1
|
Wan C, He W, Littin S, Lange T, Zaitsev M, Xu Z. Preliminary Exploration of T 1ρ and T 2 Mapping in Porcine Articular Cartilage Using Very-Low-Field Magnetic Resonance Imaging. IEEE Trans Biomed Eng 2024; 71:3302-3311. [PMID: 38935473 DOI: 10.1109/tbme.2024.3420174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
OBJECTIVE The high prevalence of osteoarthritis emphasizes the need for a cost-effective and accessible method for its early diagnosis. Recently, the portability and affordability of very-low-field (VLF) magnetic resonance imaging (MRI, 10-100 mT) have caused it to gain popularity. Nevertheless, there is insufficient evidence to quantify early degenerative changes in cartilage using VLF MRI. This study assessed the potential of T1ρ and T2 mapping for detecting degenerative changes in porcine cartilage specimens using a 50 mT MRI scanner. METHODS T2- and T1ρ-weighted images were acquired using a 50 mT MRI scanner with 2D spin-echo and triple-refocused T1ρ preparation sequences. MRI scans of porcine cartilage were also acquired using a 3 T MRI scanner for comparison. A mono-exponential algorithm was applied to fit a series of T2- and T1ρ-weighted images. T2 values for CuSO4·5H2O solutions measured via Carr-Purcell-Meiboom-Gill (CPMG) and spin-echo sequences were compared to verify the algorithm's reliability. The nonparametric Kruskal-Wallis statistical test was used to compare T2 and T1ρ values. Experimental repeatability was assessed using the root-mean-square of the coefficient of variation (rmsCV). RESULTS T2 values of the CuSO4·5H2O solutions obtained using the spin-echo sequence showed differences within 2.3% of those obtained using the CPMG sequence, indicating the algorithm's reliability. The T1ρ values for varying concentrations of agarose gel solutions were higher than the T2 values. Furthermore, 50 mT and 3 T MRI results showed that both the T1ρ and T2 values were significantly higher for porcine cartilage degraded for 6 h vs intact cartilage, with p-values of 0.006 and 0.01, respectively. Our experimental results showed good reproducibility (rmsCV < 8%). CONCLUSION We demonstrated the feasibility of quantitative cartilage imaging via T2 and T1ρ mapping at 50 mT MRI for the first time.
Collapse
|
2
|
Kim KC, Wakeman B, Wissman R. Functional Imaging of the Knee-A Comprehensive Review. J Knee Surg 2023. [PMID: 37992754 DOI: 10.1055/a-2216-5186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Knee pain is a common presenting problem in the general population. Radiographs and magnetic resonance imaging (MRI) are the cornerstones of imaging in current clinical practice. With advancements in technology, there has been increasing utilization of other modalities to evaluate knee disorders. Dynamic assessment utilizing computed tomography and portable ultrasounds have demonstrated the capacity to accurately assess and reproducibly quantify kinematics of knee disorders. Cartilage physiology can be evaluated with MRI. Emerging research has even demonstrated novel musculoskeletal applications of positron emission tomography to evaluate anterior cruciate ligament graft metabolic activity following reconstruction. As technology continues to evolve and traditional ways are improved upon, future comparative studies will elucidate the distinct advantages of the various modalities. Although radiology is still primarily an anatomic specialty, there is immense potential for functional imaging to be the standard of care. This review focuses on the most common musculoskeletal applications of functional imaging as well as future utilization.
