1
|
Palmer AL, Nash D. Radiochromic film dosimetry in radiotherapy: a survey of current practice in the United Kingdom. Br J Radiol 2024; 97:646-651. [PMID: 38273671 PMCID: PMC11027307 DOI: 10.1093/bjr/tqae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVES To establish the variation in film dosimetry usage in radiotherapy centres across the United Kingdom. To identify consensus and highlight areas of potential improvement to enhance radiotherapy dosimetry verification with film. METHODS A survey questionnaire was designed by members of the Institute of Physics and Engineering in Medicine Interdepartmental Dosimetry Audit Group via Microsoft Forms and distributed to all Heads of Radiotherapy Physics in the United Kingdom. The survey was open from June 19, 2023, to July 31, 2023. RESULTS Forty responses were received from the 62 radiotherapy centres in the United Kingdom, of which 58% were currently using film dosimetry and a further 7 were keen to commence use. Many reported film use had decreased in recent years but was still valuable particularly for commissioning and implementing new techniques. The variation and consensus of methods for film dosimetry calibration, measurement, and application was established. A review of barriers to implementation and methods to reduce uncertainty were included in the assessment. CONCLUSIONS A comprehensive assessment of film dosimetry usage in radiotherapy in the United Kingdom has been collated, which demonstrates a wide variation in methods, across typical clinical users, but maintains film as a valuable dosimetry option. ADVANCES IN KNOWLEDGE This research provides a snapshot of current film dosimetry use across the United Kingdom. It examines the variation and consensus of practice to which individual users can compare their systems, and identifies opportunities to improvement in the accuracy of film dosimetry.
Collapse
Affiliation(s)
- Antony L Palmer
- Medical Physics, Portsmouth Hospitals University NHS Trust, Portsmouth, PO6 3LY, United Kingdom
| | - David Nash
- Medical Physics, Portsmouth Hospitals University NHS Trust, Portsmouth, PO6 3LY, United Kingdom
| |
Collapse
|
2
|
Xu Q, Baldvinsson G, Piracha NZ, Logadóttir Á, Henrysdóttir HB. Patient-specific QA for the HyperArc technique using gafchromic film with multiple calibration methods. Acta Oncol 2023; 62:1215-1221. [PMID: 37672563 DOI: 10.1080/0284186x.2023.2254484] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
PURPOSE This study aims to evaluate different methods for calibrating EBT-XD films to develop a precise pre-treatment verification method for stereotactic radiotherapy (SRT) patients using the HyperArc (HA, Varian Medical System) technique. METHODS Gafchromic EBT-XD films were calibrated using three different approaches: manual calibration, EDW calibration, and PDD calibration. Films were digitalized with an Epson V850 Pro scanner applying the local scanning protocol. Three clinical treatment plans were selected for evaluation. Patient-specific QA films were irradiated in the Mobius MVP phantom and the STEEV phantom. Scanned film images were converted into dose images using the calibration curves. Gamma analysis was performed to compare film dose and TPS calculated dose with various criteria. RESULTS The scan-to-scan variation was evaluated to be ≤ 0.2%. The accuracy of the calibration curves was verified and the deviation from the converted dose deviates ≤ 3% from the known delivered dose. The gamma passing rate for all calibration methods was found to be over 94% with clinically relevant criteria. EDW calibration demonstrated higher average gamma passing rates compared to the manual method for single target plans, which is 99% ± 1.2% and 98.8% ± 1.5%, respectively. PDD method demonstrated improved agreement for multiple targets with the result of 99.3% ± 0.8%. CONCLUSIONS The three calibration methods were validated, and they produced accurate calibration curves for EBT-XD films to enable pre-treatment patient-specific QA for stereotactic radiotherapy.
Collapse
Affiliation(s)
- Qiuyi Xu
- Department of Radiotherapy, Landspitali University Hospital, Reykjavik, Iceland
| | - Gauti Baldvinsson
- Department of Radiotherapy, Landspitali University Hospital, Reykjavik, Iceland
| | | | | | | |
Collapse
|
3
|
Khaledi N, Khan R, Gräfe JL. Historical Progress of Stereotactic Radiation Surgery. J Med Phys 2023; 48:312-327. [PMID: 38223793 PMCID: PMC10783188 DOI: 10.4103/jmp.jmp_62_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 01/16/2024] Open
Abstract
Radiosurgery and stereotactic radiotherapy have established themselves as precise and accurate areas of radiation oncology for the treatment of brain and extracranial lesions. Along with the evolution of other methods of radiotherapy, this type of treatment has been associated with significant advances in terms of a variety of modalities and techniques to improve the accuracy and efficacy of treatment. This paper provides a comprehensive overview of the progress in stereotactic radiosurgery (SRS) over several decades, and includes a review of various articles and research papers, commencing with the emergence of stereotactic techniques in radiotherapy. Key clinical aspects of SRS, such as fixation methods, radiobiology considerations, quality assurance practices, and treatment planning strategies, are presented. In addition, the review highlights the technological advancements in treatment modalities, encompassing the transition from cobalt-based systems to linear accelerator-based modalities. By addressing these topics, this study aims to offer insights into the advancements that have shaped the field of SRS, that have ultimately enhanced the accuracy and effectiveness of treatment.
