1
|
Stribbling SM, Beach C, Ryan AJ. Orthotopic and metastatic tumour models in preclinical cancer research. Pharmacol Ther 2024; 257:108631. [PMID: 38467308 PMCID: PMC11781865 DOI: 10.1016/j.pharmthera.2024.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Mouse models of disease play a pivotal role at all stages of cancer drug development. Cell-line derived subcutaneous tumour models are predominant in early drug discovery, but there is growing recognition of the importance of the more complex orthotopic and metastatic tumour models for understanding both target biology in the correct tissue context, and the impact of the tumour microenvironment and the immune system in responses to treatment. The aim of this review is to highlight the value that orthotopic and metastatic models bring to the study of tumour biology and drug development while pointing out those models that are most likely to be encountered in the literature. Important developments in orthotopic models, such as the increasing use of early passage patient material (PDXs, organoids) and humanised mouse models are discussed, as these approaches have the potential to increase the predictive value of preclinical studies, and ultimately improve the success rate of anticancer drugs in clinical trials.
Collapse
Affiliation(s)
- Stephen M Stribbling
- Department of Chemistry, University College London, Gower Street, London WC1E 6BT, UK.
| | - Callum Beach
- Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Anderson J Ryan
- Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK; Fast Biopharma, Aston Rowant, Oxfordshire, OX49 5SW, UK.
| |
Collapse
|
2
|
van de Worp WR, Theys J, González AS, van der Heyden B, Verhaegen F, Hauser D, Caiment F, Smeets HJ, Schols AM, van Helvoort A, Langen RC. A novel orthotopic mouse model replicates human lung cancer cachexia. J Cachexia Sarcopenia Muscle 2023; 14:1410-1423. [PMID: 37025071 PMCID: PMC10235890 DOI: 10.1002/jcsm.13222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
INTRODUCTION Cancer cachexia, highly prevalent in lung cancer, is a debilitating syndrome characterized by involuntary loss of skeletal muscle mass and is associated with poor clinical outcome, decreased survival and negative impact on tumour therapy. Various lung tumour-bearing animal models have been used to explore underlying mechanisms of cancer cachexia. However, these models do not simulate anatomical and immunological features key to lung cancer and associated muscle wasting. Overcoming these shortcomings is essential to translate experimental findings into the clinic. We therefore evaluated whether a syngeneic, orthotopic lung cancer mouse model replicates systemic and muscle-specific alterations associated with human lung cancer cachexia. METHODS Immune competent, 11 weeks old male 129S2/Sv mice, were randomly allocated to either (1) sham control group or (2) tumour-bearing group. Syngeneic lung epithelium-derived adenocarcinoma cells (K-rasG12D ; p53R172HΔG ) were inoculated intrapulmonary into the left lung lobe of the mice. Body weight and food intake were measured daily. At baseline and weekly after surgery, grip strength was measured and tumour growth and muscle volume were assessed using micro cone beam CT imaging. After reaching predefined surrogate survival endpoint, animals were euthanized, and skeletal muscles of the lower hind limbs were collected for biochemical analysis. RESULTS Two-third of the tumour-bearing mice developed cachexia based on predefined criteria. Final body weight (-13.7 ± 5.7%; P < 0.01), muscle mass (-13.8 ± 8.1%; P < 0.01) and muscle strength (-25.5 ± 10.5%; P < 0.001) were reduced in cachectic mice compared with sham controls and median survival time post-surgery was 33.5 days until humane endpoint. Markers for proteolysis, both ubiquitin proteasome system (Fbxo32 and Trim63) and autophagy-lysosomal pathway (Gabarapl1 and Bnip3), were significantly upregulated, whereas markers for protein synthesis (relative phosphorylation of Akt, S6 and 4E-BP1) were significantly decreased in the skeletal muscle of cachectic mice compared with control. The cachectic mice exhibited increased pentraxin-2 (P < 0.001) and CXCL1/KC (P < 0.01) expression levels in blood plasma and increased mRNA expression of IκBα (P < 0.05) in skeletal muscle, indicative for the presence of systemic inflammation. Strikingly, RNA sequencing, pathway enrichment and miRNA expression analyses of mouse skeletal muscle strongly mirrored alterations observed in muscle biopsies of patients with lung cancer cachexia. CONCLUSIONS We developed an orthotopic model of lung cancer cachexia in immune competent mice. Because this model simulates key aspects specific to cachexia in lung cancer patients, it is highly suitable to further investigate the underlying mechanisms of lung cancer cachexia and to test the efficacy of novel intervention strategies.
