-specific hybrid iterative reconstruction (IR) techniques for abdominopelvic computed tomography (CT) in young patients. Materials and Methods In phantom study, we used an anthropomorphic pediatric phantom, age-equivalent to 5-year-old, and reconstructed CT data using traditional filtered back projection (FBP), vendor-specific and vendor-neutral IR techniques (ClariCT; ClariPI) in various radiation doses. Noise, low-contrast detectability and subjective spatial resolution were compared between FBP, vendor-specific (i.e., iDose1 to 5; Philips Healthcare), and vendor-neutral (i.e., ClariCT1 to 5) IR techniques in phantom. In 43 patients (median, 14 years; age range 1–19 years), noise, contrast-to-noise ratio (CNR), and qualitative image quality scores of abdominopelvic CT were compared between FBP, iDose level 4 (iDose4), and ClariCT level 2 (ClariCT2), which showed most similar image quality to clinically used vendor-specific IR images (i.e., iDose4) in phantom study. Noise, CNR, and qualitative imaging scores were compared using one-way repeated measure analysis of variance. Results In phantom study, ClariCT2 showed noise level similar to iDose4 (14.68–7.66 Hounsfield unit [HU] vs. 14.78–6.99 HU at CT dose index volume range of 0.8–3.8 mGy). Subjective low-contrast detectability and spatial resolution were similar between ClariCT2 and iDose4. In clinical study, ClariCT2 was equivalent to iDose4 for noise (14.26–17.33 vs. 16.01–18.90) and CNR (3.55–5.24 vs. 3.20–4.60) (p > 0.05). For qualitative imaging scores, the overall image quality ([reader 1, reader 2]; 2.74 vs. 2.07, 3.02 vs. 2.28) and noise (2.88 vs. 2.23, 2.93 vs. 2.33) of ClariCT2 were superior to those of FBP (p < 0.05), and not different from those of iDose4 (2.74 vs. 2.72, 3.02 vs. 2.98; 2.88 vs. 2.77, 2.93 vs. 2.86) (p > 0.05). Conclusion Vendor-neutral IR technique shows image quality similar to that of clinically used vendor-specific hybrid IR technique for abdominopelvic CT in young patients.
Collapse
Affiliation(s)
- Woo Hyeon Lim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Young Hun Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.
| | - Ji Eun Park
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Yeon Jin Cho
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Seunghyun Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Eun Cheon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Woo Sun Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - In One Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Jong Hyo Kim
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.,Advanced Institute of Convergence Technology, Suwon, Korea
| |
Collapse
|
4
|
Ishikawa T, Suzuki S, Katada Y, Takayanagi T, Fukui R, Yamamoto Y, Tanigaki K. Evaluation of three-dimensional iterative image reconstruction in virtual monochromatic imaging at 40 kilo-electron volts: phantom and clinical studies to assess the image noise and image quality in comparison with other reconstruction techniques. Br J Radiol 2020; 93:20190675. [PMID: 32208973 PMCID: PMC10993219 DOI: 10.1259/bjr.20190675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/03/2019] [Accepted: 03/24/2020] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE The purpose of this study was to evaluate the image quality in virtual monochromatic imaging (VMI) at 40 kilo-electron volts (keV) with three-dimensional iterative image reconstruction (3D-IIR). METHODS A phantom study and clinical study (31 patients) were performed with dual-energy CT (DECT). VMI at 40 keV was obtained and the images were reconstructed using filtered back projection (FBP), 50% adaptive statistical iterative reconstruction (ASiR), and 3D-IIR. We conducted subjective and objective evaluations of the image quality with each reconstruction technique. RESULTS The image contrast-to-noise ratio and image noise in both the clinical and phantom studies were significantly better with 3D-IIR than with 50% ASiR, and with 50% ASiR than with FBP (all, p < 0.05). The standard deviation and noise power spectra of the reconstructed images decreased in the order of 3D-IIR to 50% ASiR to FBP, while the modulation transfer function was maintained across the three reconstruction techniques. In most subjective evaluations in the clinical study, the image quality was significantly better with 3D-IIR than with 50% ASiR, and with 50% ASiR than with FBP (all, p < 0.001). Regarding the diagnostic acceptability, all images using 3D-IIR were evaluated as being fully or probably acceptable. CONCLUSIONS The quality of VMI at 40 keV is improved by 3D-IIR, which allows the image noise to be reduced and structural details to be maintained. ADVANCES IN KNOWLEDGE The improvement of the image quality of VMI at 40 keV by 3D-IIR may increase the subjective acceptance in the clinical setting.