Collapse
Affiliation(s)
- Navid Khaledi
- Department of Medical Physics, Cancer Care Manitoba, Winnipeg, MB, Canada
| | - Rao Khan
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
- Department of Physics and Astronomy and Department of Radiation Oncology, Howard University, Washington, District of Columbia, USA
| | - James L. Gräfe
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
- Cancer Care Program, Dr. H. Bliss Murphy Cancer Center. 300 Prince Philip Drive St. John’s, NL, Canada
| |
Collapse
|
4
|
Intang A, Oonsiri P, Kingkaew S, Chatchumnan N, Oonsiri S. Validation of the Fabricated Cast Nylon Head Phantom for Stereotactic Radiosurgery End-to-End Test using Alanine Dosimeter. J Med Phys 2023; 48:74-79. [PMID: 37342600 PMCID: PMC10277300 DOI: 10.4103/jmp.jmp_98_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 06/23/2023] Open
Abstract
Background Stereotactic radiosurgery (SRS) is an alternative to surgery as it precisely delivers single-large doses to small tumors. Cast nylon is used in phantom due to its computed tomography (CT) number of about 56-95 HU, which is close to that of the soft tissue. Moreover, cast nylon is also more budget-friendly than the commercial phantoms. Aims The aim of this study is to design and validate the fabricated cast nylon head phantom for SRS end-to-end test using an alanine dosimeter. Materials and Methods The phantom was designed using cast nylon. It was initially created by a computer numerical control three-axis vertical machining center. Then, the cast nylon phantom was scanned using a CT simulator. Finally, the validation of the fabricated phantom using alanine dosimeter proficiency with four Varian LINAC machines was performed. Results The fabricated phantom presented a CT number of 85-90 HU. The outcomes of VMAT SRS plans showed percentage dose differences from 0.24 to 1.55, whereas the percentage dose differences in organ at risk (OAR) were 0.09-10.80 due to the low-dose region. The distance between the target (position 2) and the brainstem (position 3) was 0.88 cm. Conclusions Variation in dose for OAR is higher, which might be due to a high-dose gradient in the area where measurement was being conducted. The fabricated cast nylon end-to-end test head phantom had been suitably designed to image and irradiate during an end-to-end test for SRS using an alanine dosimeter.
Collapse
Affiliation(s)
- Aungsumalin Intang
- Department of Radiology, Medical Physics Program, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Office of Atoms for Peace, Division of Radiation Oncology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Puntiwa Oonsiri
- Department of Radiology, Division of Radiation Oncology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Sakda Kingkaew
- Department of Radiology, Division of Radiation Oncology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nichakan Chatchumnan
- Department of Radiology, Division of Radiation Oncology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Sornjarod Oonsiri
- Department of Radiology, Division of Radiation Oncology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
5
|
Brown TAD, Fagerstrom JM, Beck C, Holloway C, Burton K, Kaurin DGL, Mahendra S, Luckstead M, Kielar K, Kerns J. Determination of commissioning criteria for multileaf-collimator, stereotactic radiosurgery treatments on Varian TrueBeam and Edge machines using a novel anthropomorphic phantom. J Appl Clin Med Phys 2022; 23:e13581. [PMID: 35290710 PMCID: PMC9195028 DOI: 10.1002/acm2.13581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/22/2021] [Accepted: 02/21/2022] [Indexed: 11/11/2022] Open
Abstract
An anthropomorphic phantom has been developed by Varian Medical Systems for commissioning multileaf‐collimator (MLC), stereotactic radiosurgery (SRS) treatments on Varian TrueBeam and Edge linear accelerators. Northwest Medical Physics Center (NMPC) has collected end‐to‐end data on these machines, at six independent clinical sites, to establish baseline dosimetric and geometric commissioning criteria for SRS measurements with this phantom. The Varian phantom is designed to accommodate four interchangeable target cassettes, each designed for a specific quality assurance function. End‐to‐end measurements utilized the phantom to verify the coincidence of treatment isocenter with a hidden target in a Winston‐Lutz cassette after localization using cone‐beam computed tomography (CBCT). Dose delivery to single target (2 cm) and single‐isocenter, multitarget (2 and 1 cm) geometries was verified using ionization chamber and EBT3 film cassettes. A nominal dose of 16 Gy was prescribed for each plan using a site's standard beam geometry for SRS cases. Measurements were performed with three Millennium and three high‐definition MLC machines at beam energies of 6‐MV and 10‐MV flattening‐filter‐free energies. Each clinical site followed a standardized procedure for phantom simulation, treatment planning, quality assurance, and treatment delivery. All treatment planning and delivery was performed using ARIA oncology information system and Eclipse treatment planning software. The isocenter measurements and irradiated film were analyzed using DoseLab quality assurance software; gamma criteria of 3%/1 mm, 3%/0.5 mm, and 2%/1 mm were applied for film analysis. Based on the data acquired in this work, the recommended commissioning criteria for end‐to‐end SRS measurements with the Varian phantom are as follows: coincidence of treatment isocenter and CBCT‐aligned hidden target < 1 mm, agreement of measured chamber dose with calculated dose ≤ 5%, and film gamma passing > 90% for gamma criteria of 3%/1 mm after DoseLab auto‐registration shifts ≤ 1 mm in any direction.