Collapse
Affiliation(s)
- Wouter R.P.H. van de Worp
- Department of Respiratory Medicine, NUTRIM – School of Nutrition and Translational Research in MetabolismMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Jan Theys
- Department of Precision Medicine, GROW – School for Oncology and Developmental BiologyMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Alba Sanz González
- Department of Respiratory Medicine, NUTRIM – School of Nutrition and Translational Research in MetabolismMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Brent van der Heyden
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental BiologyMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental BiologyMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Duncan Hauser
- Department of Toxicogenomics, GROW – School for Oncology and Developmental Biology, MHeNs – School for Mental Health and NeurosciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Florian Caiment
- Department of Toxicogenomics, GROW – School for Oncology and Developmental Biology, MHeNs – School for Mental Health and NeurosciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Hubertus J.M. Smeets
- Department of Toxicogenomics, GROW – School for Oncology and Developmental Biology, MHeNs – School for Mental Health and NeurosciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Annemie M.W.J. Schols
- Department of Respiratory Medicine, NUTRIM – School of Nutrition and Translational Research in MetabolismMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Ardy van Helvoort
- Department of Respiratory Medicine, NUTRIM – School of Nutrition and Translational Research in MetabolismMaastricht University Medical Center+MaastrichtThe Netherlands
- Danone Nutricia ResearchUtrechtThe Netherlands
| | - Ramon C.J. Langen
- Department of Respiratory Medicine, NUTRIM – School of Nutrition and Translational Research in MetabolismMaastricht University Medical Center+MaastrichtThe Netherlands
| |
Collapse
|
3
|
Fu F, Wang W, Wu L, Wang W, Huang Z, Huang Y, Wu C, Pan X. Inhalable Biomineralized Liposomes for Cyclic Ca 2+-Burst-Centered Endoplasmic Reticulum Stress Enhanced Lung Cancer Ferroptosis Therapy. ACS NANO 2023; 17:5486-5502. [PMID: 36883602 DOI: 10.1021/acsnano.2c10830] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Lung cancer with the highest mortality poses a great threat to human health. Ferroptosis therapy has recently been raised as a promising strategy for lung cancer treatment by boosting the reactive species (ROS) production and lipid peroxidation (LPO) accumulation intracellularly. However, the insufficient intracellular ROS level and the unsatisfactory drug accumulation in lung cancer lesions hamper the efficacy of ferroptosis therapy. Here, an inhalable biomineralized liposome LDM co-loaded with dihydroartemisinin (DHA) and pH-responsive calcium phosphate (CaP) was constructed as a ferroptosis nanoinducer for achieving Ca2+-burst-centered endoplasmic reticulum (ER) stress enhanced lung cancer ferroptosis therapy. Equipped with excellent nebulization properties, about 6.80-fold higher lung lesions drug accumulation than intravenous injection made the proposed inhalable LDM an ideal nanoplatform for lung cancer treatment. The Fenton-like reaction mediated by DHA with peroxide bridge structure could contribute to intracellular ROS production and induce ferroptosis. Assisted by DHA-mediated sarco-/endoplasmic reticulum calcium ATPase (SERCA) inhibition, the initial Ca2+ burst caused by CaP shell degradation triggered the Ca2+-mediated intense ER stress and subsequently induced mitochondria dysfunction to further boost ROS accumulation, which strengthens ferroptosis. The second Ca2+ burst occurred as a result of Ca2+ influx through ferroptotic pores on cell membranes, thus sequentially constructing the lethal "Ca2+ burst-ER stress-ferroptosis" cycle. Consequently, the Ca2+-burst-centered ER stress enhanced ferroptosis process was confirmed as a cell swelling and cell membrane disruption process driven by notable intracellular ROS and LPO accumulation. The proposed LDM showed an encouraging lung retention property and extraordinary antitumor ability in an orthotropic lung tumor murine model. In conclusion, the constructed ferroptosis nanoinducer could be a potential tailored nanoplatform for nebulization-based pulmonary delivery and underscore the application of Ca2+-burst-centered ER stress enhanced lung cancer ferroptosis therapy.