Collapse
Affiliation(s)
- Takuya Ishikawa
- Department of Radiology, Tokyo Women's Medical University
Medical Center East, 2-1-10 Nishiogu, Arakawa-ku,
Tokyo 116-8567, Japan
| | - Shigeru Suzuki
- Department of Radiology, Tokyo Women's Medical University
Medical Center East, 2-1-10 Nishiogu, Arakawa-ku,
Tokyo 116-8567, Japan
| | - Yoshiaki Katada
- Department of Radiology, Tokyo Women's Medical University
Medical Center East, 2-1-10 Nishiogu, Arakawa-ku,
Tokyo 116-8567, Japan
| | - Tomoko Takayanagi
- Department of Radiology, Graduate School of Medicine,
University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo, 113-8655, Japan
| | - Rika Fukui
- Department of Radiology, Tokyo Women's Medical University
Medical Center East, 2-1-10 Nishiogu, Arakawa-ku,
Tokyo 116-8567, Japan
| | - Yuzo Yamamoto
- Department of Radiology, Tokyo Women's Medical University
Medical Center East, 2-1-10 Nishiogu, Arakawa-ku,
Tokyo 116-8567, Japan
| | - Koji Tanigaki
- Department of Radiology, Tokyo Women's Medical University
Medical Center East, 2-1-10 Nishiogu, Arakawa-ku,
Tokyo 116-8567, Japan
| |
Collapse
|
5
|
Eberhard M, Stocker D, Milanese G, Martini K, Nguyen-Kim TDL, Wurnig MC, Frauenfelder T, Baumueller S. Volumetric assessment of solid pulmonary nodules on ultralow-dose CT: a phantom study. J Thorac Dis 2019; 11:3515-3524. [PMID: 31559058 DOI: 10.21037/jtd.2019.08.12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background To reduce the radiation exposure from chest computed tomography (CT), ultralow-dose CT (ULDCT) protocols performed at sub-millisievert levels were previously tested for the evaluation of pulmonary nodules (PNs). The purpose of our study was to investigate the effect of ULDCT and iterative image reconstruction on volumetric measurements of solid PNs. Methods CT datasets of an anthropomorphic chest phantom containing solid microspheres were obtained with a third-generation dual-source CT at standard dose, 1/8th, 1/20th and 1/70th of standard dose [CT volume dose index (CTDIvol): 0.03-2.03 mGy]. Semi-automated volumetric measurements were performed on CT datasets reconstructed with filtered back projection (FBP) and advanced modelled iterative reconstruction (ADMIRE), at strength level 3 and 5. Absolute percentage error (APE) evaluated measurement accuracy related to the effective volume. Scan repetition differences were evaluated using Bland-Altman analysis. Two-way analysis of variance (ANOVA) assessed influence of different scan parameters on APE. Proportional differences (PDs) tested the effect of dose settings and reconstruction algorithms on volumetric measurements, as compared to the standard protocol (standard dose-FBP). Results Bland-Altman analysis revealed small mean interscan differences of APE with narrow limits of agreement (-0.1%±4.3% to -0.3%±3.8%). Dose settings (P<0.001), reconstruction algorithms (P<0.001), nodule diameters (P<0.001) and nodule density (P=0.011) had statistically significant influence on APE. Post-hoc Bonferroni tests showed slightly higher APE when scanning with 1/70th of standard dose [mean difference: 3.4%, 95% confidence interval (CI): 2.5-4.3%; P<0.001], and for image reconstruction with ADMIRE5 (mean difference: 1.8%, 95% CI: 1.0-2.5%; P<0.001). No significant differences for scanning with 1/20th of standard dose (P=0.42), and image reconstruction with ADMIRE3 (P=0.19) were found. Scanning with 1/70th of standard dose and image reconstruction with FBP showed the widest range of PDs (-16.8% to 23.4%) compared to standard dose-FBP. Conclusions Our phantom study showed no significant difference between nodule volume measurements on standard dose CT (CTDIvol: 2 mGy) and ULDCT with 1/20th of standard dose (CTDIvol: 0.10 mGy).