Collapse
Affiliation(s)
- Kenneth C Kim
- Department of Radiology, University of Missouri Health Care, Columbia, Missouri
| | - Brooke Wakeman
- Department of Radiology, University of Missouri Health Care, Columbia, Missouri
| | - Rob Wissman
- Musculoskeletal Imaging Division, Department of Radiology, Faculty of Clinical Radiology, University of Missouri System, Columbia, Missouri
| |
Collapse
|
3
|
Coburn SL, Crossley KM, Kemp JL, Warden SJ, West TJ, Bruder AM, Mentiplay BF, Culvenor AG. Immediate and Delayed Effects of Joint Loading Activities on Knee and Hip Cartilage: A Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2023; 9:56. [PMID: 37450202 PMCID: PMC10348990 DOI: 10.1186/s40798-023-00602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND The impact of activity-related joint loading on cartilage is not clear. Abnormal loading is considered to be a mechanical driver of osteoarthritis (OA), yet moderate amounts of physical activity and rehabilitation exercise can have positive effects on articular cartilage. Our aim was to investigate the immediate effects of joint loading activities on knee and hip cartilage in healthy adults, as assessed using magnetic resonance imaging. We also investigated delayed effects of activities on healthy cartilage and the effects of activities on cartilage in adults with, or at risk of, OA. We explored the association of sex, age and loading duration with cartilage changes. METHODS A systematic review of six databases identified studies assessing change in adult hip and knee cartilage using MRI within 48 h before and after application of a joint loading intervention/activity. Studies included adults with healthy cartilage or those with, or at risk of, OA. Joint loading activities included walking, hopping, cycling, weightbearing knee bends and simulated standing within the scanner. Risk of bias was assessed using the Newcastle-Ottawa Scale. Random-effects meta-analysis estimated the percentage change in compartment-specific cartilage thickness or volume and composition (T2 relaxation time) outcomes. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system evaluated certainty of evidence. RESULTS Forty studies of 653 participants were included after screening 5159 retrieved studies. Knee cartilage thickness or volume decreased immediately following all loading activities investigating healthy adults; however, GRADE assessment indicated very low certainty evidence. Patellar cartilage thickness and volume reduced 5.0% (95% CI 3.5, 6.4, I2 = 89.3%) after body weight knee bends, and tibial cartilage composition (T2 relaxation time) decreased 5.1% (95% CI 3.7, 6.5, I2 = 0.0%) after simulated standing within the scanner. Hip cartilage data were insufficient for pooling. Secondary outcomes synthesised narratively suggest knee cartilage recovers within 30 min of walking and 90 min of 100 knee bends. We found contrasting effects of simulated standing and walking in adults with, or at risk of, OA. An increase of 10 knee bend repetitions was associated with 2% greater reduction in patellar thickness or volume. CONCLUSION There is very low certainty evidence that minimal knee cartilage thickness and volume and composition (T2 relaxation time) reductions (0-5%) occur after weightbearing knee bends, simulated standing, walking, hopping/jumping and cycling, and the impact of knee bends may be dose dependent. Our findings provide a framework of cartilage responses to loading in healthy adults which may have utility for clinicians when designing and prescribing rehabilitation programs and providing exercise advice.
Collapse
Affiliation(s)
- Sally L. Coburn
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| | - Kay M. Crossley
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| | - Joanne L. Kemp
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| | - Stuart J. Warden
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
- Department of Physical Therapy, School of Health & Human Sciences, Indiana University, Indianapolis, IN USA
| | - Tom J. West
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| | - Andrea M. Bruder
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| | - Benjamin F. Mentiplay
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| | - Adam G. Culvenor
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| |
Collapse
|
4
|
Liu S, Zhang C, Zhou Y, Zhang F, Duan X, Liu Y, Zhao X, Liu J, Shuai X, Wang J, Cao Z. MRI-visible mesoporous polydopamine nanoparticles with enhanced antioxidant capacity for osteoarthritis therapy. Biomaterials 2023; 295:122030. [PMID: 36758340 DOI: 10.1016/j.biomaterials.2023.122030] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
Since the progression of osteoarthritis (OA) is closely associated with synovitis and cartilage destruction, the inhibition of inflammatory responses in synovial macrophages and reactive oxygen species (ROS) induced apoptosis in chondrocytes is crucial for OA amelioration. However, most of the current anti-inflammatory and antioxidant drugs are small molecules apt to be eliminated in vivo. Herein, mesoporous polydopamine nanoparticles (DAMM NPs) doped with arginine and manganese (Mn) ions were prepared to load dexamethasone (DEX) for OA intervention. A series of in vitro studies showed that the sustained release of DEX from DAMM NPs suppressed synovial inflammation and simultaneously inhibited toll-like receptor 3 (TLR-3) production in chondrocytes, contributing to prevention of chondrocyte apoptosis through the inflammatory factor-dependent TLR-3/NF-κB signaling pathway via modulation of macrophage-chondrocyte crosstalk. In addition, DAMM NPs exerted a predominant role in removal of ROS generated in chondrocytes. Therefore, the DEX-loaded DAMM NPs significantly attenuated OA development in mice model. Importantly, the T1-T2 magnetic contrast capabilities of DAMM NPs allowed an MRI-trackable delivery, manifesting a distinct feature widely regarded to boost the potential of nanomedicines for clinical applications. Together, our developed antioxidant-enhanced DAMM NPs with MRI-visible signals may serve as a novel multifunctional nanocarriers for prevention of OA progression.