Collapse
Affiliation(s)
- Fangqin Fu
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China
| | - Linjing Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China
| | - Wenhua Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China
| |
Collapse
|
4
|
Lappas G, Staut N, Lieuwes NG, Biemans R, Wolfs CJ, van Hoof SJ, Dubois LJ, Verhaegen F. Inter-observer variability of organ contouring for preclinical studies with cone beam Computed Tomography imaging. Phys Imaging Radiat Oncol 2022; 21:11-17. [PMID: 35111981 PMCID: PMC8790504 DOI: 10.1016/j.phro.2022.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 12/28/2022] Open
Abstract
Background and purpose In preclinical radiation studies, there is great interest in quantifying the radiation response of healthy tissues. Manual contouring has significant impact on the treatment-planning because of variation introduced by human interpretation. This results in inconsistencies when assessing normal tissue volumes. Evaluation of these discrepancies can provide a better understanding on the limitations of the current preclinical radiation workflow. In the present work, interobserver variability (IOV) in manual contouring of rodent normal tissues on cone-beam Computed Tomography, in head and thorax regions was evaluated. Materials and methods Two animal technicians performed manually (assisted) contouring of normal tissues located within the thorax and head regions of rodents, 20 cases per body site. Mean surface distance (MSD), displacement of center of mass (ΔCoM), DICE similarity coefficient (DSC) and the 95th percentile Hausdorff distance (HD95) were calculated between the contours of the two observers to evaluate the IOV. Results For the thorax organs, right lung had the lowest IOV (ΔCoM: 0.08 ± 0.04 mm, DSC: 0.96 ± 0.01, MSD:0.07 ± 0.01 mm, HD95:0.20 ± 0.03 mm) while spinal cord, the highest IOV (ΔCoM:0.5 ± 0.3 mm, DSC:0.81 ± 0.05, MSD:0.14 ± 0.03 mm, HD95:0.8 ± 0.2 mm). Regarding head organs, right eye demonstrated the lowest IOV (ΔCoM:0.12 ± 0.08 mm, DSC: 0.93 ± 0.02, MSD: 0.15 ± 0.04 mm, HD95: 0.29 ± 0.07 mm) while complete brain, the highest IOV (ΔCoM: 0.2 ± 0.1 mm, DSC: 0.94 ± 0.02, MSD: 0.3 ± 0.1 mm, HD95: 0.5 ± 0.1 mm). Conclusions Our findings reveal small IOV, within the sub-mm range, for thorax and head normal tissues in rodents. The set of contours can serve as a basis for developing an automated delineation method for e.g., treatment planning.
