1
|
Li J, Wei WF, Song LN, Mei XY, Yuan XS, He JB, Jiang LZ, Li HY, Wu HL, Chen JP. Double low-dose computed tomography (CT) angiography of craniocervical arteries using a test bolus of diluted contrast medium and a personalized contrast protocol. Clin Radiol 2024; 79:e1330-e1338. [PMID: 39198109 DOI: 10.1016/j.crad.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024]
Abstract
AIM To prospectively assess the value of a test bolus of diluted contrast medium (CM) combined with a personalized contrast protocol in craniocervical computed tomography angiography (cc-CTA) with low radiation and CM doses. MATERIALS AND METHODS Eighty-six consecutive subjects were divided into two groups at random (43 in each one): group A: 100/Sn140 kVp, filtered back-projection reconstruction, iopromide (370 mgI/ml) 50 ml; group B: 80/Sn140 kVp, iterative reconstruction, iodixanol (270 mgI/ml). In group B, the test bolus contained 27 ml of diluted CM, a personalized protocol with low-concentration CM was used for angiography, and the test bolus injection duration in angiography remained the same. Artery values over 200 Hounsfield units were considered significant. RESULTS Image quality for all cases was found to be diagnostic. No significant differences were found in the arterial densities of the ascending aorta or basilar artery between the groups. The values of the common carotid artery, internal carotid artery, and middle cerebral artery in group B were significantly lower. The effective dose and average iodine uptake were significantly lower in group B. CONCLUSION With double-low-dose cc-CTA, test bolus scanning based on diluted CM combined with a personalized contrast protocol can yield diagnostic-quality images and significantly reduce the radiation and CM doses.
Collapse
Affiliation(s)
- J Li
- Department of Radiology, Wujin Hospital Affiliated to Jiangsu University, Wujin Clinical College of Xuzhou Medical University, Changzhou 213002, Jiangsu, China
| | - W-F Wei
- Department of Neurosurgery, Wujin Hospital Affiliated to Jiangsu University, Wujin Clinical College of Xuzhou Medical University, Changzhou 213002, Jiangsu, China
| | - L-N Song
- Medical Record Department, Wujin Hospital Affiliated to Jiangsu University, Wujin Clinical College of Xuzhou Medical University, Changzhou 213002, Jiangsu, China
| | - X-Y Mei
- Department of Radiology, Wujin Hospital Affiliated to Jiangsu University, Wujin Clinical College of Xuzhou Medical University, Changzhou 213002, Jiangsu, China
| | - X-S Yuan
- Department of Neurosurgery, Wujin Hospital Affiliated to Jiangsu University, Wujin Clinical College of Xuzhou Medical University, Changzhou 213002, Jiangsu, China
| | - J-B He
- Department of Radiology, Wujin Hospital Affiliated to Jiangsu University, Wujin Clinical College of Xuzhou Medical University, Changzhou 213002, Jiangsu, China
| | - L-Z Jiang
- Department of Radiology, Wujin Hospital Affiliated to Jiangsu University, Wujin Clinical College of Xuzhou Medical University, Changzhou 213002, Jiangsu, China
| | - H-Y Li
- Department of Radiology, Wujin Hospital Affiliated to Jiangsu University, Wujin Clinical College of Xuzhou Medical University, Changzhou 213002, Jiangsu, China.
| | - H-L Wu
- Department of Radiology, Wujin Hospital Affiliated to Jiangsu University, Wujin Clinical College of Xuzhou Medical University, Changzhou 213002, Jiangsu, China.
| | - J-P Chen
- Department of Radiology, Wujin Hospital Affiliated to Jiangsu University, Wujin Clinical College of Xuzhou Medical University, Changzhou 213002, Jiangsu, China.