Collapse
Affiliation(s)
- Sitong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Chen Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yuanyuan Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Fang Zhang
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Xiaohui Duan
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Yang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xibang Zhao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jiali Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Zhong Cao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
5
|
Martín-Noguerol T, Casado-Verdugo OL, Beltrán LS, Aguilar G, Luna A. Role of advanced MRI techniques for sacroiliitis assessment and quantification. Eur J Radiol 2023; 163:110793. [PMID: 37018900 DOI: 10.1016/j.ejrad.2023.110793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023]
Abstract
The introduction of MRI was supposed to be a qualitative leap for the evaluation of Sacroiliac Joint (SIJ) in patients with Axial Spondyloarthropathies (AS). In fact, MRI findings such as bone marrow edema around the SIJ has been incorporated into the Assessment in SpondyloArthritis International Society (ASAS criteria). However, in the era of functional imaging, a qualitative approach to SIJ by means of conventional MRI seems insufficient. Advanced MRI sequences, which have successfully been applied in other anatomical areas, are demonstrating their potential utility for a more precise assessment of SIJ. Dixon sequences, T2-mapping, Diffusion Weighted Imaging or DCE-MRI can be properly acquired in the SIJ with promising and robust results. The main advantage of these sequences resides in their capability to provide quantifiable parameters that can be used for diagnosis of AS, surveillance or treatment follow-up. Further studies are needed to determine if these parameters can also be integrated into ASAS criteria for reaching a more precise classification of AS based not only on visual assessment of SIJ but also on measurable data.
Collapse
Affiliation(s)
| | - Oscar L Casado-Verdugo
- Osatek Alta Tecnología Sanitaria S.A., Department of Magnetic Resonance Imaging, Hospital Galdakao-Usansolo, Galdakao, Spain
| | - Luis S Beltrán
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Antonio Luna
- MRI Unit, Radiology Department, HT Medica, Jaén, Spain
| |
Collapse
|
6
|
Cao G, Gao S, Xiong B. Application of quantitative T1, T2 and T2* mapping magnetic resonance imaging in cartilage degeneration of the shoulder joint. Sci Rep 2023; 13:4558. [PMID: 36941288 PMCID: PMC10027866 DOI: 10.1038/s41598-023-31644-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
To investigate and compare the values of 3.0 T MRI T1, T2 and T2* mapping quantification techniques in evaluating cartilage degeneration of the shoulder joint. This study included 123 shoulder joints of 119 patients, which were scanned in 3.0 T MRI with axial Fat Suppression Proton Density Weighted Image (FS-PDWI), sagittal fat suppression T2 Weighted Image (FS-T2WI), coronal T1Weighted Image (T1WI), FS-PDWI, cartilage-specific T1, T2 and T2* mapping sequences. Basing on MRI images, the shoulder cartilage was classified into grades 0 1, 2, 3 and 4 according to the International Cartilage Regeneration & Joint Preservation Society (ICRS). The grading of shoulder cartilage was based on MRI images with ICRS as reference, and did not involve arthroscopy or histology.The T1, T2 and T2* relaxation values in the superior, middle and inferior bands of shoulder articular cartilage were measured at all grades, and the differences in various indicators between groups were analyzed and compared using a single-factor ANOVA test. The correlation between T1, T2 and T2* relaxation values and MRI-based grading was analyzed by SPSS software. There were 46 shoulder joints with MRI-based grade 0 in healthy control group (n = 46), while 49 and 28 shoulder joints with grade 1-2 (mild degeneration subgroup) and grade 3-4 (severe degeneration subgroup) in patient group (n = 73), accounting for 63.6% and 36.4%, respectively. The T1, T2 and T2* relaxation values of the superior, middle and inferior bands of shoulder articular cartilage were significantly and positively correlated with the MRI-based grading (P < 0.01). MRI-basedgrading of shoulder cartilage was markedly associated with age (r = 0.766, P < 0.01). With the aggravation of cartilage degeneration, T1, T2 and T2* relaxation values showed an upward trend (all P < 0.01), and T1, T2 and T2* mapping could distinguish cartilage degeneration at all levels (all P < 0.01). The T1, T2 and T2* relaxation values were significantly different between normal group and mild degeneration subgroup, normal group and severe degeneration subgroup, mild degeneration subgroup and severe degeneration subgroup (all P < 0.05). Quantitative T1, T2 and T2* mapping can quantify the degree of shoulder cartilage degeneration. All these MRI mapping quantification techniques can be used as critical supplementary sequences to assess shoulder cartilage degeneration, among which T2 mapping has the highest value.
Collapse
Affiliation(s)
- Guijuan Cao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, 430022, Wuhan, Hubei, China
- Department of Radiology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shubo Gao
- Department of Radiology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Xiong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, 430022, Wuhan, Hubei, China.