Collapse
Affiliation(s)
- Georgios Lappas
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Nick Staut
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
- The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | | | - Rianne Biemans
- SmART Scientific Solutions BV, Maastricht, the Netherlands
| | - Cecile J.A. Wolfs
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Stefan J. van Hoof
- The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | | | - Frank Verhaegen
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
- The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
- Corresponding author at: Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| |
Collapse
|
5
|
Deep Learning Based Automated Orthotopic Lung Tumor Segmentation in Whole-Body Mouse CT-Scans. Cancers (Basel) 2021; 13:cancers13184585. [PMID: 34572813 PMCID: PMC8471805 DOI: 10.3390/cancers13184585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Lung cancer is the leading cause of cancer related deaths worldwide. The development of orthotopic mouse models of lung cancer, which recapitulates the disease more realistically compared to the widely used subcutaneous tumor models, is expected to critically aid the development of novel therapies to battle lung cancer or related comorbidities such as cachexia. However, follow-up of tumor take, tumor growth and detection of therapeutic effects is difficult, time consuming and requires a vast number of animals in orthotopic models. Here, we describe a solution for the fully automatic segmentation and quantification of orthotopic lung tumor volume and mass in whole-body mouse computed tomography (CT) scans. The goal is to drastically enhance the efficiency of the research process by replacing time-consuming manual procedures with fast, automated ones. A deep learning algorithm was trained on 60 unique manually delineated lung tumors and evaluated by four-fold cross validation. Quantitative performance metrics demonstrated high accuracy and robustness of the deep learning algorithm for automated tumor volume analyses (mean dice similarity coefficient of 0.80), and superior processing time (69 times faster) compared to manual segmentation. Moreover, manual delineations of the tumor volume by three independent annotators was sensitive to bias in human interpretation while the algorithm was less vulnerable to bias. In addition, we showed that besides longitudinal quantification of tumor development, the deep learning algorithm can also be used in parallel with the previously published method for muscle mass quantification and to optimize the experimental design reducing the number of animals needed in preclinical studies. In conclusion, we implemented a method for fast and highly accurate tumor quantification with minimal operator involvement in data analysis. This deep learning algorithm provides a helpful tool for the noninvasive detection and analysis of tumor take, tumor growth and therapeutic effects in mouse orthotopic lung cancer models.
Collapse
|
6
|
Hörner-Rieber J, Klüter S, Debus J, Adema G, Ansems M, Verheij M. MR-Guided Radiotherapy: The Perfect Partner for Immunotherapy? Front Oncol 2021; 10:615697. [PMID: 33604296 PMCID: PMC7884826 DOI: 10.3389/fonc.2020.615697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
During the last years, preclinical and clinical studies have emerged supporting the rationale to integrate radiotherapy and immunotherapy. Radiotherapy may enhance the effects of immunotherapy by improving tumor antigen release, antigen presentation, and T-cell infiltration. Recently, magnetic resonance guided radiotherapy (MRgRT) has become clinically available. Compared to conventional radiotherapy techniques, MRgRT firstly allows for daily on-table treatment adaptation, which enables both dose escalation for increasing tumor response and superior sparing of radiosensitive organs-at-risk for reducing toxicity. The current review focuses on the potential of combining MR-guided adaptive radiotherapy with immunotherapy by providing an overview on the current status of MRgRT, latest developments in preclinical and clinical radio-immunotherapy, and the unique opportunities and challenges for MR-guided radio-immunotherapy. MRgRT might especially assist in answering open questions in radio-immunotherapy regarding optimal radiation dose, fractionation, timing of immunotherapy, appropriate irradiation volumes, and response prediction.
Collapse
Affiliation(s)
- Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Gosse Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marleen Ansems
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marcel Verheij
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
7
|
van de Worp WRPH, Schols AMWJ, Theys J, van Helvoort A, Langen RCJ. Nutritional Interventions in Cancer Cachexia: Evidence and Perspectives From Experimental Models. Front Nutr 2020; 7:601329. [PMID: 33415123 PMCID: PMC7783418 DOI: 10.3389/fnut.2020.601329] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cachexia is a complex metabolic syndrome characterized by involuntary skeletal muscle loss and is associated with poor clinical outcome, decreased survival and negatively influences cancer therapy. No curative treatments are available for cancer cachexia, but nutritional intervention is recommended as a cornerstone of multimodal therapy. Optimal nutritional care is pivotal in the treatment of cancer cachexia, and the effects of nutrients may extend beyond provision of adequate energy uptake, targeting different mechanisms or metabolic pathways that are affected or deregulated by cachexia. The evidence to support this notion derived from nutritional intervention studies in experimental models of cancer cachexia is systematically discussed in this review. Moreover, experimental variables and readout parameters to determine skeletal muscle wasting and cachexia are methodologically evaluated to allow critical comparison of similar studies. Single- and multinutrient intervention studies including qualitative modulation of dietary protein, dietary fat, and supplementation with specific nutrients, such as carnitine and creatine, were reviewed for their efficacy to counteract muscle mass loss and its underlying mechanisms in experimental cancer cachexia. Numerous studies showed favorable effects on impaired protein turnover and related metabolic abnormalities of nutritional supplementation in parallel with a beneficial impact on cancer-induced muscle wasting. The combination of high quality nutrients in a multitargeted, multinutrient approach appears specifically promising, preferentially as a multimodal intervention, although more studies investigating the optimal quantity and combination of nutrients are needed. During the review process, a wide variation in timing, duration, dosing, and route of supplementation, as well as a wide variation in animal models were observed. Better standardization in dietary design, and the development of experimental models that better recapitulate the etiology of human cachexia, will further facilitate successful translation of experimentally-based multinutrient, multimodal interventions into clinical practice.