Collapse
Affiliation(s)
| | | | - Caleb Beck
- Northwest Medical Physics Center, Lynnwood, Washington, USA
| | | | - Krista Burton
- Northwest Medical Physics Center, Lynnwood, Washington, USA
| | | | | | | | - Kayla Kielar
- Varian Medical Systems, Palo Alto, California, USA
| | - James Kerns
- Varian Medical Systems, Palo Alto, California, USA
| |
Collapse
|
6
|
Durmus IF, Okumus A. Dosimetric comparison of mDCAT and VMAT techniques according to 6MV-FFF and 10MV-FFF energies in patients with single adrenal metastasis. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2022; 30:1023-1032. [PMID: 35848004 DOI: 10.3233/xst-221192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To compare dosimetric and radiobiological terms of modified dynamic conformal arc therapy (mDCAT) and volumetric modulated arc therapy (VMAT) techniques using different flattening-filter free (FFF) energies in patients with single adrenal metastasis. METHODS In this study, plans were prepared for 10 patients drawing on the mDCAT and VMAT techniques with 6MV-FFF and 10MV-FFF energies. Target volume doses, biological effective doses (BED), quality indices, Monitor Unit (MU), number of segments, beam-on time and critical organ doses were compared in the plans. RESULTS Plans with the significantly lower gradient index (GI) and conformity index (CI) values were obtained with 6MV-FFF energy VMAT planning (p < 0.05). The higher values were obtained for dose to 95% of internal target volume (ITVD95), ITVD95-BED10 with 10MV-FFF energy VMAT planning, whereas lower results were obtained for high dose spillage (HDS%) values (p < 0,05). With 10MV-FFF energy, HDS% values were 21.1% lower in VMAT plans and 5.6% lower in mDCAT plans compared to 6MV-FFF energy. Plans with approximately 50% fewer segments were obtained in mDCAT plans than VMAT plans (p < 0,05). Beam-on time values with mDCAT was 1.84 times lower when 6MV-FFF energies were analyzed, and 2.11 times lower when 10MV-FFF was analyzed (p < 0,05). Additionally, when 6MV-FFF and 10MV-FFF energies were examined, MU values with mDCAT were 2.1 and 2.5 times lower (p < 0,05). In general, the smaller the target volume size, the greater the differences between MU and beam-on time values mDCAT and VMAT. CONCLUSIONS The study results implied that VMAT enabled to offer significantly more conformal SBRT plans with steeper dose fall-off beyond the target volume for single adrenal metastasis than the mDCAT, which attained at the cost of significantly higher MU and beam-on times. Especially with 10MV-FFF energy mDCAT plans, low-dose-bath zones can be reduced, and shorter-term treatments can be implemented with large segments. In adrenal gland SBRT, higher effective doses can be achieved with the right energy and technique, critical organ doses can be reduced, thus increasing the possibility of local control of the tumor with low toxicity.
Collapse
Affiliation(s)
- Ismail Faruk Durmus
- Department of Radiation Oncology, Nisantasi University, Istanbul, Turkey
- Department of Radiation Oncology, Yeni Yuzyil University Gaziosmanpasa Hospital, Istanbul, Turkey
| | - Ayse Okumus
- Department of Radiation Oncology, Nisantasi University, Istanbul, Turkey
| |
Collapse
|
7
|
Esen N, Ramachandran P, Geso M. SABR pre-treatment checks using alanine and nanoDot dosimeters. JOURNAL OF RADIATION RESEARCH 2021:rrab056. [PMID: 34668563 DOI: 10.1093/jrr/rrab056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/05/2021] [Accepted: 12/19/2019] [Indexed: 06/13/2023]
Abstract
Stereotactic Ablative Radiotherapy (SABR) remains one of the preferred treatment techniques for early-stage cancer. It can be extended to more treatment locales involving the sternum, scapula and spine. This work investigates SABR checks using Alanine and nanoDot dosimeter for three treatment sites, including sternum, spine and scapula. Alanine and nanoDot dosimeters' performances were verified using a 6 MV photon beam before SABR pretreatment verifications. Each dosimeter was placed inside customized designed inserts into a Rod Phantom (in-house phantom) made of Perspex that mimics the human body for a SABR check. Electron Paramagnetic Resonance (EPR) spectrometer, Bruker EleXsys E500 (9.5 GHz) and Microstar (Landauer Inc.) Reader was employed to acquire the irradiated alanine and nanoDot dosimeters' signal, respectively. Both dosimeters treatment sites are expressed as mean ± standard deviation (SD) of the measured and Eclipse calculated dose Alanine (19.59 ± 0.24, 17.98 ± 0.15, 17.95 ± 0.18) and nanoDot (19.70 ± 0.43, 17.05 ± 0.08, 17.95 ± 0.98) for spine, scapula and sternum, respectively. The percentage difference between alanine and nanoDot dosimeters was within 2% for sternum and scapula but 2.4% for spine cases. These results demonstrate Alanine and nanoDot dosimeters' potential usefulness for SABR pretreatment quality assurance (QA).