- Department of Interventional Radiology, The First Affiliated Hospital of Guangzhou Medical University, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Xia W, Zhang Y, Liu C, Guo Y, He Y, Shao J, Ran J. Quantitative T2 mapping magnetic resonance imaging of articular cartilage in patients with juvenile idiopathic arthritis. Eur J Radiol 2023; 160:110690. [PMID: 36680908 DOI: 10.1016/j.ejrad.2023.110690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/14/2023]
Abstract
PURPOSE We aimed to analyze the microstructure changes of knee cartilage in Juvenile idiopathic arthritis (JIA) patients with active synovitis using quantitative magnetic resonance imaging (MRI) T2 mapping technique. MATERIALS AND METHODS This study included 23 JIA patients, who underwent bilateral knee joints by using a MR imaging protocol with the addition of a coronal T2 mapping. The femorotibial joint cartilage of participants was divided into eight subregions. Twenty-four (52.17%) of 46 joints (non-synovitis group), and twenty-two (47.83%) joint cases (active-synovitis group) were respectively calculated the T2 mean values for each subregion. Student's T test or Mann-Whitney U test was used to determine the statistical differences of each subregion in the non-synovitis and active-synovitis groups, which is also applied to define the distribution differences of cartilage subregion in femoral and tibial. RESULTS The T2 mean values of the superficial and deep zone of cartilage for active synovitis group were respectively higher than those for non-synovitis group (P < 0.05), except for the deep zone of cartilage in lateral tibial plateau (LTP) (P > 0.05). The mean T2 values of the deep zone in femoral cartilage for active synovitis group were significantly higher than that of tibial (P < 0.05). CONCLUSION The finding of an increased average T2 values in active synovitis for JIA patients, especially in the deep cartilage of femoral condyle, which suggests that T2 values may reflect cartilage microstructure differences that occur in JIA. T2 mapping as an objective and quantitative method may allow for early detection of cartilage changes.
Collapse
Affiliation(s)
- Wei Xia
- Department of Radiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yao Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Chanyuan Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Yu Guo
- Department of Radiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yonglong He
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China.
| | - Jianbo Shao
- Department of Radiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jun Ran
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
8
|
Coburn SL, Crossley KM, Kemp JL, Warden SJ, West TJ, Bruder AM, Mentiplay BF, Culvenor AG. Is running good or bad for your knees? A systematic review and meta-analysis of cartilage morphology and composition changes in the tibiofemoral and patellofemoral joints. Osteoarthritis Cartilage 2023; 31:144-157. [PMID: 36402349 DOI: 10.1016/j.joca.2022.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND The general health benefits of running are well-established, yet concern exists regarding the development and progression of osteoarthritis. AIM To systematically review the immediate (within 20 min) and delayed (20 min-48 h) effect of running on hip and knee cartilage, as assessed using magnetic resonance imaging (MRI). METHOD Studies using MRI to measure change in hip or knee cartilage within 48 h pre- and post-running were identified. Risk of bias was assessed using a modified Newcastle-Ottawa Scale. Percentage change in cartilage outcomes were estimated using random-effects meta-analysis. Certainty of evidence was evaluated with the Grading of Recommendations Assessment, Development and Evaluation tool. RESULTS Twenty-four studies were included, evaluating 446 knees only. One third of studies were low risk of bias. Knee cartilage thickness and volume decreased immediately after running, with declines ranging from 3.3% (95% confidence interval [CI]: 2.6%, 4.1%) for weight-bearing femoral cartilage volume to 4.9% (95% CI: 4.43.6%, 6.2%) for patellar cartilage volume. T1ρ and T2 relaxation times were also reduced immediately after running, with the largest decline being 13.1% (95% CI: -14.4%, -11.7%) in femoral trochlear cartilage. Tibiofemoral cartilage T2 relaxation times recovered to baseline levels within 91 min. Existing cartilage defects were unchanged within 48 h post-run. CONCLUSIONS There is very low certainty evidence that running immediately decreases the thickness, volume, and relaxation times of patellofemoral and tibiofemoral cartilage. Hip cartilage changes are unknown, but knee changes are small and appear transient suggesting that a single bout of running is not detrimental to knee cartilage.
Collapse
Affiliation(s)
- S L Coburn
- La Trobe Sport & Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia.
| | - K M Crossley
- La Trobe Sport & Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia.
| | - J L Kemp
- La Trobe Sport & Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia.
| | - S J Warden
- La Trobe Sport & Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia; Department of Physical Therapy, School of Health & Human Sciences, Indiana University, Indianapolis, IN, USA.
| | - T J West
- La Trobe Sport & Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia.
| | - A M Bruder
- La Trobe Sport & Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia.
| | - B F Mentiplay
- La Trobe Sport & Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia.
| | - A G Culvenor
- La Trobe Sport & Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
Novel Magnetic Resonance Imaging Tools for the Diagnosis of Degenerative Disc Disease: A Narrative Review. Diagnostics (Basel) 2022; 12:diagnostics12020420. [PMID: 35204509 PMCID: PMC8870820 DOI: 10.3390/diagnostics12020420] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 01/27/2023] Open
Abstract
Low back pain (LBP) is one of the leading causes of disability worldwide, with a significant socioeconomic burden on healthcare systems. It is mainly caused by degenerative disc disease (DDD), a progressive, chronic, and age-related process. With its capacity to accurately characterize intervertebral disc (IVD) and spinal morphology, magnetic resonance imaging (MRI) has been established as one of the most valuable tools in diagnosing DDD. However, existing technology cannot detect subtle changes in IVD tissue composition and cell metabolism. In this review, we summarized the state of the art regarding innovative quantitative MRI modalities that have shown the capacity to discriminate and quantify changes in matrix composition and integrity, as well as biomechanical changes in the early stages of DDD. Validation and implementation of this new technology in the clinical setting will allow for an early diagnosis of DDD and ideally guide conservative and regenerative treatments that may prevent the progression of the degenerative process rather than intervene at the latest stages of the disease.
