1
|
Chen DC, Huang S, Buteau JP, Kashyap R, Hofman MS. Clinical Positron Emission Tomography/Computed Tomography: Quarter-Century Transformation of Prostate Cancer Molecular Imaging. PET Clin 2024; 19:261-279. [PMID: 38199918 DOI: 10.1016/j.cpet.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Although positron emission tomography/computed tomography (PET/CT) underwent rapid growth during the last quarter-century, becoming a new standard-of-care for imaging most cancer types, CT and bone scan remained the gold standard for patients with prostate cancer. This occurred as 2-fluorine-18-fluoro-2-deoxy-d-glucose was perceived to have a limited role owing to low sensitivity in many patients. A resurgence of interest occurred with the use of fluorine-18-sodium-fluoride PET/CT as a replacement for bone scintigraphy, and then choline, fluciclovine, and dihydrotestosterone (DHT) PET/CT as prostate "specific" radiotracers. The last decade, however, has seen a true revolution with the meteoric rise of prostate-specific membrane antigen PET/CT.
Collapse
Affiliation(s)
- David C Chen
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Siyu Huang
- Department of Surgery, The University of Melbourne
| | - James P Buteau
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Raghava Kashyap
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Theranostic radiopharmacy for the nuclear medicine and molecular imaging. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
3
|
Rizzo A, Annunziata S, Salvatori M. Side effects of theragnostic agents currently employed in clinical practice. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2021; 65:315-326. [PMID: 34881848 DOI: 10.23736/s1824-4785.21.03411-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nuclear medicine plays an increasingly important role in several neoplasms management through a theragnostic approach by which targeted molecular imaging and radiotherapy are obtained with the use of radionuclide pairs with similar characteristics. In some cases, nuclear theragnostic use a pair of agents with identical chemical and biological characteristics while in others are employed theragnostic molecules which are not chemically or biologically identical but show similar biodistribution (so-called "twins in spirit" radiopharmaceuticals). This strategy was developed for the first time over 75 years ago, when iodine-131 was used for diagnostic imaging, confirmation of target expression and radionuclide therapy of thyroid cancer. Other theragnostic approaches were subsequently introduced with significant clinical results and some of them are currently considered standard treatment for different cancers. However, as any other therapy, also nuclear theragnostic treatment carries the potential risk of early deterministic and late stochastic off-target adverse effects, generally minimal and easily managed. This article reviews the reported side effects and risks of the main radiopharmaceuticals used for nuclear theragnostic in oncology for the treatment of thyroid cancer, neuroendocrine neoplasms, adrenergic tumors, metastatic prostate cancer, and liver tumors. Selecting appropriate patients using a multidisciplinary approach, meticulous pretreatment planning and knowledge of methods permit to decrease the incidence of these potential side effects.
Collapse
Affiliation(s)
- Alessio Rizzo
- Candiolo Cancer Institute - FPO-IRCCS, Candiolo, Turin, Italy -
| | - Salvatore Annunziata
- Unit of Nuclear Medicine, TracerGLab, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Massimo Salvatori
- Institute of Nuclear Medicine, Sacred Heart Catholic University, Rome, Italy
| |
Collapse
|
4
|
Prognostic and Theranostic Applications of Positron Emission Tomography for a Personalized Approach to Metastatic Castration-Resistant Prostate Cancer. Int J Mol Sci 2021; 22:ijms22063036. [PMID: 33809749 PMCID: PMC8002334 DOI: 10.3390/ijms22063036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 01/25/2023] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) represents a condition of progressive disease in spite of androgen deprivation therapy (ADT), with a broad spectrum of manifestations ranging from no symptoms to severe debilitation due to bone or visceral metastatization. The management of mCRPC has been profoundly modified by introducing novel therapeutic tools such as antiandrogen drugs (i.e., abiraterone acetate and enzalutamide), immunotherapy through sipuleucel-T, and targeted alpha therapy (TAT). This variety of approaches calls for unmet need of biomarkers suitable for patients’ pre-treatment selection and prognostic stratification. In this scenario, imaging with positron emission computed tomography (PET/CT) presents great and still unexplored potential to detect specific molecular and metabolic signatures, some of whom, such as the prostate specific membrane antigen (PSMA), can also be exploited as therapeutic targets, thus combining diagnosis and therapy in the so-called “theranostic” approach. In this review, we performed a web-based and desktop literature research to investigate the prognostic and theranostic potential of several PET imaging probes, such as 18F-FDG, 18F-choline and 68Ga-PSMA-11, also covering the emerging tracers still in a pre-clinical phase (e.g., PARP-inhibitors’ analogs and the radioligands binding to gastrin releasing peptide receptors/GRPR), highlighting their potential for defining personalized care pathways in mCRPC.