Collapse
Affiliation(s)
- Nsikan Esen
- Peter MacCallum Cancer Centre, Melbourne 3165, Australia
- Medical Radiations Science, RMIT University, Bundoora 3082, Australia
| | - Prabhakar Ramachandran
- Medical Radiations Science, RMIT University, Bundoora 3082, Australia
- Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Moshi Geso
- Medical Radiations Science, RMIT University, Bundoora 3082, Australia
| |
Collapse
|
8
|
Nenoff L, Matter M, Charmillot M, Krier S, Uher K, Weber DC, Lomax AJ, Albertini F. Experimental validation of daily adaptive proton therapy. Phys Med Biol 2021; 66. [PMID: 34587589 DOI: 10.1088/1361-6560/ac2b84] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/29/2021] [Indexed: 11/12/2022]
Abstract
Anatomical changes during proton therapy require rapid treatment plan adaption to mitigate the associated dosimetric impact. This in turn requires a highly efficient workflow that minimizes the time between imaging and delivery. At the Paul Scherrer Institute, we have developed an online adaptive workflow, which is specifically designed for treatments in the skull-base/cranium, with the focus set on simplicity and minimizing changes to the conventional workflow. The dosimetric and timing performance of this daily adaptive proton therapy (DAPT) workflow has been experimentally investigated using an in-house developed DAPT software and specifically developed anthropomorphic phantom. After a standard treatment preparation, which includes the generation of a template plan, the treatment can then be adapted each day, based on daily imaging acquired on an in-room CT. The template structures are then rigidly propagated to this CT and the daily plan is fully re-optimized using the same field arrangement, DVH constraints and optimization settings of the template plan. After a dedicated plan QA, the daily plan is delivered. To minimize the time between imaging and delivery, clinically integrated software for efficient execution of all online adaption steps, as well as tools for comprehensive and automated QA checks, have been developed. Film measurements of an end-to-end validation of a multi-fraction DAPT treatment showed high agreement to the calculated doses. Gamma pass rates with a 3%/3 mm criteria were >92% when comparing the measured dose to the template plan. Additionally, a gamma pass rate >99% was found comparing measurements to the Monte Carlo dose of the daily plans reconstructed from the logfile, accumulated over the delivered fractions. With this, we experimentally demonstrate that the described adaptive workflow can be delivered accurately in a timescale similar to a standard delivery.
Collapse
Affiliation(s)
- Lena Nenoff
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland.,Department of Physics, ETH Zurich, Switzerland
| | - Michael Matter
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland.,Department of Physics, ETH Zurich, Switzerland
| | | | - Serge Krier
- Department of Physics, ETH Zurich, Switzerland
| | - Klara Uher
- Department of Physics, ETH Zurich, Switzerland
| | - Damien Charles Weber
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland.,Department of Radiation Oncology, University Hospital Zurich, Switzerland.,Department of Radiation Oncology, University Hospital Bern, Switzerland
| | - Antony John Lomax
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland.,Department of Physics, ETH Zurich, Switzerland
| | | |
Collapse
|
9
|
Dubus F, Reynaert N. Dose calculation validation of a convolution algorithm in a solid water phantom. Phys Med 2021; 89:193-199. [PMID: 34392102 DOI: 10.1016/j.ejmp.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/21/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The dose calculated using a convolution algorithm should be validated in a simple homogeneous water-equivalent phantom before clinical use. The dose calculation accuracy within a solid water phantom was investigated. METHODS The specific Gamma knife design requires a dose rate calibration within a spherical solid water phantom. The TMR10 algorithm, which approximates the phantom material as liquid water, correctly computes the absolute dose in water. The convolution algorithm, which considers electron density miscalculates the dose in water as the phantom Hounsfield units were converted into higher electron density when the original CT calibration curve was used. To address this issue, the electron density of liquid water was affected by modifying the CT calibration curve. The absolute dose calculated using the convolution algorithm was compared with that computed by the TMR10. The measured depth dose profiles were also compared to those computed by the convolution and TMR10 algorithms. A patient treatment was recalculated in the solid-water phantom and the delivery quality assurance was checked. RESULTS The convolution algorithm and the TMR10 calculate an absolute dose within 1% when using the modified CT calibration curve. The dose depth profile calculated using the convolution algorithms was superimposed on the TMR10 and measured dose profiles when the modified CT calibration curve was applied. The Gamma index was better than 93%. CONCLUSIONS Dose calculation algorithms, which consider electron density, require a CT calibration curve adapted to the phantom material to correctly compute the dose in water.
Collapse
Affiliation(s)
- François Dubus
- Medical Physics Department, University Hospital, Lille, France.