Collapse
|
10
|
Chen E, Hou W, Wang H, Li J, Lin Y, Liu H, Du M, Li L, Wang X, Yang J, Yang R, Zhou C, Chen P, Zeng M, Yao Q, Chen W. Quantitative MRI evaluation of articular cartilage in patients with meniscus tear. Front Endocrinol (Lausanne) 2022; 13:911893. [PMID: 35966082 PMCID: PMC9372396 DOI: 10.3389/fendo.2022.911893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The aim of this study was to assess quantitatively articular cartilage volume, thickness, and T2 value alterations in meniscus tear patients. MATERIALS AND METHODS The study included 32 patients with meniscus tears (17 females, 15 males; mean age: 40.16 ± 11.85 years) and 24 healthy controls (12 females; 12 males; mean age: 36 ± 9.14 years). All subjects were examined by 3 T magnetic resonance imaging (MRI) with 3D dual-echo steady-state (DESS) and T2 mapping images. All patients underwent diagnostic arthroscopy and treatment. Cartilage thickness, cartilage volume and T2 values of 21 subregions of knee cartilage were measured using the prototype KneeCaP software (version 2.1; Siemens Healthcare, Erlangen, Germany). Mann-Whitney-U tests were utilized to determine if there were any significant differences among subregional articular cartilage volume, thickness and T2 value between patients with meniscus tear and the control group. RESULTS The articular cartilage T2 values in all subregions of the femur and tibia in the meniscus tear group were significantly higher (p< 0.05) than in the healthy control group. The cartilage thickness of the femoral condyle medial, femur trochlea, femur condyle lateral central, tibia plateau medial anterior and patella facet medial inferior in the meniscus tear group were slightly higher than in the control group (p< 0.05). In the femur trochlea medial, patella facet medial inferior, tibia plateau lateral posterior and tibia plateau lateral central, there were significant differences in relative cartilage volume percentage between the meniscus tear group and the healthy control group (p< 0.05). Nineteen patients had no cartilage abnormalities (Grade 0) in the meniscus tear group, as confirmed by arthroscopic surgery, and their T2 values in most subregions were significantly higher (p< 0.05) than those of the healthy control group. CONCLUSION The difference in articular cartilage indexes between patients with meniscus tears and healthy people without such tears can be detected by using quantitative MRI. Quantitative T2 values enable early and sensitive detection of early cartilage lesions.
Collapse
Affiliation(s)
- Enqi Chen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenjing Hou
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hu Wang
- Department of Radiology, Sichuan Science City Hospital, Mianyang, China
| | - Jing Li
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yangjing Lin
- Centre of Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - He Liu
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mingshan Du
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lian Li
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xianqi Wang
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Yang
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Rui Yang
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Changru Zhou
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Pinzhen Chen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Meng Zeng
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qiandong Yao
- Department of Radiology, Sichuan Science City Hospital, Mianyang, China
- *Correspondence: Wei Chen, ; Qiandong Yao,
| | - Wei Chen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Wei Chen, ; Qiandong Yao,
| |
Collapse
|
11
|
Rizzo G, Cristoforetti A, Marinetti A, Rigoni M, Puddu L, Cortese F, Nollo G, Della Sala SW, Tessarolo F. Quantitative MRI T2 Mapping Is Able to Assess Tissue Quality After Reparative and Regenerative Treatments of Osteochondral Lesions of the Talus. J Magn Reson Imaging 2021; 54:1572-1582. [PMID: 34047400 PMCID: PMC8596766 DOI: 10.1002/jmri.27754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Quantitative MRI has potential for tissue characterization after reparative and regenerative surgical treatment of osteochondral lesions of the talus (OCLTs). However available data is inconclusive and quantitative sequences can be difficult to implement in real-time clinical application. PURPOSE To assess the potential of T2 mapping in discriminating articular tissue characteristics after reparative and regenerative surgery of OCLTs in real-world clinical settings. STUDY TYPE Observational and prospective cohort study. POPULATION 15 OCLT patients who had received either reparative treatment with arthroscopic microfracture surgery (MFS) for a grade I lesion or regenerative treatment with bone marrow derived cell transplantation (BMDCT) for a grade II lesion. FIELD