| |
Collapse
|
2
|
Dieckmeyer M, Sollmann N, Kupfer K, Löffler MT, Paprottka KJ, Kirschke JS, Baum T. Computed Tomography of the Head : A Systematic Review on Acquisition and Reconstruction Techniques to Reduce Radiation Dose. Clin Neuroradiol 2023; 33:591-610. [PMID: 36862232 PMCID: PMC10449676 DOI: 10.1007/s00062-023-01271-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/24/2023] [Indexed: 03/03/2023]
Abstract
In 1971, the first computed tomography (CT) scan was performed on a patient's brain. Clinical CT systems were introduced in 1974 and dedicated to head imaging only. New technological developments, broader availability, and the clinical success of CT led to a steady growth in examination numbers. Most frequent indications for non-contrast CT (NCCT) of the head include the assessment of ischemia and stroke, intracranial hemorrhage and trauma, while CT angiography (CTA) has become the standard for first-line cerebrovascular evaluation; however, resulting improvements in patient management and clinical outcomes come at the cost of radiation exposure, increasing the risk for secondary morbidity. Therefore, radiation dose optimization should always be part of technical advancements in CT imaging but how can the dose be optimized? What dose reduction can be achieved without compromising diagnostic value, and what is the potential of the upcoming technologies artificial intelligence and photon counting CT? In this article, we look for answers to these questions by reviewing dose reduction techniques with respect to the major clinical indications of NCCT and CTA of the head, including a brief perspective on what to expect from current and future developments in CT technology with respect to radiation dose optimization.
Collapse
Affiliation(s)
- Michael Dieckmeyer
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Karina Kupfer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian T. Löffler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Freiburg im Breisgau, Germany
| | - Karolin J. Paprottka
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
3
|
Bathla G, Abdel-Wahed L, Agarwal A, Cho TA, Gupta S, Jones KA, Priya S, Soni N, Wasserman BA. Vascular Involvement in Neurosarcoidosis: Early Experiences From Intracranial Vessel Wall Imaging. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/6/e1063. [PMID: 34349028 PMCID: PMC8340434 DOI: 10.1212/nxi.0000000000001063] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/28/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVES Cerebrovascular manifestations in neurosarcoidosis (NS) were previously considered rare but are being increasingly recognized. We report our preliminary experience in patients with NS who underwent high-resolution vessel wall imaging (VWI). METHODS A total of 13 consecutive patients with NS underwent VWI. Images were analyzed by 2 neuroradiologists in consensus. The assessment included segment-wise evaluation of larger- and medium-sized vessels (internal carotid artery, M1-M3 middle cerebral artery; A1-A3 anterior cerebral artery; V4 segments of vertebral arteries; basilar artery; and P1-P3 posterior cerebral artery), lenticulostriate perforator vessels, and medullary and deep cerebral veins. Cortical veins were not assessed due to flow-related artifacts. Brain biopsy findings were available in 6 cases and were also reviewed. RESULTS Mean patient age was 54.9 years (33-71 years) with an M:F of 8:5. Mean duration between initial diagnosis and VWI study was 18 months. Overall, 9/13 (69%) patients had vascular abnormalities. Circumferential large vessel enhancement was seen in 3/13 (23%) patients, whereas perforator vessel involvement was seen in 6/13 (46%) patients. Medullary and deep vein involvement was also seen in 6/13 patients. In addition, 7/13 (54%) patients had microhemorrhages in susceptibility-weighted imaging, and 4/13 (31%) had chronic infarcts. On biopsy, 5/6 cases showed perivascular granulomas with vessel wall involvement in all 5 cases. DISCUSSION Our preliminary findings suggest that involvement of intracranial vascular structures may be a common finding in patients with NS and should be routinely looked for. These findings appear concordant with previously reported autopsy literature and need to be validated on a larger scale.
Collapse
Affiliation(s)
- Girish Bathla
- From the Department of Radiology (G.B., S.P., N.S.), University of Iowa Hospitals and Clinics; Department of Neurology (L.A.-W., T.A.C.), University of Iowa Hospitals and Clinics, IA; Department of Radiology (A.A.), University of Texas Southwestern Medical Center; Department Pathology (S.G., K.A.J.), University of Iowa Hospitals and Clinics, IA; and Department of Radiology (B.A.W.), Johns Hopkins School of Medicine, Baltimore, MD.