| | - Nick Reynaert
- Medical Physics Department, Centre Bordet, Brussels, Belgium
| |
Collapse
|
10
|
Speight R, Dubec M, Eccles CL, George B, Henry A, Herbert T, Johnstone RI, Liney GP, McCallum H, Schmidt MA. IPEM topical report: guidance on the use of MRI for external beam radiotherapy treatment planning . Phys Med Biol 2021; 66:055025. [PMID: 33450742 DOI: 10.1088/1361-6560/abdc30] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
This document gives guidance for multidisciplinary teams within institutions setting up and using an MRI-guided radiotherapy (RT) treatment planning service. It has been written by a multidisciplinary working group from the Institute of Physics and Engineering in Medicine (IPEM). Guidance has come from the experience of the institutions represented in the IPEM working group, in consultation with other institutions, and where appropriate references are given for any relevant legislation, other guidance documentation and information in the literature. Guidance is only given for MRI acquired for external beam RT treatment planning in a CT-based workflow, i.e. when MRI is acquired and registered to CT with the purpose of aiding delineation of target or organ at risk volumes. MRI use for treatment response assessment, MRI-only RT and other RT treatment types such as brachytherapy and gamma radiosurgery are not considered within the scope of this document. The aim was to produce guidance that will be useful for institutions who are setting up and using a dedicated MR scanner for RT (referred to as an MR-sim) and those who will have limited time on an MR scanner potentially managed outside of the RT department, often by radiology. Although not specifically covered in this document, there is an increase in the use of hybrid MRI-linac systems worldwide and brief comments are included to highlight any crossover with the early implementation of this technology. In this document, advice is given on introducing a RT workload onto a non-RT-dedicated MR scanner, as well as planning for installation of an MR scanner dedicated for RT. Next, practical guidance is given on the following, in the context of RT planning: training and education for all staff working in and around an MR scanner; RT patient set-up on an MR scanner; MRI sequence optimisation for RT purposes; commissioning and quality assurance (QA) to be performed on an MR scanner; and MRI to CT registration, including commissioning and QA.
Collapse
Affiliation(s)
- Richard Speight
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Michael Dubec
- The Christie NHS Foundation Trust and the University of Manchester, Manchester, United Kingdom
| | - Cynthia L Eccles
- The Christie NHS Foundation Trust and the University of Manchester, Manchester, United Kingdom
| | - Ben George
- University of Oxford and GenesisCare, Oxford, United Kingdom
| | - Ann Henry
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust and University of Leeds, Leeds, United Kingdom
| | - Trina Herbert
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Gary P Liney
- Ingham Institute for Applied Medical Research and Liverpool Cancer Therapy Centre, Liverpool, Sydney, NSW 2170, Australia
| | - Hazel McCallum
- Translational and Clinical Research Institute, Newcastle University and Northern Centre for Cancer Care, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Maria A Schmidt
- Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
11
|
McKenna JT. The development and testing of a novel spherical radiotherapy phantom system for the commissioning and patient-specific quality assurance of mono-isocentric multiple mets SRS plans. Med Phys 2020; 48:105-113. [PMID: 33119902 DOI: 10.1002/mp.14565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To develop a single radiotherapy phantom system capable of performing both patient-specific quality assurance (QA) measurements and commissioning measurements for mono-isocentric LinAc-based stereotactic radiosurgery ("mLSRS") treatment plans. METHODS Design A 20-cm diameter spherical phantom was designed which contained within it a film cartridge. The surface of the sphere was machined to display a set of angular markings at both the equator and the meridian representing a spherical coordinate system. A stand was designed which allows for free rotation about any vector passing through the center of the sphere. A program was created using Python 3 to: (a) Compute the measurement setup necessary to intersect exactly one film plane with three user specified dicom points contained within the QA plan; (b) Extract the intersection dose plane from the three dimensional DICOM dose file and; (c) Generate a synthetic computed tomography (CT) in the exact measurement geometry which is subsequently used for phantom positioning during the QA measurement. TESTING To assess the functionality of the phantom system dynamic conformal arc mLSRS plans that were generated by a clinically commissioned multiple metastasis treatment planning system (BrainLab Elements version 2.0) using patient-specific data. A total of seven patient plans were created that contained a total of 31 targets {<Volume> = (0.382 ± 0.534) cc: Range [0.051, 2.05] cc, <Off-Axis Distance> = (30 ± 16) mm: Range[0, 55] mm} 27 of which were directly measured with film and analyzed. Each planned isocenter was mapped to the phantom's center and the dose was recomputed. From the phantom dose distribution dicom points of interest were selected in sets of three and input into the provided software. The software computed the plane that intersects with the entered three points and instructed the user on the setup geometry to place the film in the intersecting plane. The software then generated a synthetic CT scan with embedded fiducial markers rotated into the setup orientation. This CT was then used as the setup reference image in ExacTrac image guidance system (tolerance 0.7 mm & 0.5deg). All plans were delivered on a Varian Truebeam linear accelerator with HDMLC, Exactrac and a 6 degree of freedom couch. After delivery of each test plan a 10 × 10 reference field was delivered to a known dose approximately equal to the maximum dose contained within the plan for film calibration. The test film was scanned simultaneously with the 10 × 10 reference film and a film that received zero dose using an Epson 10000XL flatbed scanner after waiting 24 hours. The test film was scaled according to the reference film and analyzed via the gamma analysis (3%, 1 mm, 10%) implemented in Ashland Film QA Pro software. RESULTS The spherical phantom system was able to perform validation measurements on a variety of patient-specific plan geometries. The average gamma pass-rate γ(3%, 1 mm,10%) for all measurements was 96.7% (σ = 3.6%). CONCLUSIONS A novel spherical radiotherapy phantom system has been designed and tested on clinically relevant test plans.