Collapse
|
5
|
Coenen HH, Ermert J. Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18. Nucl Med Biol 2021; 92:241-269. [PMID: 32900582 DOI: 10.1016/j.nucmedbio.2020.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
Positron-emission-tomography (PET) has become an indispensable diagnostic tool in modern nuclear medicine. Its outstanding molecular imaging features allow repetitive studies on one individual and with high sensitivity, though no interference. Rather few positron-emitters with near favourable physical properties, i.e. carbon-11 and fluorine-18, furnished most studies in the beginning, preferably if covalently bound as isotopic label of small molecules. With the advancement of PET-devices the scope of in vivo research in life sciences and especially that of medical applications expanded, and other than "standard" PET-nuclides received increasing significance, like the radiometals copper-64 and gallium-68. Especially during the last decades, positron-emitters of other chemical elements have gotten into the focus of interest, concomitant with the technical advancements in imaging and radionuclide production. With known nuclear imaging properties and main production methods of emerging positron-emitters their usefulness for medical application is promising and even proven for several ones already. Unfortunate decay properties could be corrected for, and β+-emitters, especially with a longer half-life, provided new possibilities for application where slower processes are of importance. Further on, (bio)chemical features of positron-emitters of other elements, among there many metals, not only expanded the field of classical clinical investigations, but also opened up new fields of application. Appropriately labelled peptides, proteins and nanoparticles lend itself as newer probes for PET-imaging, e.g. in theragnostic or PET/MR hybrid imaging. Furthermore, the potential of non-destructive in-vivo imaging with positron-emission-tomography directs the view on further areas of life sciences. Thus, exploiting the excellent methodology for basic research on molecular biochemical functions and processes is increasingly encouraged as well in areas outside of health, such as plant and environmental sciences.
Collapse
Affiliation(s)
- Heinz H Coenen
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | - Johannes Ermert
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| |
Collapse
|
6
|
Jadvar H, Ballas LK, Choyke PL, Fanti S, Gulley JL, Herrmann K, Hope TA, Klitzke AK, Oldan JD, Pomper MG, Rowe SP, Subramaniam RM, Taneja SS, Vargas HA, Ahuja S. Appropriate Use Criteria for Imaging Evaluation of Biochemical Recurrence of Prostate Cancer After Definitive Primary Treatment. J Nucl Med 2020; 61:552-562. [PMID: 32238495 DOI: 10.2967/jnumed.119.240929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Hossein Jadvar
- Society of Nuclear Medicine and Molecular Imaging, Reston, Virginia
| | - Leslie K Ballas
- American Society for Radiation Oncology, Arlington, Virginia
| | - Peter L Choyke
- American Society of Clinical Oncology, Alexandria, Virginia
| | - Stefano Fanti
- European Association of Nuclear Medicine, Vienna, Austria
| | - James L Gulley
- American College of Physicians, Philadelphia, Pennsylvania
| | - Ken Herrmann
- European Association of Nuclear Medicine, Vienna, Austria
| | - Thomas A Hope
- Society of Nuclear Medicine and Molecular Imaging, Reston, Virginia
| | | | - Jorge D Oldan
- Society of Nuclear Medicine and Molecular Imaging, Reston, Virginia.,American Society of Clinical Oncology, Alexandria, Virginia
| | | | - Steven P Rowe
- Society of Nuclear Medicine and Molecular Imaging, Reston, Virginia
| | - Rathan M Subramaniam
- American College of Nuclear Medicine, Reston, Virginia.,American College of Radiology, Reston, Virginia; and
| | - Samir S Taneja
- American Urological Association, Linthicum Heights, Maryland
| | | | - Sukhjeet Ahuja
- Society of Nuclear Medicine and Molecular Imaging, Reston, Virginia
| |
Collapse
|
7
|
Walker SM, Lim I, Lindenberg L, Mena E, Choyke PL, Turkbey B. Positron emission tomography (PET) radiotracers for prostate cancer imaging. Abdom Radiol (NY) 2020; 45:2165-2175. [PMID: 32047993 DOI: 10.1007/s00261-020-02427-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Imaging plays an increasing role in prostate cancer diagnosis and staging. Accurate staging of prostate cancer is required for optimal treatment planning. In detecting extraprostatic cancer and sites of early recurrence, traditional imaging methods (computed tomography, magnetic resonance imaging, radionuclide bone scan) have suboptimal performance. This leaves a gap between known disease recurrence as indicated by rising prostate-specific antigen and the ability to localize the recurrence on imaging. Novel positron emission tomography (PET) agents including radiolabeled choline, fluciclovine (18F-FACBC), and agents targeting prostate-specific membrane antigen are being developed and tested to increase diagnostic performance of non-invasive prostate cancer localization. When combined with CT or MRI, these tracers offer a combination of functional information and anatomic localization that is superior to conventional imaging methods. These PET radiotracers have varying mechanisms and excretion patterns affecting their pharmacokinetics and diagnostic performance, which will be reviewed in this article.
