1
|
Kawai N, Noda Y, Nakamura F, Kaga T, Suzuki R, Miyoshi T, Mori F, Hyodo F, Kato H, Matsuo M. Low-tube-voltage whole-body CT angiography with extremely low iodine dose: a comparison between hybrid-iterative reconstruction and deep-learning image-reconstruction algorithms. Clin Radiol 2024; 79:e791-e798. [PMID: 38403540 DOI: 10.1016/j.crad.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
AIM To evaluate arterial enhancement, its depiction, and image quality in low-tube potential whole-body computed tomography (CT) angiography (CTA) with extremely low iodine dose and compare the results with those obtained by hybrid-iterative reconstruction (IR) and deep-learning image-reconstruction (DLIR) methods. MATERIALS AND METHODS This prospective study included 34 consecutive participants (27 men; mean age, 74.2 years) who underwent whole-body CTA at 80 kVp for evaluating aortic diseases between January and July 2020. Contrast material (240 mg iodine/ml) with simultaneous administration of its quarter volume of saline, which corresponded to 192 mg iodine/ml, was administered. CT raw data were reconstructed using adaptive statistical IR-Veo of 40% (hybrid-IR), DLIR with medium- (DLIR-M), and high-strength level (DLIR-H). A radiologist measured CT attenuation of the arteries and background noise, and the signal-to-noise ratio (SNR) was then calculated. Two reviewers qualitatively evaluated the arterial depictions and diagnostic acceptability on axial, multiplanar-reformatted (MPR), and volume-rendered (VR) images. RESULTS Mean contrast material volume and iodine weight administered were 64.1 ml and 15.4 g, respectively. The SNRs of the arteries were significantly higher in the following order of the DLIR-H, DLIR-M, and hybrid-IR (p<0.001). Depictions of six arteries on axial, three arteries on MPR, and four arteries on VR images were significantly superior in the DLIR-M or hybrid-IR than in the DLIR-H (p≤0.009 for each). Diagnostic acceptability was significantly better in the DLIR-M and DLIR-H than in the hybrid-IR (p<0.001-0.005). CONCLUSION DLIR-M showed well-balanced arterial depictions and image quality compared with the hybrid-IR and DLIR-H.
Collapse
Affiliation(s)
- N Kawai
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Y Noda
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - F Nakamura
- Department of Radiology, Gifu Municipal Hospital, 7-1 Kashima, Gifu 500-8513, Japan
| | - T Kaga
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - R Suzuki
- Department of Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194, Japan
| | - T Miyoshi
- Department of Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194, Japan
| | - F Mori
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - F Hyodo
- Department of Pharmacology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, Japan
| | - H Kato
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - M Matsuo
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| |
Collapse
|
2
|
Meng Z, Guo Y, Deng S, Xiang Q, Cao J, Zhang Y, Zhang K, Ma K, Xie S, Kang Z. Improving image quality of triple-low-protocol renal artery CT angiography with deep-learning image reconstruction: a comparative study with standard-dose single-energy and dual-energy CT with adaptive statistical iterative reconstruction. Clin Radiol 2024; 79:e651-e658. [PMID: 38433041 DOI: 10.1016/j.crad.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 03/05/2024]
Abstract
AIM To investigate the improvement in image quality of triple-low-protocol (low radiation, low contrast medium dose, low injection speed) renal artery computed tomography (CT) angiography (RACTA) using deep-learning image reconstruction (DLIR), in comparison with standard-dose single- and dual-energy CT (DECT) using adaptive statistical iterative reconstruction-Veo (ASIR-V) algorithm. MATERIALS AND METHODS Ninety patients for RACTA were divided into different groups: standard-dose single-energy CT (S group) using ASIR-V at 60% strength (60%ASIR-V), DECT (DE group) with 60%ASIR-V including virtual monochromatic images at 40 keV (DE40 group) and 70 keV (DE70 group), and the triple-low protocol single-energy CT (L group) with DLIR at high level (DLIR-H). The effective dose (ED), contrast medium dose, injection speed, standard deviation (SD), signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of abdominal aorta (AA), and left/right renal artery (LRA, RRA), and subjective scores were compared among the different groups. RESULTS The L group significantly reduced ED by 37.6% and 31.2%, contrast medium dose by 33.9% and 30.5%, and injection speed by 30% and 30%, respectively, compared to the S and DE groups. The L group had the lowest SD values for all arteries compared to the other groups (p<0.001). The SNR of RRA and LRA in the L group, and the CNR of all arteries in the DE40 group had highest value compared to others (p<0.05). The L group had the best comprehensive score with good consistency (p<0.05). CONCLUSIONS The triple-low protocol RACTA with DLIR-H significantly reduces the ED, contrast medium doses, and injection speed, while providing good comprehensive image quality.