Collapse
Affiliation(s)
- Wouter R P H van de Worp
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Jan Theys
- Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Ardy van Helvoort
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands.,Danone Nutricia Research, Utrecht, Netherlands
| | - Ramon C J Langen
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| |
Collapse
|
8
|
Spinelli AE, D'Agostino E, Broggi S, Claudio F, Boschi F. Small animal irradiator dose distribution verification using radioluminescence imaging. JOURNAL OF BIOPHOTONICS 2020; 13:e201960217. [PMID: 32163229 DOI: 10.1002/jbio.201960217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/05/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
The main objective of this work was the development of a novel 2D dosimetry approach for small animal external radiotherapy using radioluminescence imaging (RLI) with a commercial complementary metal oxide semiconductor detector. Measurements of RLI were performed on the small animal image-guided platform SmART, RLI data were corrected for perspective distortion using Matlab. Four irradiation fields were tested and the planar 2D dose distributions and dose profiles were compared against dose calculations performed with a Monte Carlo based treatment planning system and gafchromic film. System linearity and RLI image noise against dose were also measured. The maximum difference between beam size measured with RLI and nominal beam size was less than 8% for all the tested beams. The image correction procedure was able to reduce perspective distortion. A novel RLI approach for quality assurance of a small animal irradiator was presented and tested. Results are in agreement with MC dose calculations and gafchromic film measurements.
Collapse
Affiliation(s)
| | | | - Sara Broggi
- Medical Physics Department, San Raffaele Scientific Institute, Italy
| | - Fiorino Claudio
- Medical Physics Department, San Raffaele Scientific Institute, Italy
| | | |
Collapse
|
9
|
Use of a Luciferase-Expressing Orthotopic Rat Brain Tumor Model to Optimize a Targeted Irradiation Strategy for Efficacy Testing with Temozolomide. Cancers (Basel) 2020; 12:cancers12061585. [PMID: 32549357 PMCID: PMC7352586 DOI: 10.3390/cancers12061585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/29/2020] [Accepted: 06/11/2020] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a common and aggressive malignant brain cancer with a mean survival time of approximately 15 months after initial diagnosis. Currently, the standard-of-care (SOC) treatment for this disease consists of radiotherapy (RT) with concomitant and adjuvant temozolomide (TMZ). We sought to develop an orthotopic preclinical model of GBM and to optimize a protocol for non-invasive monitoring of tumor growth, allowing for determination of the efficacy of SOC therapy using a targeted RT strategy combined with TMZ. A strong correlation (r = 0.80) was observed between contrast-enhanced (CE)-CT-based volume quantification and bioluminescent (BLI)-integrated image intensity when monitoring tumor growth, allowing for BLI imaging as a substitute for CE-CT. An optimized parallel-opposed single-angle RT beam plan delivered on average 96% of the expected RT dose (20, 30 or 60 Gy) to the tumor. Normal tissue on the ipsilateral and contralateral sides of the brain were spared 84% and 99% of the expected dose, respectively. An increase in median survival time was demonstrated for all SOC regimens compared to untreated controls (average 5.2 days, p < 0.05), but treatment was not curative, suggesting the need for novel treatment options to increase therapeutic efficacy.