STRENGTH/SEQUENCE 1.5 T, proton density weighted TSE, T2-weighted true fast imaging with steady-state-free precession and multi-echo T2 mapping sequences. ASSESSMENT Patients were evaluated at a minimum postoperative follow-up of 24 months. T2 maps of the ankle were generated and the distribution of T2 values was analyzed in manually identified volumes of interest (VOIs) for both treated lesions (TX) and healthy cartilage (CTRL). The amount of fibrocartilage, hyaline-like and remodeling tissue in TX VOIs was obtained, based on T2 thresholds from CTRL VOIs. STATISTICAL TESTS Fisher's exact test for categorical data, nonparametric Mann-Whitney U test for continuous data. The statistical significance level was P < 0.05. RESULTS From CTRL VOI analysis, T2 < 25 msec, 25 msec ≤ T2 ≤ 45 msec, and T2 > 45 msec were considered as representative for fibrocartilage, hyaline-like and remodeling tissue, respectively. Tissue composition of the two treatment groups was different, with significantly more fibrocartilage (+28%) and less hyaline-like tissue (-15%) in MFS than in BMDCT treated lesions. No difference in healthy tissue composition was found between the two groups (P = 0.75). DATA CONCLUSIONS T2 mapping of surgically treated OCLTs can provide quantitative information about the type and amount of newly formed tissue at the lesion site, thereby facilitating surgical follow-up in a real-word clinical setting. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Giulio Rizzo
- Division of Diagnostic Radiology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Alessandro Cristoforetti
- Department of Industrial Engineering, University of Trento, Trento, Italy.,Healthcare Research and Innovation Program (IRCS-FBK-PAT), Bruno Kessler Foundation, Trento, Italy
| | - Alessandro Marinetti
- Division of Diagnostic Radiology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Marta Rigoni
- Department of Industrial Engineering, University of Trento, Trento, Italy.,Healthcare Research and Innovation Program (IRCS-FBK-PAT), Bruno Kessler Foundation, Trento, Italy
| | - Leonardo Puddu
- Division of Orthopaedics and Traumatology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Fabrizio Cortese
- Division of Orthopaedics and Traumatology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Giandomenico Nollo
- Department of Industrial Engineering, University of Trento, Trento, Italy.,Healthcare Research and Innovation Program (IRCS-FBK-PAT), Bruno Kessler Foundation, Trento, Italy
| | - Sabino W Della Sala
- Division of Diagnostic Radiology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Francesco Tessarolo
- Department of Industrial Engineering, University of Trento, Trento, Italy.,Healthcare Research and Innovation Program (IRCS-FBK-PAT), Bruno Kessler Foundation, Trento, Italy
| |
Collapse
|
12
|
Li S, Zhang Z, Liu J, Zhang F, Yang M, Lu H, Zhang Y, Han F, Cheng J, Zhu J. The feasibility of a radial turbo-spin-echo T2 mapping for preoperative prediction of the histological grade and lymphovascular space invasion of cervical squamous cell carcinoma. Eur J Radiol 2021; 139:109684. [PMID: 33836336 DOI: 10.1016/j.ejrad.2021.109684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/05/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE The study aimed to analyze the feasibility of a radial turbo-spin-echo (TSE) T2 mapping to differentiate the histological grades and lymphovascular space invasion (LVSI) of cervical squamous cell carcinoma (CSCC) in comparison with diffusion-weighted imaging (DWI). METHODS A total of 58 patients with CSCC and 40 healthy volunteers underwent T2 mapping and DWI before therapy. The T2 and apparent diffusion coefficient (ADC) values were calculated using different tumor characteristics. The differences, efficacies and correlations between parameters were determined. RESULTS The T2 and ADC values were significantly different between CSCC and normal cervical stroma (both p < 0.05). Poorly differentiated (G3) tumor showed lower T2 and ADC values than well differentiated (G1) and moderately differentiated (G2) tumor (all p < 0.05). The T2 values were significantly lower in LVSI-positive CSCC than LVSI-negative CSCC (p < 0.05). No significant difference was found in ADC values for LVSI status (p = 0.561). The area under the ROC (AUC) for T2 and ADC values to distinguish G1/G2 and G3 tumor were 0.741 and 0.763, respectively. The AUC for T2 and ADC values to distinguish LVSI-positive and LVSI-negative CSCC were 0.877 and 0.537, respectively. The T2 and ADC values were negatively correlated with the tumor grades (r = -0.402 and r = -0.339, respectively). CONCLUSIONS Radial TSE T2 mapping is feasible for CSCC. Similar to ADC values, quantitative T2 values could serve as a noninvasive biomarker to predict histological grades preoperatively. Moreover, T2 values could determine the presence of LVSI better than ADC values.