Collapse
Affiliation(s)
- Z Meng
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe District, Tianhe Road, 600, Guangzhou, 510620, China
| | - Y Guo
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe District, Tianhe Road, 600, Guangzhou, 510620, China
| | - S Deng
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe District, Tianhe Road, 600, Guangzhou, 510620, China
| | - Q Xiang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe District, Tianhe Road, 600, Guangzhou, 510620, China
| | - J Cao
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe District, Tianhe Road, 600, Guangzhou, 510620, China
| | - Y Zhang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe District, Tianhe Road, 600, Guangzhou, 510620, China
| | - K Zhang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe District, Tianhe Road, 600, Guangzhou, 510620, China
| | - K Ma
- CT Imaging Research Center, GE HealthCare China, Tianhe District, Huacheng Road 87, Guangzhou, 510623, China
| | - S Xie
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe District, Tianhe Road, 600, Guangzhou, 510620, China.
| | - Z Kang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe District, Tianhe Road, 600, Guangzhou, 510620, China.
| |
Collapse
|
3
|
Noda Y, Takai Y, Suto T, Yamada N, Mori T, Kawai N, Kaga T, Hyodo F, Kato H, Matsuo M. Effect of X-ray tube on image quality and pancreatic ductal adenocarcinoma conspicuity in pancreatic protocol dual-energy CT. Clin Radiol 2024; 79:e554-e559. [PMID: 38453389 DOI: 10.1016/j.crad.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/05/2023] [Accepted: 12/31/2023] [Indexed: 03/09/2024]
Abstract
AIM To compare the radiation dose, image quality, and conspicuity of pancreatic ductal adenocarcinoma (PDAC) in pancreatic protocol dual-energy computed tomography (CT) between two X-ray tubes mounted in the same CT machine. MATERIAL AND METHODS This retrospective study comprised 80 patients (median age, 73 years; 45 men) who underwent pancreatic protocol dual-energy CT from January 2019 to March 2022 using either old (Group A, n=41) or new (Group B, n=39) X-ray tubes mounted in the same CT machine. The imaging parameters were completely matched between the two groups, and CT data were reconstructed at 70 and 40 keV. The CT dose-index volume (CTDIvol); CT attenuation of the abdominal aorta, pancreas, and PDAC; background noise; and qualitative scores for the image noise, overall image quality, and PDAC conspicuity were compared between the two groups. RESULTS The CTDIvol was lower in Group B than Group A (7.9 versus 9.2 mGy; p<0.001). The CT attenuation of all anatomical structures at 70 and 40 keV was comparable between the two groups (p=0.06-0.78). The background noise was lower in Group B than Group A (12 versus 14 HU at 70 keV, p=0.046; and 26 versus 30 HU at 40 keV, p<0.001). Qualitative scores for image noise and overall image quality at 70 and 40 keV and PDAC conspicuity at 40 keV were higher in Group B than Group A (p<0.001-0.045). CONCLUSION The latest X-ray tube could reduce the radiation dose and improve image quality in pancreatic protocol dual-energy CT.