| | - Lama Abdel-Wahed
- From the Department of Radiology (G.B., S.P., N.S.), University of Iowa Hospitals and Clinics; Department of Neurology (L.A.-W., T.A.C.), University of Iowa Hospitals and Clinics, IA; Department of Radiology (A.A.), University of Texas Southwestern Medical Center; Department Pathology (S.G., K.A.J.), University of Iowa Hospitals and Clinics, IA; and Department of Radiology (B.A.W.), Johns Hopkins School of Medicine, Baltimore, MD
| | - Amit Agarwal
- From the Department of Radiology (G.B., S.P., N.S.), University of Iowa Hospitals and Clinics; Department of Neurology (L.A.-W., T.A.C.), University of Iowa Hospitals and Clinics, IA; Department of Radiology (A.A.), University of Texas Southwestern Medical Center; Department Pathology (S.G., K.A.J.), University of Iowa Hospitals and Clinics, IA; and Department of Radiology (B.A.W.), Johns Hopkins School of Medicine, Baltimore, MD
| | - Tracey A Cho
- From the Department of Radiology (G.B., S.P., N.S.), University of Iowa Hospitals and Clinics; Department of Neurology (L.A.-W., T.A.C.), University of Iowa Hospitals and Clinics, IA; Department of Radiology (A.A.), University of Texas Southwestern Medical Center; Department Pathology (S.G., K.A.J.), University of Iowa Hospitals and Clinics, IA; and Department of Radiology (B.A.W.), Johns Hopkins School of Medicine, Baltimore, MD
| | - Sarika Gupta
- From the Department of Radiology (G.B., S.P., N.S.), University of Iowa Hospitals and Clinics; Department of Neurology (L.A.-W., T.A.C.), University of Iowa Hospitals and Clinics, IA; Department of Radiology (A.A.), University of Texas Southwestern Medical Center; Department Pathology (S.G., K.A.J.), University of Iowa Hospitals and Clinics, IA; and Department of Radiology (B.A.W.), Johns Hopkins School of Medicine, Baltimore, MD
| | - Karra A Jones
- From the Department of Radiology (G.B., S.P., N.S.), University of Iowa Hospitals and Clinics; Department of Neurology (L.A.-W., T.A.C.), University of Iowa Hospitals and Clinics, IA; Department of Radiology (A.A.), University of Texas Southwestern Medical Center; Department Pathology (S.G., K.A.J.), University of Iowa Hospitals and Clinics, IA; and Department of Radiology (B.A.W.), Johns Hopkins School of Medicine, Baltimore, MD
| | - Sarv Priya
- From the Department of Radiology (G.B., S.P., N.S.), University of Iowa Hospitals and Clinics; Department of Neurology (L.A.-W., T.A.C.), University of Iowa Hospitals and Clinics, IA; Department of Radiology (A.A.), University of Texas Southwestern Medical Center; Department Pathology (S.G., K.A.J.), University of Iowa Hospitals and Clinics, IA; and Department of Radiology (B.A.W.), Johns Hopkins School of Medicine, Baltimore, MD
| | - Neetu Soni
- From the Department of Radiology (G.B., S.P., N.S.), University of Iowa Hospitals and Clinics; Department of Neurology (L.A.-W., T.A.C.), University of Iowa Hospitals and Clinics, IA; Department of Radiology (A.A.), University of Texas Southwestern Medical Center; Department Pathology (S.G., K.A.J.), University of Iowa Hospitals and Clinics, IA; and Department of Radiology (B.A.W.), Johns Hopkins School of Medicine, Baltimore, MD
| | - Bruce A Wasserman
- From the Department of Radiology (G.B., S.P., N.S.), University of Iowa Hospitals and Clinics; Department of Neurology (L.A.-W., T.A.C.), University of Iowa Hospitals and Clinics, IA; Department of Radiology (A.A.), University of Texas Southwestern Medical Center; Department Pathology (S.G., K.A.J.), University of Iowa Hospitals and Clinics, IA; and Department of Radiology (B.A.W.), Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
4
|
Lenga L, Lange M, Martin SS, Albrecht MH, Booz C, Yel I, Arendt CT, Vogl TJ, Leithner D. Head and neck single- and dual-energy CT: differences in radiation dose and image quality of 2nd and 3rd generation dual-source CT. Br J Radiol 2021; 94:20210069. [PMID: 33914613 PMCID: PMC8173672 DOI: 10.1259/bjr.20210069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES To compare radiation dose and image quality of single-energy (SECT) and dual-energy (DECT) head and neck CT examinations performed with second- and third-generation dual-source CT (DSCT) in matched patient cohorts. METHODS 200 patients (mean age 55.1 ± 16.9 years) who underwent venous phase head and