Collapse
Affiliation(s)
- Stephanie M Walker
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ilhan Lim
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Nuclear Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Korea
| | - Liza Lindenberg
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Esther Mena
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Peter L Choyke
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Baris Turkbey
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Targeting of radioactive platinum-bisphosphonate anticancer drugs to bone of high metabolic activity. Sci Rep 2020; 10:5889. [PMID: 32246003 PMCID: PMC7125202 DOI: 10.1038/s41598-020-62039-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/06/2020] [Indexed: 11/08/2022] Open
Abstract
Platinum-based chemotherapeutics exhibit excellent antitumor properties. However, these drugs cause severe side effects including toxicity, drug resistance, and lack of tumor selectivity. Tumor-targeted drug delivery has demonstrated great potential to overcome these drawbacks. Herein, we aimed to design radioactive bisphosphonate-functionalized platinum (195mPt-BP) complexes to confirm preferential accumulation of these Pt-based drugs in metabolically active bone. In vitro NMR studies revealed that release of Pt from Pt BP complexes increased with decreasing pH. Upon systemic administration to mice, Pt-BP exhibited a 4.5-fold higher affinity to bone compared to platinum complexes lacking the bone-seeking bisphosphonate moiety. These Pt-BP complexes formed less Pt-DNA adducts compared to bisphosphonate-free platinum complexes, indicating that in vivo release of Pt from Pt-BP complexes proceeded relatively slow. Subsequently, radioactive 195mPt-BP complexes were synthesized using 195mPt(NO3)2(en) as precursor and injected intravenously into mice. Specific accumulation of 195mPt-BP was observed at skeletal sites with high metabolic activity using micro-SPECT/CT imaging. Furthermore, laser ablation-ICP-MS imaging of proximal tibia sections confirmed that 195mPt BP co-localized with calcium in the trabeculae of mice tibia.
Collapse
|
9
|
Jokar N, Assadi M, Yordanova A, Ahmadzadehfar H. Bench-to-Bedside Theranostics in Nuclear Medicine. Curr Pharm Des 2020; 26:3804-3811. [PMID: 32067609 DOI: 10.2174/1381612826666200218104313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/11/2019] [Indexed: 11/22/2022]
Abstract
The optimum selection of the appropriate radiolabelled probe for the right target and the right patient is the foundation of theranostics in personalised medicine. In nuclear medicine, this process is realised through the appropriate choice of radiopharmaceuticals based on molecular biomarkers regarding molecular imaging. Theranostics is developing a strategy that can be used to implement accepted tools for individual molecular targeting, including diagnostics, and advances in genomic molecular knowledge, which has led to identifying theranostics biomaterials that have the potency to diagnose and treat malignancies. Today, numerous studies have reported on the discovery and execution of these radiotracers in personalised medicine. In this review, we presented our point of view of the most important theranostics agents that can be used to treat several types of malignancies. Molecular targeted radionuclide treatment methods based on theranostics are excellent paradigms of the relationship between molecular imaging and therapy that has been used to provide individualised or personalised patient care. Toward that end, a precise planned prospective examination of theranostics must be done to compare this approach to more standard therapies.
Collapse
Affiliation(s)
- Narges Jokar
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Anna Yordanova
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|
10
|
Velez EM, Desai B, Jadvar H. Treatment Response Assessment of Skeletal Metastases in Prostate Cancer with 18F-NaF PET/CT. Nucl Med Mol Imaging 2019; 53:247-252. [PMID: 31456857 PMCID: PMC6694323 DOI: 10.1007/s13139-019-00601-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/24/2019] [Accepted: 06/18/2019] [Indexed: 01/08/2023] Open
Abstract
PURPOSE To determine the utility of 18F-sodium fluoride positron emission tomography-computed tomography (18F-NaF PET/CT) in the imaging assessment of therapy response in men with osseous-only metastatic prostate cancer. METHODS In this Institutional Review Board-approved single institution retrospective investigation, we evaluated 21 18F-NaF PET/CT scans performed in 14 patients with osseous metastatic disease from prostate cancer and no evidence of locally recurrent or soft-tissue metastatic disease who received chemohormonal therapy. Imaging-based qualitative and semi-quantitative parameters were defined and compared with changes in serum PSA level. RESULTS Qualitative and semi-quantitative image-based assessments demonstrated > 80% concordance with good correlation (SUVmax κ = 0.71, SUVavg κ = 0.62, SUVsum κ = 0.62). Moderate correlation (κ = 0.43) was found between SUVmax and PSA-based treatment response assessments. There was no statistically significant correlation between PSA-based disease progression and semi-quantitative parameters. Qualitative imaging assessment was moderately correlated (κ = 0.52) with PSA in distinguishing responders and non-responders. CONCLUSION 18F-NaF PET/CT is complementary to biochemical monitoring in patients with bone-only metastases from prostate cancer which can be helpful in subsequent treatment management decisions.
Collapse
Affiliation(s)
- Erik M. Velez
- Division of Nuclear Medicine, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar St., CSC 102, Los Angeles, CA 90033 USA
| | - Bhushan Desai
- Division of Nuclear Medicine, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar St., CSC 102, Los Angeles, CA 90033 USA
| | - Hossein Jadvar
- Division of Nuclear Medicine, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar St., CSC 102, Los Angeles, CA 90033 USA
| |
Collapse
|