Collapse
Affiliation(s)
- Y Noda
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Y Takai
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - T Suto
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - N Yamada
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - T Mori
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - N Kawai
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - T Kaga
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - F Hyodo
- Department of Pharmacology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - H Kato
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - M Matsuo
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| |
Collapse
|
4
|
Rippel K, Luitjens J, Habeeballah O, Scheurig-Muenkler C, Bette S, Braun F, Kroencke TJ, Schwarz F, Decker JA. Evaluation of ECG-Gated, High-Pitch Thoracoabdominal Angiographies With Dual-Source Photon-Counting Detector Computed Tomography. J Endovasc Ther 2024:15266028241230943. [PMID: 38380529 DOI: 10.1177/15266028241230943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
PURPOSE The aim of this study was to evaluate the radiation dose, image quality, and the potential of virtual monoenergetic imaging (VMI) reconstructions of high-pitch computed tomography angiography (CTA) of the thoracoabdominal aorta on a dual-source photon-counting detector-CT (PCD-CT) in comparison with an energy-integrating detector-CT (EID-CT), with a special focus on low-contrast attenuation. METHODS Consecutive patients being referred for an electrocardiogram (ECG)-gated, high-pitch CTA of the thoracoabdominal aorta prior to transcatheter aortic valve replacement (TAVR), and examined on the PCD-CT, were included in this prospective single-center study. For comparison, a retrospective patient group with ECG-gated, high-pitch CTA examinations of the thoracoabdominal aorta on EID-CT with a comparable scan protocol was matched for gender, body mass index, height, and age. Virtual monoenergetic imaging reconstructions from 40 to 120 keV were performed. Enhancement and noise were measured in 7 vascular segments and the surrounding air as mean and standard deviation of CT values. The radiation dose was noted and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Finally, a subgroup analysis was performed, comparing VMI reconstructions from 40 keV to 70 keV in patients with at least a 50% decrease in contrast attenuation between the ascending aorta and femoral arteries. RESULTS Fifty patients (mean age 77.0±14.5 years; 31 women) were included. The radiation dose was significantly lower on the PCD-CT (4.2±1.4 vs. 7.2±2.2 mGy; p<0.001). With increasing keV, vascular noise, SNR, and CNR decreased. Intravascular attenuation was significantly higher on VMI at levels from 40 to 65, compared with levels of 120 keV (p<0.01 and p<0.005, respectively). On the PCD-CT, SNR was significantly higher in keV levels 40 and 70 (all p<0.001), and CNR was higher at keV levels 40 and 45 (each p<0.001), compared with scans on the EID-CT. At VMI ≤60 keV, image noise was also significantly higher than that in the control group. The subgroup analysis showed a drastically improved diagnostic performance of the low-keV images in patients with low-contrast attenuation. CONCLUSION The ECG-gated CTA of the thoracoabdominal aorta in high-pitch mode on PCD-CT have significantly lower radiation dose and higher objective image quality than EID-CT. In addition, low-keV VMI can salvage suboptimal contrast studies, further reducing radiation dose by eliminating the need for repeat scans. CLINICAL IMPACT ECG-gated CT-angiographies of the thoracoabdominal aorta can be acquired with a lower radtiation dose and a better image quality by using a dual-source photon-countinge detector CT. Furthermore, the inherent spectral data offers the possiblity to improve undiagnostic images and thus saves the patient from further radiation and contrast application.
Collapse
Affiliation(s)
- K Rippel
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - J Luitjens
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - O Habeeballah
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - C Scheurig-Muenkler
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - Stefanie Bette
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - Franziska Braun
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - T J Kroencke
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
- Centre for Advanced Analytics and Predictive Sciences, University of Augsburg, Augsburg, Germany
| | - F Schwarz
- DONAUISAR Klinikum Deggendorf, Deggendorf, Germany
| | - J A Decker
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| |
Collapse
|
5
|
Pepin EW, Unachukwu E, Schultz S, Ananthakrishnan L. Optimization of Iodinated Contrast Media Inventory Management: Effect of Inventory Diversification on Waste Reduction. J Am Coll Radiol 2024; 21:175-181. [PMID: 37543153 DOI: 10.1016/j.jacr.2023.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/09/2023] [Accepted: 06/03/2023] [Indexed: 08/07/2023]
Abstract
PURPOSE Iodinated contrast medium (ICM) is available in single- and multiuse vials of varying sizes, but CT departments often preferentially stock only a single or a limited number of vial sizes. The aims of this study were to assess actual ICM waste at a large safety-net hospital and to compare with estimated waste if single-use vials in a variety of vial sizes or multiuse vials were used. METHODS ICM administrations were retrospectively reviewed for all CT examinations performed in 2021 in a department that stocked only 100-mL ICM vials. Administered ICM dose, opened ICM volume and number of vials, and wasted ICM were compared with hypothetical models using optimally sized single-use vials and multiuse vials. Contrast use was also compared by patient class. RESULTS In total, 40,393 ICM administrations over 49,670 CT examinations among 26,028 patients were reviewed, totaling 4,168,335 mL of contrast media. The mean dose was 103 mL, with mode of 100 mL. Exclusive use of 100-mL vials resulted in 1,006,165 mL waste (mean waste, 26 mL/administration). Optimally sized single-use vials resulted in 436,515 mL waste (mean waste, 11 mL/administration). Multiuse vials resulted in 537,074 mL waste (mean waste, 13 mL/administration). The distribution of optimal single-use vial size differed significantly by patient class (P < .001), with inpatient examinations more amenable to the use of smaller single-use vials. CONCLUSIONS Optimizing ICM inventory can reduce contrast waste by 50% to 59%. Regular monitoring of contrast use may help optimize inventory selection across care settings. This retrospective review supports scrutiny of ICM inventory management to reduce waste, save costs, and mitigate the impacts of supply-chain disruptions.