Collapse
|
12
|
Poppinga D, Kretschmer J, Brodbek L, Meyners J, Poppe B, Looe HK. Evaluation of the RUBY modular QA phantom for planar and non-coplanar VMAT and stereotactic radiations. J Appl Clin Med Phys 2020; 21:69-79. [PMID: 32797670 PMCID: PMC7592965 DOI: 10.1002/acm2.13006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/25/2020] [Accepted: 07/02/2020] [Indexed: 01/14/2023] Open
Abstract
Purpose This study evaluates the clinical use of the RUBY modular QA phantom for linac QA to validate the integrity of IGRT workflows including the congruence of machine isocenter, imaging isocenter, and room lasers. The results have been benchmarked against those obtained with widely used systems. Additionally, the RUBY phantom has been implemented to perform system QA (End‐to‐End testing) from imaging to radiation for IGRT‐based VMAT and stereotactic radiations at an Elekta Synergy linac. Material and Methods The daily check of IGRT workflow was performed using the RUBY phantom, the Penta‐Guide, and the STEEV phantom. Furthermore, Winston–Lutz tests was carried out with the RUBY phantom and a ball‐bearing phantom to determine the offsets and the diameters of the isospheres of gantry, collimator, and couch rotations, with respect to the room lasers and kV‐imaging isocenter. System QA was performed with the RUBY phantom and STEEV phantom for eight VMAT treatment plans. Additionally, the visibility of the embedded objects within these phantoms in the images and the results of CT and MR image fusions were evaluated. Results All systems used for daily QA of IGRT workflows show comparable results. Calculated shifts based on CBCT imaging agree within 1 mm to the expected values. The results of the Winston–Lutz test based on kV imaging (2D planar and CBCT) or room lasers are consistent regardless of the system tested. The point dose values in the RUBY phantom agree to the expected values calculated using algorithms in Masterplan and Monte Carlo engine in Monaco within 3% of the clinical acceptance criteria. Conclusion All the systems evaluated in this study yielded comparable results in terms of linac QA and system QA procedures. A system QA protocol has been derived using the RUBY phantom to check the IGRT‐based VMAT and stereotactic radiations workflow at an Elekta Synergy linac.
Collapse
Affiliation(s)
| | - Jana Kretschmer
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Leonie Brodbek
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jutta Meyners
- Radiotherapy Department, Imland Hospital, Rendsburg, Germany
| | - Bjoern Poppe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Hui Khee Looe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
13
|
Capaldi DPI, Skinner LB, Dubrowski P, Yu AS. An integrated quality assurance phantom for frameless single-isocenter multitarget stereotactic radiosurgery. ACTA ACUST UNITED AC 2020; 65:115006. [DOI: 10.1088/1361-6560/ab8534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Billas I, Bouchard H, Oelfke U, Shipley D, Gouldstone C, Duane S. Alanine dosimetry in strong magnetic fields: use as a transfer standard in MRI-guided radiotherapy. Phys Med Biol 2020; 65:115001. [PMID: 32191920 DOI: 10.1088/1361-6560/ab8148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reference dosimetry in the presence of a strong magnetic field is challenging. Ionisation chambers have shown to be strongly affected by magnetic fields. There is a need for robust and stable detectors in MRI-guided radiotherapy (MRIgRT). This study investigates the behaviour of the alanine dosimeter in magnetic fields and assesses its suitability to act as a reference detector in MRIgRT. Alanine pellets were loaded in a waterproof holder, placed in an electromagnet and irradiated by 60Co and 6 MV and 8 MV linac beams over a range of magnetic flux densities. Monte Carlo simulations were performed to calculate the absorbed dose, to water and to alanine, with and without magnetic fields. Combining measurements with simulations, the effect of magnetic fields on alanine response was quantified and a correction factor for the presence of magnetic fields on alanine was determined. This study finds that the response of alanine to ionising radiation is modified when the irradiation is in the presence of a magnetic field. The effect is energy independent and may increase the alanine/electron paramagnetic resonance (EPR) signal by 0.2% at 0.35 T and 0.7% at 1.5 T. In alanine dosimetry for MRIgRT, this effect, if left uncorrected, would lead to an overestimate of dose. Accordingly, a correction factor, [Formula: see text], is defined. Values are obtained for this correction as a function of magnetic flux density, with a standard uncertainty which depends on the magnetic field and is 0.6% or less. The strong magnetic field has a measurable effect on alanine dosimetry. For alanine which is used to measure absorbed dose to water in a strong magnetic field, but which has been calibrated in the absence of a magnetic field, a small correction to the reported dose is required. With the inclusion of this correction, alanine/EPR is a suitable reference dosimeter for measurements in MRIgRT.