Collapse
|
10
|
Deng Z, Xu X, Garzon-Muvdi T, Xia Y, Kim E, Belcaid Z, Luksik A, Maxwell R, Choi J, Wang H, Yu J, Iordachita I, Lim M, Wong JW, Wang KKH. In Vivo Bioluminescence Tomography Center of Mass-Guided Conformal Irradiation. Int J Radiat Oncol Biol Phys 2019; 106:612-620. [PMID: 31738948 DOI: 10.1016/j.ijrobp.2019.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/24/2019] [Accepted: 11/03/2019] [Indexed: 01/21/2023]
Abstract
PURPOSE The cone-beam computed tomography (CBCT)-guided small animal radiation research platform (SARRP) has provided unique opportunities to test radiobiologic hypotheses. However, CBCT is less adept to localize soft tissue targets growing in a low imaging contrast environment. Three-dimensional bioluminescence tomography (BLT) provides strong image contrast and thus offers an attractive solution. We introduced a novel and efficient BLT-guided conformal radiation therapy and demonstrated it in an orthotopic glioblastoma (GBM) model. METHODS AND MATERIALS A multispectral BLT system was integrated with SARRP for radiation therapy (RT) guidance. GBM growth curve was first established by contrast CBCT/magnetic resonance imaging (MRI) to derive equivalent sphere as approximated gross target volume (aGTV). For BLT, mice were subject to multispectral bioluminescence imaging, followed by SARRP CBCT imaging and optical reconstruction. The CBCT image was acquired to generate anatomic mesh for the reconstruction and RT planning. To ensure high accuracy of the BLT-reconstructed center of mass (CoM) for target localization, we optimized the optical absorption coefficients μa by minimizing the distance between the CoMs of BLT reconstruction and contrast CBCT/MRI-delineated GBM volume. The aGTV combined with the uncertainties of BLT CoM localization and target volume determination was used to generate estimated target volume (ETV). For conformal irradiation procedure, the GBM was first localized by the predetermined ETV centered at BLT-reconstructed CoM, followed by SARRP radiation. The irradiation accuracy was qualitatively confirmed by pathologic staining. RESULTS Deviation between CoMs of BLT reconstruction and contrast CBCT/MRI-imaged GBM is approximately 1 mm. Our derived ETV centered at BLT-reconstructed CoM covers >95% of the tumor volume. Using the second-week GBM as an example, the ETV-based BLT-guided irradiation can cover 95.4% ± 4.7% tumor volume at prescribed dose. The pathologic staining demonstrated the BLT-guided irradiated area overlapped well with the GBM location. CONCLUSIONS The BLT-guided RT enables 3-dimensional conformal radiation for important orthotopic tumor models, which provides investigators a new preclinical research capability.
Collapse
Affiliation(s)
- Zijian Deng
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xiangkun Xu
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tomas Garzon-Muvdi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yuanxuan Xia
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eileen Kim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zineb Belcaid
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew Luksik
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Russell Maxwell
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John Choi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hailun Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jingjing Yu
- School of Physics and Information Technology, Shaanxi Normal University, Shanxi, China
| | - Iulian Iordachita
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John W Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ken Kang-Hsin Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
11
|
Giuranno L, Ient J, De Ruysscher D, Vooijs MA. Radiation-Induced Lung Injury (RILI). Front Oncol 2019; 9:877. [PMID: 31555602 PMCID: PMC6743286 DOI: 10.3389/fonc.2019.00877] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Radiation pneumonitis (RP) and radiation fibrosis (RF) are two dose-limiting toxicities of radiotherapy (RT), especially for lung, and esophageal cancer. It occurs in 5-20% of patients and limits the maximum dose that can be delivered, reducing tumor control probability (TCP) and may lead to dyspnea, lung fibrosis, and impaired quality of life. Both physical and biological factors determine the normal tissue complication probability (NTCP) by Radiotherapy. A better understanding of the pathophysiological sequence of radiation-induced lung injury (RILI) and the intrinsic, environmental and treatment-related factors may aid in the prevention, and better management of radiation-induced lung damage. In this review, we summarize our current understanding of the pathological and molecular consequences of lung exposure to ionizing radiation, and pharmaceutical interventions that may be beneficial in the prevention or curtailment of RILI, and therefore enable a more durable therapeutic tumor response.