Collapse
Affiliation(s)
- Shujian Li
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zanxia Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Liu
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feifei Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Yang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huifang Lu
- Department of Gynecology and Obstetrics, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yong Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Han
- MR R&D Collaboration, Siemens Healthineers, Los Angeles, CA, USA
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jinxia Zhu
- MR Collaboration, Siemens Healthcare Ltd., Beijing, China
| |
Collapse
|
13
|
Hafner T, Post M, Said O, Schad P, Schock J, Abrar DB, Knobe M, Kuhl C, Truhn D, Nebelung S. Identifying the imaging correlates of cartilage functionality based on quantitative MRI mapping - The collagenase exposure model. Acta Biomater 2020; 117:310-321. [PMID: 32980541 DOI: 10.1016/j.actbio.2020.09.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/05/2023]
Abstract
Cartilage functionality is determined by tissue structure and composition. If altered, cartilage is predisposed to premature degeneration. This pathomimetical study of early osteoarthritis evaluated the dose-dependant effects of collagenase-induced collagen disintegration and proteoglycan depletion on cartilage functionality as assessed by serial T1, T1ρ, T2, and T2* mapping under loading. 30 human femoral osteochondral samples underwent imaging on a clinical 3.0 T MRI scanner (Achieva, Philips) in the unloaded reference configuration (δ0) and under pressure-controlled quasi-static indentation loading to 15.1 N (δ1) and to 28.6 N (δ2). Imaging was performed before and after exposure to low (LC, 0.5 mg/mL; n = 10) or high concentration (HC, 1.5 mg/mL; n = 10) of collagenase. Untreated samples served as controls (n = 10). Loading responses were determined for the entire sample and the directly loaded (i.e. sub-pistonal) and bilaterally adjacent (i.e. peri‑pistonal) regions, referenced histologically, quantified as relative changes, and analysed using adequate parametric and non-parametric statistical tests. Dose-dependant surface disintegration and tissue loss were reflected by distinctly different pre- and post-exposure response-to-loading patterns. While T1 generally decreased with loading, regardless of collagenase exposure, T1ρ increased significantly after HC exposure (p = 0.008). Loading-induced decreases in T2 were significant after LC exposure (p = 0.006), while changes in T2* were ambiguous. In conclusion, aberrant loading-induced changes in T2 and T1ρ reflect moderate and severe matrix changes, respectively, and indicate the close interrelatedness of matrix changes and functionality in cartilage.
Collapse
Affiliation(s)
- Tobias Hafner
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology,D-52074 Aachen, Germany
| | - Manuel Post
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology,D-52074 Aachen, Germany
| | - Oliver Said
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology,D-52074 Aachen, Germany
| | - Philipp Schad
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology,D-52074 Aachen, Germany
| | - Justus Schock
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany; Institute of Computer Vision and Imaging, RWTH University Aachen, D-52074 Aachen, Germany
| | - Daniel Benjamin Abrar
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany
| | - Matthias Knobe
- Clinic for Orthopaedic and Trauma Surgery, Cantonal Hospital Luzern, CH-6004 Luzern, Switzerland
| | - Christiane Kuhl
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology,D-52074 Aachen, Germany
| | - Daniel Truhn
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology,D-52074 Aachen, Germany
| | - Sven Nebelung
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany.
| |
Collapse
|
14
|
Hafner T, Schock J, Post M, Abrar DB, Sewerin P, Linka K, Knobe M, Kuhl C, Truhn D, Nebelung S. A serial multiparametric quantitative magnetic resonance imaging study to assess proteoglycan depletion of human articular cartilage and its effects on functionality. Sci Rep 2020; 10:15106. [PMID: 32934341 PMCID: PMC7492285 DOI: 10.1038/s41598-020-72208-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Water, collagen, and proteoglycans determine articular cartilage functionality. If altered, susceptibility to premature degeneration is increased. This study investigated the effects of enzymatic proteoglycan depletion on cartilage functionality as assessed by advanced Magnetic Resonance Imaging (MRI) techniques under standardized loading. Lateral femoral condylar cartilage-bone samples from patients undergoing knee replacement (n = 29) were serially imaged by Proton Density-weighted and T1, T1ρ, T2, and T2* mapping sequences on a clinical 3.0 T MRI scanner (Achieva, Philips). Using pressure-controlled indentation loading, samples were imaged unloaded and quasi-statically loaded to 15.1 N and 28.6 N, and both before and after exposure to low-concentrated (LT, 0.1 mg/mL, n = 10) or high-concentrated trypsin (HT, 1.0 mg/mL, n = 10). Controls were not treated (n = 9). Responses to loading were assessed for the entire sample and regionally, i.e. sub- and peri-pistonally, and zonally, i.e. upper and lower sample halves. Trypsin effects were quantified as relative changes (Δ), analysed using appropriate statistical tests, and referenced histologically. Histological proteoglycan depletion was reflected by significant sub-pistonal decreases in T1 (p = 0.003) and T2 (p = 0.008) after HT exposure. Loading-induced changes in T1ρ and T2* were not related. In conclusion, proteoglycan depletion alters cartilage functionality and may be assessed using serial T1 and T2 mapping under loading.