Collapse
Affiliation(s)
- Matthias Eberhard
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Daniel Stocker
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Gianluca Milanese
- Division of Radiology, Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Katharina Martini
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Thi Dan Linh Nguyen-Kim
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Moritz C Wurnig
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Frauenfelder
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Stephan Baumueller
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Suzuki S, Katada Y, Takayanagi T, Sugawara H, Ishikawa T, Yamamoto Y, Wada H. Evaluation of three-dimensional iterative image reconstruction in C-arm-based interventional cone-beam CT: A phantom study in comparison with customary reconstruction technique. Medicine (Baltimore) 2019; 98:e14947. [PMID: 30921193 PMCID: PMC6456140 DOI: 10.1097/md.0000000000014947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We compared images obtained using a three-dimensional iterative image reconstruction (3D-IIR) algorithm for C-arm-based interventional cone-beam computed tomography (CBCT) with that using the customary reconstruction technique to quantify the effect of reconstruction techniques on image quality.We scanned 2 phantoms using an angiography unit with digital flat-panel system-an elliptical cylinder acrylic phantom to evaluate spatial resolution and a Catphan phantom to evaluate CT number linearity, image noise, and low-contrast resolution. Three-dimensional imaging was calculated using Feldkamp algorithms, and additional image sets were reconstructed using 3D-IIR at 5 settings (Sharp, Default, Soft+, Soft++, Soft+++). We evaluated quality of images obtained using the 6 reconstruction techniques and analyzed variance to test values of the 10% value of each MTF, mean CT number, and contrast-to-noise ratio (CNR), with P < .05 considered statistically significant.Modulation transfer function curves and CT number linearity among images obtained using the customary technique and the 5 3D-IIR techniques showed excellent agreement. Noise power spectrum curves demonstrated uniform noise reduction across the spatial frequency in the iterative reconstruction, and CNR obtained using all but the Sharp 3D-IIR technique was significantly better than that using the customary reconstruction technique (Sharp, P = .1957; Default, P = .0042; others, P < .0001). Use of 3D-IIR, especially the Soft++ and Soft+++ settings, improved visualization of low-contrast targets.Use of a 3D-IIR can significantly improve image noise and low-contrast resolution while maintaining spatial resolution in C-arm-based interventional CBCT, yielding higher quality images that may increase safety and efficacy in interventional radiology.
Collapse
Affiliation(s)
- Shigeru Suzuki
- Department of Radiology, Tokyo Women's Medical University Medical Center East, Arakawa-ku
| | - Yoshiaki Katada
- Department of Radiology, Tokyo Women's Medical University Medical Center East, Arakawa-ku
| | - Tomoko Takayanagi
- Department of Radiology, Tokyo Women's Medical University Medical Center East, Arakawa-ku
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku
| | - Haruto Sugawara
- Department of Radiology, Tokyo Women's Medical University Medical Center East, Arakawa-ku
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku
| | - Takuya Ishikawa
- Department of Radiology, Tokyo Women's Medical University Medical Center East, Arakawa-ku
| | - Yuzo Yamamoto
- Department of Radiology, Tokyo Women's Medical University Medical Center East, Arakawa-ku
| | - Hiroo Wada
- Department of Public Health, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
7
|
Forward-Projected Model-Based Iterative Reconstruction in Screening Low-Dose Chest CT: Comparison With Adaptive Iterative Dose Reduction 3D. AJR Am J Roentgenol 2018; 211:548-556. [PMID: 30040468 DOI: 10.2214/ajr.17.19245] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The objective of this study is to compare forward-projected model-based iterative reconstruction solution (FIRST), a newer fully iterative CT reconstruction method, with adaptive iterative dose reduction 3D (AIDR 3D) in low-dose screening CT for lung cancer. Differences in image noise, image quality, and pulmonary nodule detection, size, and characterization were specifically evaluated. MATERIALS AND METHODS Low-dose chest CT images obtained for 50 consecutive patients between December 2015 and January 2016 were retrospectively reviewed. Images were reconstructed using FIRST and AIDR 3D for both lung and soft-tissue reconstruction. Images were independently reviewed to assess image noise, subjective image quality (with use of a 5-point Likert scale, with 1 denoting far superior image quality; 2, superior quality; 3, equivalent quality; 4, inferior quality; and 5, far inferior quality), pulmonary nodule count, size of the largest pulmonary nodule, and characterization of the largest pulmonary nodule (i.e., solid, part solid, or ground glass). RESULTS Across all 50 cases, measured image noise was lower with FIRST than with AIDR 3D (lung window, 44% reduction, 41 ± 7 vs 74 ± 8 HU, respectively; soft-tissue window, 32% reduction, 11 ± 2 vs 16 ± 2 HU, respectively). Readers subjectively rated images obtained with FIRST as comparable to images obtained with AIDR 3D (mean [± SD] Likert score for FIRST vs AIDR 3D, 3.2 ± 0.3 for soft-tissue reconstructions and 3.0 ± 0.3 for lung reconstructions). For each reader, very good agreement regarding nodule count was noted between FIRST and AIDR 3D (interclass correlation coefficient [ICC], 0.83 for reader 1 and 0.78 for reader 2). Excellent agreement regarding nodule size (ICC, 0.99 for reader 1 and 0.99 for reader 2) and characterization of the largest nodule (kappa value, 0.92 for reader 1 and 0.82 for reader 2) also existed. CONCLUSION Images reconstructed with FIRST are superior to those reconstructed AIDR 3D with regard to image noise and are equivalent with regard to subjective image quality, pulmonary nodule count, and nodule characterization.
Collapse
|