Collapse
Affiliation(s)
- Lorena Giuranno
- Department of Radiotherapy, GROW School for Oncology Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jonathan Ient
- Department of Radiotherapy, GROW School for Oncology Maastricht University Medical Centre, Maastricht, Netherlands
| | - Dirk De Ruysscher
- Department of Radiotherapy, GROW School for Oncology Maastricht University Medical Centre, Maastricht, Netherlands
| | - Marc A Vooijs
- Department of Radiotherapy, GROW School for Oncology Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
12
|
Verhaegen F, Vaz P, Prise KM. Small animal image-guided radiotherapy. Br J Radiol 2019. [DOI: 10.1259/bjr.20199002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Frank Verhaegen
- Department of Radiation Oncology (MAASTRO), GROW—School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Pedro Vaz
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - Kevin M Prise
- Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, United Kingdom
| |
Collapse
|
13
|
Ghita M, Dunne V, Hanna GG, Prise KM, Williams JP, Butterworth KT. Preclinical models of radiation-induced lung damage: challenges and opportunities for small animal radiotherapy. Br J Radiol 2019; 92:20180473. [PMID: 30653332 DOI: 10.1259/bjr.20180473] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Despite a major paradigm shift in radiotherapy planning and delivery over the past three decades with continuing refinements, radiation-induced lung damage (RILD) remains a major dose limiting toxicity in patients receiving thoracic irradiations. Our current understanding of the biological processes involved in RILD which includes DNA damage, inflammation, senescence and fibrosis, is based on clinical observations and experimental studies in mouse models using conventional radiation exposures. Whilst these studies have provided vital information on the pulmonary radiation response, the current implementation of small animal irradiators is enabling refinements in the precision and accuracy of dose delivery to mice which can be applied to studies of RILD. This review presents the current landscape of preclinical studies in RILD using small animal irradiators and highlights the challenges and opportunities for the further development of this emerging technology in the study of normal tissue damage in the lung.
Collapse
Affiliation(s)
- Mihaela Ghita
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , Northern Ireland, UK
| | - Victoria Dunne
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , Northern Ireland, UK
| | - Gerard G Hanna
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , Northern Ireland, UK.,2 Northern Ireland Cancer Centre, Belfast City Hospital , Belfast , Northern Ireland, UK
| | - Kevin M Prise
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , Northern Ireland, UK
| | - Jaqueline P Williams
- 3 University of Rochester Medical Centre, University of Rochester , Rochester , USA
| | - Karl T Butterworth
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , Northern Ireland, UK
| |
Collapse
|
14
|
Integrating Small Animal Irradiators withFunctional Imaging for Advanced Preclinical Radiotherapy Research. Cancers (Basel) 2019; 11:cancers11020170. [PMID: 30717307 PMCID: PMC6406472 DOI: 10.3390/cancers11020170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022] Open
Abstract
Translational research aims to provide direct support for advancing novel treatment approaches in oncology towards improving patient outcomes. Preclinical studies have a central role in this process and the ability to accurately model biological and physical aspects of the clinical scenario in radiation oncology is critical to translational success. The use of small animal irradiators with disease relevant mouse models and advanced in vivo imaging approaches offers unique possibilities to interrogate the radiotherapy response of tumors and normal tissues with high potential to translate to improvements in clinical outcomes. The present review highlights the current technology and applications of small animal irradiators, and explores how these can be combined with molecular and functional imaging in advanced preclinical radiotherapy research.
Collapse
|