Collapse
Affiliation(s)
- Eric W Pepin
- UT Southwestern Medical Center, Parkland Health, Dallas, Texas; Parkland Health, Dallas, Texas. https://twitter.com/ericwpepin
| | | | | | - Lakshmi Ananthakrishnan
- Medical Director of CT for UT Southwestern and Parkland Health, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
6
|
Xie M, Wang H, Tang S, Chen M, Li T, He L. Application of dual-energy CT with prospective ECG-gating in cardiac CT angiography for children: Radiation and contrast agent dose. Eur J Radiol 2024; 170:111229. [PMID: 38056348 DOI: 10.1016/j.ejrad.2023.111229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE This research aimed to investigate the feasibility of utilizing dual-energy CT virtual monoenergetic images (VMI1) with prospective electrocardiogram (ECG2) gating for reducing radiation and contrast agent doses in pediatric patients with congenital heart disease (CHD3). METHODS There were 100 pediatric patients with CHD included in this study. Group A (n = 50) underwent dual-energy scanning with prospective ECG-gating, and group B (n = 50) underwent conventional scanning with retrospective ECG-gating. Comparative analysis of CT values of lumen, objective image quality assessment, subjective image quality evaluations, and diagnostic efficacy were performed. RESULTS CT values, image noise, signal-to-noise ratio (SNR4), and contrast-to-noise ratio (CNR5) were significantly affected by the VMI energy level, and they all increased with decreasing energy levels (P > 0.05). Combining subjective evaluation, the 45 keV VMI was considered the optimum image in group A. The 45 keV VMI exhibited higher CT values of lumen compared to conventional scanning images (P < 0.003 ∼ 0.836), but meanwhile, the image noise was also higher in the 45 keV VMI (P = 0.004). Differences between the two groups in SNR, CNR, and diagnostic accuracy were not statistically significant. Compared to group B, the 45 keV VMI showed fewer contrast-induced artifacts (P < 0.001) and higher image quality score (P = 0.037). Group A had a 64 % reduction in radiation dose and a 40 % decrease in iodine dose compared to group B. CONCLUSION The combination of dual-energy CT with prospective ECG-gating reduces radiation and iodine doses in pediatric patients with CHD. The 45 keV VMI can provide clinically acceptable image quality while declining contrast agent artifacts.
Collapse
Affiliation(s)
- Mingye Xie
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China.
| | - Haoru Wang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China.
| | - Shilong Tang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China.
| | - Mingjing Chen
- Department of Radiology, Jining No.1 People'S Hospital, Jining 272002, China.
| | - Ting Li
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China.
| | - Ling He
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China.
| |
Collapse
|
7
|
Kaga T, Noda Y, Nagata S, Kawai N, Miyoshi T, Hyodo F, Kato H, Matsuo M. Comparison of image quality, arterial depiction, and radiation dose between two rapid kVp-switching dual-energy CT scanners in CT angiography at 40-keV. Jpn J Radiol 2023; 41:1298-1307. [PMID: 37212946 PMCID: PMC10613589 DOI: 10.1007/s11604-023-01448-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
PURPOSE To compare the quantitative parameters and qualitative image quality of dual-energy CT angiography (CTA) between two rapid kVp-switching dual-energy CT scanners. MATERIALS AND METHODS Between May 2021 and March 2022, 79 participants underwent whole-body CTA using either Discovery CT750 HD (Group A, n = 38) or Revolution CT Apex (Group B, n = 41). All data were reconstructed at 40-keV and with adaptive statistical iterative reconstruction-Veo of 40%. The two groups were compared in terms of CT numbers of the thoracic and abdominal aorta, and the iliac artery, background noise, signal-to-noise ratio (SNR) of the artery, CT dose-index volume (CTDIvol), and qualitative scores for image noise, sharpness, diagnostic acceptability, and arterial depictions. RESULTS The median CT number of the abdominal aorta (p = 0.04) and SNR of the thoracic aorta (p = 0.02) were higher in Group B than in Group A, while no difference was observed in the other CT numbers and SNRs of the artery (p = 0.09-0.23). The background noises at the thoracic (p = 0.11), abdominal (p = 0.85), and pelvic (p = 0.85) regions were comparable between the two groups. CTDIvol was lower in Group B than in Group A (p = 0.006). All qualitative scores were higher in Group B than in Group A (p < 0.001-0.04). The arterial depictions were nearly identical in both two groups (p = 0.005-1.0). CONCLUSION In dual-energy CTA at 40-keV, Revolution CT Apex improved qualitative image quality and reduced radiation dose.