neck CT with a vendor-preset protocol were retrospectively divided into four equal groups (n = 50) matched by gender and BMI: second (Group A, SECT, 100-kV; Group B, DECT, 80/Sn140-kV), and third-generation DSCT (Group C, SECT, 100-kV; Group D, DECT, 90/Sn150-kV). Assessment of radiation dose was performed for an average scan length of 27 cm. Contrast-to-noise ratio measurements and dose-independent figure-of-merit calculations of the submandibular gland, thyroid, internal jugular vein, and common carotid artery were analyzed quantitatively. Qualitative image parameters were evaluated regarding overall image quality, artifacts and reader confidence using 5-point Likert scales. RESULTS Effective radiation dose (ED) was not significantly different between SECT and DECT acquisition for each scanner generation (p = 0.10). Significantly lower effective radiation dose (p < 0.01) values were observed for third-generation DSCT groups C (1.1 ± 0.2 mSv) and D (1.0 ± 0.3 mSv) compared to second-generation DSCT groups A (1.8 ± 0.1 mSv) and B (1.6 ± 0.2 mSv). Figure-of-merit/contrast-to-noise ratio analysis revealed superior results for third-generation DECT Group D compared to all other groups. Qualitative image parameters showed non-significant differences between all groups (p > 0.06). CONCLUSION Contrast-enhanced head and neck DECT can be performed with second- and third-generation DSCT systems without radiation penalty or impaired image quality compared with SECT, while third-generation DSCT is the most dose efficient acquisition method. ADVANCES IN KNOWLEDGE Differences in radiation dose between SECT and DECT of the dose-vulnerable head and neck region using DSCT systems have not been evaluated so far. Therefore, this study directly compares radiation dose and image quality of standard SECT and DECT protocols of second- and third-generation DSCT platforms.
Collapse
Affiliation(s)
- Lukas Lenga
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Marvin Lange
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Simon S Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Moritz H Albrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Christian Booz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Ibrahim Yel
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Christophe T Arendt
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Doris Leithner
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Aldosari S, Sun Z. A Systematic Review of Double Low-dose CT Pulmonary Angiography in Pulmonary Embolism. Curr Med Imaging 2020; 15:453-460. [PMID: 32008552 DOI: 10.2174/1573405614666180813120619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 07/20/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The aim of this study is to perform a systematic review of the feasibility and clinical application of double low-dose CT pulmonary angiography (CTPA) in the diagnosis of patients with suspected pulmonary embolism. DISCUSSION A total of 13 studies were found to meet selection criteria reporting both low radiation dose (70 or 80 kVp versus 100 or 120 kVp) and low contrast medium dose CTPA protocols. Lowdose CTPA resulted in radiation dose reduction from 29.6% to 87.5% in 12 studies (range: 0.4 to 23.5 mSv), while in one study, radiation dose was increased in the dual-energy CT group when compared to the standard 120 kVp group. CTPA with use of low contrast medium volume (range: 20 to 75 ml) was compared to standard CTPA (range: 50 to 101 ml) in 12 studies with reduction between 25 and 67%, while in the remaining study, low iodine concentration was used with 23% dose reduction achieved. Quantitative assessment of image quality (in terms of signal-to-noise ratio and contrast-to-noise ratio) showed that low-dose CTPA was associated with higher, lower and no change in image quality in 3, 3 and 6 studies, respectively when compared to the standard CTPA protocol. The subjective assessment indicated similar image quality in 11 studies between low-dose and standard CTPA groups, and improved image quality in 1 study with low-dose CTPA. CONCLUSION This review shows that double low-dose CTPA is feasible in the diagnosis of pulmonary embolism with significant reductions in both radiation and contrast medium doses, without compromising diagnostic image quality.