Collapse
Affiliation(s)
- Tobias Hafner
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Justus Schock
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Moorenstraße 5, 40225, Dusseldorf, Germany.,Institute of Computer Vision and Imaging, RWTH University Aachen, Aachen, Germany
| | - Manuel Post
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Daniel Benjamin Abrar
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Moorenstraße 5, 40225, Dusseldorf, Germany
| | - Philipp Sewerin
- Medical Faculty, Department and Hiller-Research-Unit for Rheumatology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Kevin Linka
- Department of Continuum and Materials Mechanics, Hamburg University of Technology, Hamburg, Germany
| | - Matthias Knobe
- Clinic for Orthopaedic and Trauma Surgery, Cantonal Hospital Luzern, Luzern, Switzerland
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Sven Nebelung
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Moorenstraße 5, 40225, Dusseldorf, Germany.
| |
Collapse
|
15
|
Hayes AJ, Melrose J. Aggrecan, the Primary Weight-Bearing Cartilage Proteoglycan, Has Context-Dependent, Cell-Directive Properties in Embryonic Development and Neurogenesis: Aggrecan Glycan Side Chain Modifications Convey Interactive Biodiversity. Biomolecules 2020; 10:E1244. [PMID: 32867198 PMCID: PMC7564073 DOI: 10.3390/biom10091244] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023] Open
Abstract
This review examines aggrecan's roles in developmental embryonic tissues, in tissues undergoing morphogenetic transition and in mature weight-bearing tissues. Aggrecan is a remarkably versatile and capable proteoglycan (PG) with diverse tissue context-dependent functional attributes beyond its established role as a weight-bearing PG. The aggrecan core protein provides a template which can be variably decorated with a number of glycosaminoglycan (GAG) side chains including keratan sulphate (KS), human natural killer trisaccharide (HNK-1) and chondroitin sulphate (CS). These convey unique tissue-specific functional properties in water imbibition, space-filling, matrix stabilisation or embryonic cellular regulation. Aggrecan also interacts with morphogens and growth factors directing tissue morphogenesis, remodelling and metaplasia. HNK-1 aggrecan glycoforms direct neural crest cell migration in embryonic development and is neuroprotective in perineuronal nets in the brain. The ability of the aggrecan core protein to assemble CS and KS chains at high density equips cartilage aggrecan with its well-known water-imbibing and weight-bearing properties. The importance of specific arrangements of GAG chains on aggrecan in all its forms is also a primary morphogenetic functional determinant providing aggrecan with unique tissue context dependent regulatory properties. The versatility displayed by aggrecan in biodiverse contexts is a function of its GAG side chains.
Collapse
Affiliation(s)
- Anthony J Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards 2065, NSW, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney, Faculty of Medicine and Health at Royal North Shore Hospital, St. Leonards 2065, NSW, Australia
| |
Collapse
|
16
|
Detection of early cartilage degeneration in the tibiotalar joint using 3 T gagCEST imaging: a feasibility study. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 34:249-260. [PMID: 32725359 PMCID: PMC8018923 DOI: 10.1007/s10334-020-00868-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To establish and optimize a stable 3 Tesla (T) glycosaminoglycan chemical exchange saturation transfer (gagCEST) imaging protocol for assessing the articular cartilage of the tibiotalar joint in healthy volunteers and patients after a sustained injury to the ankle. METHODS Using Bloch-McConnell simulations, we optimized the sequence protocol for a 3 T MRI scanner for maximum gagCEST effect size within a clinically feasible time frame of less than 07:30 min. This protocol was then used to analyze the gagCEST effect of the articular cartilage of the tibiotalar joint of 17 healthy volunteers and five patients with osteochondral lesions of the talus following ankle trauma. Reproducibility was tested with the intraclass correlation coefficient. RESULTS The mean magnetization transfer ratio asymmetry (MTRasym), i.e., the gagCEST effect size, was significantly lower in patients than in healthy volunteers (0.34 ± 1.9% vs. 1.49 ± 0.11%; p < 0.001 [linear mixed model]). Intra- and inter-rater reproducibility was excellent with an average measure intraclass correlation coefficient (ICC) of 0.97 and a single measure ICC of 0.91 (p < 0.01). DISCUSSION In this feasibility study, pre-morphological tibiotalar joint cartilage damage was quantitatively assessable on the basis of the optimized 3 T gagCEST imaging protocol that allowed stable quantification gagCEST effect sizes across a wide range of health and disease in clinically feasible acquisition times.
Collapse
|