Collapse
Affiliation(s)
- Ilias Billas
- National Physical Laboratory, Teddington, United Kingdom. Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom. Author to whom any correspondence should be addressed
| | | | | | | | | | | |
Collapse
|
15
|
Multi-institutional dosimetric delivery assessment of intracranial stereotactic radiosurgery on different treatment platforms. Radiother Oncol 2020; 147:153-161. [DOI: 10.1016/j.radonc.2020.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 11/22/2022]
|
16
|
Billas I, Bouchard H, Oelfke U, Duane S. The effect of magnetic field strength on the response of Gafchromic EBT-3 film. Phys Med Biol 2019; 64:06NT03. [PMID: 30731443 DOI: 10.1088/1361-6560/ab0503] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
With the advent of MRI-guided radiotherapy, the suitability of commercially available radiation dose detectors needs to be assessed. The aim of this study was to investigate the effect of the magnetic field (B-field) on the response of the Gafchromic EBT-3 films. Moreover, as an independent study, we contribute to clarifying the inconsistency of the results of recent published studies, on the effect of B-field on the sensitivity of Gafchromic films. A 60Co beam was used to irradiate film samples in an electromagnet. An in-house PMMA phantom was designed to fit in the 5 cm gap between the two poles of the magnet. The phantom consists of two symmetrical plates where a film can be inserted. The absorbed dose rate of the 60Co beam for zero B-field was measured using alanine pellets in a Farmer-type holder. A 12-point response curve was created, representing [Formula: see text] as a function of dose, for each of five different B-field strengths (0 T to 2 T). This study finds that there is at most a small effect of the magnetic field on the response of EBT-3 film. In terms of netOD (red channel) the change in response varied from ‒0.0011 at 0.5 T to 0.0045 at 2.0 T, with a standard uncertainty of 0.0030. If uncorrected, this would lead to an error in film-measured dose, for the red channel, of 2.4% at 2 T, with a standard uncertainty on dose of 1.4%. Results are also presented for B-field strengths of 0.5 T, 1 T and 1.5 T, which are all zero within the measurement uncertainty. Comparison between other studies is also presented. Considering the small change on dose determined with EBT-3 when irradiated under the presence of B-field and taking into account the overall uncertainty in dosimetry using EBT-3 film achieved in this work, EBT-3 is assessed to be a suitable detector for relative and absolute dosimetry, with appropriate corrections, in MRI-guided radiotherapy. The results of the current work also elucidate the inconsistency on the reports from previous studies and demonstrate the necessity of similar investigations by independent teams, especially if the existing results may be in conflict.
Collapse
Affiliation(s)
- Ilias Billas
- National Physical Laboratory, Chemical, Medical and Environmental Science Department, Teddington, United Kingdom. Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom. Author to whom correspondence should be addressed
| | | | | | | |
Collapse
|
17
|
Alyahyawi A, Dimitriadis A, Jafari S, Lohstroh A, Alanazi A, Alsubaie A, Clark C, Nisbet A, Bradley D. Thermoluminescence measurements of eye-lens dose in a multi-centre stereotactic radiosurgery audit. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2018.08.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Poder J, Brown R, Porter H, Gupta R, Ralston A. Development of a dedicated phantom for multi-target single-isocentre stereotactic radiosurgery end to end testing. J Appl Clin Med Phys 2018; 19:99-108. [PMID: 30221462 PMCID: PMC6236824 DOI: 10.1002/acm2.12452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/12/2018] [Accepted: 08/16/2018] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The aim of this project was to design and manufacture a cost-effective end-to-end (E2E) phantom for quantifying the geometric and dosimetric accuracy of a linear accelerator based, multi-target single-isocenter (MTSI) frameless stereotactic radiosurgery (SRS) technique. METHOD A perspex Multi-Plug device from a Sun Nuclear ArcCheck phantom (Sun Nuclear, Melbourne, FL) was enhanced to make it more applicable for MTSI SRS E2E testing. The following steps in the SRS chain were then analysed using the phantom: magnetic resonance imaging (MRI) distortion, planning computed tomography (CT) scan and MRI image registration accuracy, phantom setup accuracy using CBCT, dosimetric accuracy using ion chamber, planar film dose measurements and coincidence of linear accelerator mega-voltage (MV), and kilo-voltage (kV) isocenters using Winston-Lutz testing (WLT). RESULTS The dedicated E2E phantom was able to successfully quantify the geometric and dosimetric accuracy of the MTSI SRS technique. MRI distortions were less than 0.5 mm, or half a voxel size. The average MRI-CT registration accuracy was 0.15 mm (±0.31 mm), 0.20 mm (±0.16 mm), and 0.39 mm (±0.11 mm) in the superior/inferior, left/right and, anterior/posterior directions, respectively. The phantom setup accuracy using CBCT was better than 0.2 mm and 0.1°. Point dose measurements were within 5% of the treatment planning system predicted dose. The comparison of planar film doses to the planning system dose distributions, performed using gamma analysis, resulted in pass rates greater than 97% for 3%/1 mm gamma criteria. Finally, off-axis WLT showed MV/kV coincidence to be within 1 mm for off-axis distances up to 60 mm. CONCLUSION A novel, versatile and cost-effective phantom for comprehensive E2E testing of MTSI SRS treatments was developed, incorporating multiple detector types and fiducial markers. The phantom is capable of quantifying the accuracy of each step in the MTSI SRS planning and treatment process.