Collapse
Affiliation(s)
- Sultan Aldosari
- Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Zhonghua Sun
- Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| |
Collapse
|
6
|
Bathla G, Priya S, Samaniego E, Deo SK, Fain NH, Soni N, Ward C, Derdeyn CP. Cerebral computed tomographic angiography using third-generation reconstruction algorithm provides improved image quality with lower contrast and radiation dose. Neuroradiology 2020; 62:965-970. [PMID: 32277245 DOI: 10.1007/s00234-020-02406-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/13/2020] [Indexed: 02/03/2023]
Abstract
PURPOSE We hypothesized that cerebral CT angiogram performed using third-generation reconstruction algorithm and lower contrast dose-low-kVp technique (LD-CTA) will provide better image quality when compared with regular contrast dose CTA at 120 kVp using a sinogram-affirmed iterative reconstruction algorithm (ND-CTA). METHODS Retrospective imaging review of 100 consecutive patients (50 each in LD- and ND-CTA groups). Two readers independently assessed the subjective image quality across multiple vascular segments on a Likert-like scale. Differences in contrast dose, CT dose index (CTDI), and dose length product (DLP) were compared using Mann-Whitney U test. Fisher's exact test was used to compare subjective image quality. Similarly, contrast- and signal-to-noise ratios (CNR and SNR) were compared in the mid-M1 MCA vessels bilaterally and the mid-basilar artery using Mann-Whitney U test. Interclass correlation coefficient (ICC) was calculated for the SNR/CNR values. RESULTS Both observers showed excellent correlation in subjective image quality (mean percentage agreement of 95.2% for group 1 versus 89.2% for group 2). LD-CTA group showed better SNR and CNR (p < 0.0001) for both MCA vessels and the mid-basilar artery. Interclass correlation coefficient showed moderate correlation (0.51-0.63) between readers. LD-CTA group also used lower contrast (49 cc versus 97 cc in ND-CTA) and had lower radiation exposure (DLP/CTDI for both groups 268.3/80.7 vs 519.5/36.08, both < 0.0001). CONCLUSION Next-generation reconstruction algorithm and low-kV scanning significantly improved image quality on cerebral CTA images despite lower contrast dose and, in addition, have lower radiation exposure.
Collapse
Affiliation(s)
- Girish Bathla
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA.
| | - Sarv Priya
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Edgar Samaniego
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Simmi K Deo
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Nicholas H Fain
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Neetu Soni
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Caitlin Ward
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Colin P Derdeyn
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| |
Collapse
|
7
|
|
8
|
Submillisievert CT angiography for carotid arteries using wide array CT scanner and latest iterative reconstruction algorithm in comparison with previous generations technologies: Feasibility and diagnostic accuracy. J Cardiovasc Comput Tomogr 2019; 13:41-47. [PMID: 30639115 DOI: 10.1016/j.jcct.2019.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/05/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To assess evaluability and diagnostic accuracy of a low dose CT angiography (CTA) protocol for carotid arteries using latest Iterative Reconstruction (IR) algorithm in comparison with standard 100 kVp protocol using previous generation CT and IR. MATERIALS AND METHODS 105 patients, referred for CTA of the carotid arteries were prospectively enrolled in our study and underwent CTA with 80 kVp and latest IR algorithm (group 1). Data were retrospectively compared with 100 consecutive patients with similar examination indications that had previously undergone CTA of carotid arteries with a standard 100 kVp protocol and a first generation IR algorithm (group 2). Image quality was evaluated with a 4-point Likert-scale. For each exam CT number, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) at level of common carotid artery (CCA), internal carotid artery (ICA) and at level of Circle of Willis and Effective Dose (ED) were evaluated. 62 Group 1 patients underwent a clinically indicated DSA and results were compared with CTA. RESULTS No exams reported as not diagnostic. The overall mean CT number value of all arterial segments was above 450 HU in both groups. Significant lower noise, and higher SNR and CNR values were found in group 1 in comparison with group 2 despite the use of 80 kVp. In 62-group 1 patients studied by DSA, CTA showed in a segment-based analysis a sensitivity, negative predictive value and accuracy of 100%, 100% and 99% respectively. Mean ED in group 1 was 0.54 ± 0.1 mSv with a dose reduction up to 86%. CONCLUSIONS CTA for carotid arteries using latest IR algorithm allows to perform exams with submillisievert radiation exposure maintaining good image quality, overall evaluability and diagnostic accuracy.
Collapse
|
9
|
Aldosari S, Jansen S, Sun Z. Patient-specific 3D printed pulmonary artery model with simulation of peripheral pulmonary embolism for developing optimal computed tomography pulmonary angiography protocols. Quant Imaging Med Surg 2019; 9:75-85. [PMID: 30788248 PMCID: PMC6351806 DOI: 10.21037/qims.2018.10.13] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/26/2018] [Indexed: 11/06/2022]
Abstract
BACKGROUND Computed tomography pulmonary angiography (CTPA) is the preferred imaging modality for diagnosis of patients with suspected pulmonary embolism (PE). Radiation dose associated with CTPA has been significantly reduced due to the use of dose-reduction strategies, however, investigation of low-dose CTPA with use of different kVp and pitch values has not been systematically studied. The aim of this study was to utilize a 3D printed pulmonary model with simulation of small thrombus in the pulmonary arteries for development of optimal CTPA protocols. METHODS Animal blood clots were inserted into the pulmonary arteries to simulate peripheral embolism based on a realistic 3D printed pulmonary artery model. The 3D printed model was scanned with 192-slice 3rd generation dual-source CT with 1 mm slice thickness and 0.5 mm reconstruction interval. All images were reconstructed with advanced modelled iterative reconstruction (IR) at a strength level of 3. CTPA scanning parameters were as follows: 70, 80, 100 and 120 kVp, 0.9, 2.2 and 3.2 pitch values. Quantitative assessment of image quality was determined by measuring signal-to-noise ratio (SNR) in both main pulmonary arteries, while qualitative analysis of images was scored by two experienced radiologists (score of 1 indicates poor visualization of thrombus with no confidence, and score of 5 excellent visualization of thrombus with high confidence) to determine the image quality in relation to different scanning protocols for detection of thrombus in the pulmonary arteries. RESULTS No significant differences were found in SNR measurements among all CTPA protocols (P>0.05), regardless of kVp or pitch values used, although SNR was higher with 120 kVp and 0.9 and 2.2 pitch protocols than that in other protocols. The thrombi were detected in all images, with 70 kVp and 3.2 pitch protocol scored the lowest with a score of 3 by two observers, and images with other protocols were scored 4 or 5. Lowering kVp from 120 to 70 with use of high-pitch 2.2 or 3.2 protocol resulted in up to 80% dose reduction without significantly affecting image quality. CONCLUSIONS Low-dose CT pulmonary angiography protocols comprising 70 kVp and high pitch 2.2 or 3.2 allow for detection of peripheral PE with significant reduction in radiation dose while images are still considered diagnostic.
Collapse
Affiliation(s)
- Sultan Aldosari
- Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Shirley Jansen
- Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Perth, Australia
- Curtin Medical School, Curtin University, Perth, Australia
- Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia
- Heart and Vascular Research Institute, Harry Perkins Medical Research Institute, Perth, Australia
| | - Zhonghua Sun
- Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| |
Collapse
|
10
|
Variation of degree of stenosis quantification using different energy level with dual energy CT scanner. Neuroradiology 2018; 61:285-291. [PMID: 30554271 DOI: 10.1007/s00234-018-2142-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/20/2018] [Indexed: 11/27/2022]
Abstract
PURPOSE To investigate the variation in the quantification of the carotid degree of stenosis (DoS) with a dual energy computed tomography (CT), using different energy levels during the image reconstruction. METHODS In this retrospective study, 53 subjects (37 males; mean age 67 ± 11 years; age range 47-83 years) studied with a multi-energy CT scanner were included. Datasets were reconstructed on a dedicated workstation and from the CT raw data multiple datasets were generated at the following monochromatic energy levels: 66, 70, 77, and 86 kilo-electronvolt (keV). Two radiologists independently performed all measurements for quantification of the degree of stenosis. Wilcoxon test was used to test the differences between the Hounsifield unit (HU) values in the plaques at different keV. RESULTS The Wilcoxon analysis showed a statistically significant difference (p = 0.001) in the DoS assessment among the different keVs selected. The Bland-Altman analysis showed that the DoS difference had a linear relation with the keV difference (the bigger is the difference in keV, the bigger is the variation in DoS) and that for different keVs, the difference in DoS is reduced with its increase. CONCLUSION A standardization in the use of the energy level during the image reconstruction should be considered.
Collapse
|