Collapse
Affiliation(s)
- Joel Poder
- St George Hospital Cancer Care CentreKogarahNSWAustralia
| | - Ryan Brown
- St George Hospital Cancer Care CentreKogarahNSWAustralia
| | - Harry Porter
- St George Hospital Cancer Care CentreKogarahNSWAustralia
| | - Rashmi Gupta
- St George Hospital Cancer Care CentreKogarahNSWAustralia
| | - Anna Ralston
- St George Hospital Cancer Care CentreKogarahNSWAustralia
| |
Collapse
|
19
|
Saenz DL, Li Y, Rasmussen K, Stathakis S, Pappas E, Papanikolaou N. Dosimetric and localization accuracy of Elekta high definition dynamic radiosurgery. Phys Med 2018; 54:146-151. [PMID: 30337004 DOI: 10.1016/j.ejmp.2018.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 08/24/2018] [Accepted: 10/02/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND AND PURPOSE With the increasingly prominent role of stereotactic radiosurgery in radiation therapy, there is a clinical need for robust, efficient, and accurate solutions for targeting multiple sites with one patient setup. The end-to-end accuracy of high definition dynamic radiosurgery with Elekta treatment planning and delivery systems was investigated in this study. MATERIALS AND METHODS A patient-derived CT scan was used to create a radiosurgery plan to seven targets in the brain. Monaco was used for treatment planning using 5 VMAT non-coplanar arcs. Prior to delivery, 3D-printed phantoms from RTsafe were ordered including a gel phantom for 3D dosimetry, phantom with 2D film insert, and an ion chamber phantom for point dose measurement. Delivery was performed using the Elekta VersaHD, XVI cone-beam CT, and HexaPOD six degree of freedom tabletop. RESULTS Absolute dose accuracy was verified within 2%. 3D global gamma analysis in the film measurement revealed 3%/2 mm passing rates >95%. Gel dosimetry 3D global gamma analysis (3%/2 mm) were above 90% for all targets with the exception of one. Results were indicative of typical end-to-end accuracies (<1 mm spatial uncertainty, 2% dose accuracy) within 4 cm of isocenter. Beyond 4 cm, 2 mm accuracy was found. CONCLUSIONS High definition dynamic radiosurgery expands clinically acceptable stereotactic accuracy to a sphere around isocenter allowing for radiosurgery of several targets with one setup with a high degree of dosimetric precision. Gel dosimetry proved to be an essential tool for the validation of the 3D dose distributions in this technique.
Collapse
Affiliation(s)
- Daniel L Saenz
- University of Texas Health San Antonio, Department of Radiation Oncology, 7979 Wurzbach Road, San Antonio, TX 78229, United States.
| | - Ying Li
- University of Texas Health San Antonio, Department of Radiation Oncology, 7979 Wurzbach Road, San Antonio, TX 78229, United States
| | - Karl Rasmussen
- University of Texas Health San Antonio, Department of Radiation Oncology, 7979 Wurzbach Road, San Antonio, TX 78229, United States
| | - Sotirios Stathakis
- University of Texas Health San Antonio, Department of Radiation Oncology, 7979 Wurzbach Road, San Antonio, TX 78229, United States
| | - Evangelos Pappas
- University of West Attica, Department of Biomedical Sciences, Radiology & Radiotherapy Sector, Athens, Greece
| | - Niko Papanikolaou
- University of Texas Health San Antonio, Department of Radiation Oncology, 7979 Wurzbach Road, San Antonio, TX 78229, United States
| |
Collapse
|
20
|
Affiliation(s)
- Catharine H. Clark
- Medical Physics Department, Royal Surrey County Hospital, Guildford Surrey, UK
- Metrology for Medical Physics, National Physical Laboratory, Teddington, Middx, UK
| |
Collapse
|
21
|
Pasler M, Hernandez V, Jornet N, Clark CH. Novel methodologies for dosimetry audits: Adapting to advanced radiotherapy techniques. Phys Imaging Radiat Oncol 2018; 5:76-84. [PMID: 33458373 PMCID: PMC7807589 DOI: 10.1016/j.phro.2018.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 11/25/2022] Open
Abstract
With new radiotherapy techniques, treatment delivery is becoming more complex and accordingly, these treatment techniques require dosimetry audits to test advanced aspects of the delivery to ensure best practice and safe patient treatment. This review of novel methodologies for dosimetry audits for advanced radiotherapy techniques includes recent developments and future techniques to be applied in dosimetry audits. Phantom-based methods (i.e. phantom-detector combinations) including independent audit equipment and local measurement equipment as well as phantom-less methods (i.e. portal dosimetry, transmission detectors and log files) are presented and discussed. Methodologies for both conventional linear accelerator (linacs) and new types of delivery units, i.e. Tomotherapy, stereotactic devices and MR-linacs, are reviewed. Novel dosimetry audit techniques such as portal dosimetry or log file evaluation have the potential to allow parallel auditing (i.e. performing an audit at multiple institutions at the same time), automation of data analysis and evaluation of multiple steps of the radiotherapy treatment chain. These methods could also significantly reduce the time needed for audit and increase the information gained. However, to maximise the potential, further development and harmonisation of dosimetry audit techniques are required before these novel methodologies can be applied.
Collapse
Affiliation(s)
- Marlies Pasler
- Lake Constance Radiation Oncology Center Singen-Friedrichshafen, Germany
| | - Victor Hernandez
- Department of Medical Physics, Hospital Sant Joan de Reus, IISPV, Tarragona, Spain
| | - Núria Jornet
- Servei de RadiofísicaiRadioprotecció, Hospital de la Santa CreuiSant Pau, Spain
| | - Catharine H. Clark
- Department of Medical Physics, Royal Surrey County Hospital, Guildford, Surrey, UK
- Metrology for Medical Physics (MEMPHYS), National Physical Laboratory, Teddington, Middlesex, UK
| |
Collapse
|