Collapse
Affiliation(s)
- Tetsuro Kaga
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Yoshifumi Noda
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Shoma Nagata
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Nobuyuki Kawai
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Toshiharu Miyoshi
- Department of Radiology Services, Gifu University Hospital, Gifu, Japan
| | - Fuminori Hyodo
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
- Institute for Advanced Study, Gifu University, Gifu, Japan
| | - Hiroki Kato
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Masayuki Matsuo
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
8
|
Sartoretti T, McDermott M, Mergen V, Euler A, Schmidt B, Jost G, Wildberger JE, Alkadhi H. Photon-counting detector coronary CT angiography: impact of virtual monoenergetic imaging and iterative reconstruction on image quality. Br J Radiol 2023; 96:20220466. [PMID: 36633005 PMCID: PMC9975359 DOI: 10.1259/bjr.20220466] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES To assess the impact of low kilo-electronvolt (keV) virtual monoenergetic image (VMI) energies and iterative reconstruction on image quality of clinical photon-counting detector coronary CT angiography (CCTA). METHODS CCTA with PCD-CT (prospective ECG-triggering, 120 kVp, automatic tube current modulation) was performed in a high-end cardiovascular phantom with dynamic flow, pulsatile heart motion, and including different calcified plaques with various stenosis grades and in 10 consecutive patients. VMI at 40,50,60 and 70 keV were reconstructed without (QIR-off) and with all quantum iterative reconstruction (QIR) levels (QIR-1 to 4). In the phantom, noise power spectrum, vessel attenuation, contrast-to-noise-ratio (CNR), and vessel sharpness were measured. Two readers graded stenoses in the phantom and graded overall image quality, subjective noise, vessel sharpness, vascular contrast, and coronary artery plaque delineation on 5-point Likert scales in patients. RESULTS In the phantom, noise texture was only slightly affected by keV and QIR while noise increased by 69% from 70 keV QIR-4 to 40 keV QIR-off. Reconstructions at 40 keV QIR-4 exhibited the highest CNR (46.1 ± 1.8), vessel sharpness (425 ± 42 ∆HU/mm), and vessel attenuation (1098 ± 14 HU). Stenosis measurements were not affected by keV or QIR level (p > 0.12) with an average error of 3%/6% for reader 1/reader 2, respectively. In patients, across all subjective categories and both readers, 40 keV QIR-3 and QIR-4 images received the best scores (p < 0.001). CONCLUSION Forty keV VMI with QIR-4 significantly improved image quality of CCTA with PCD-CT. ADVANCES IN KNOWLEDGE PCD-CT at 40 keV and QIR-4 improves image quality of CCTA.
Collapse
Affiliation(s)
| | | | - Victor Mergen
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - André Euler
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | | | | | - Hatem Alkadhi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Higashigaito K, Mergen V, Eberhard M, Jungblut L, Hebeisen M, Rätzer S, Zanini B, Kobe A, Martini K, Euler A, Alkadhi H. CT Angiography of the Aorta Using Photon-counting Detector CT with Reduced Contrast Media Volume. Radiol Cardiothorac Imaging 2023; 5:e220140. [PMID: 36860835 PMCID: PMC9969214 DOI: 10.1148/ryct.220140] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 01/27/2023]
Abstract
Purpose To develop and evaluate a low-volume contrast media protocol for thoracoabdominal CT angiography (CTA) with photon-counting detector (PCD) CT. Materials and Methods This prospective study included consecutive participants (April-September 2021) who underwent CTA with PCD CT of the thoracoabdominal aorta and previous CTA with energy-integrating detector (EID) CT at equal radiation doses. In PCD CT, virtual monoenergetic images (VMI) were reconstructed in 5-keV intervals from 40 to 60 keV. Attenuation of the aorta, image noise, and contrast-to-noise ratio (CNR) were measured, and subjective image quality was rated by two independent readers. In the first group of participants, the same contrast media protocol was used for both scans. CNR gain in PCD CT compared with EID CT served as the reference for contrast media volume reduction in the second group. Noninferiority analysis was used to test noninferior image quality of the low-volume contrast media protocol with PCD CT. Results The study included 100 participants (mean age, 75 years ± 8 [SD]; 83 men). In the first group (n = 40), VMI at 50 keV provided the best trade-off between objective and subjective image quality, achieving 25% higher CNR compared with EID CT. Contrast media volume in the second group (n = 60) was reduced by 25% (52.5 mL). Mean differences in CNR and subjective image quality between EID CT and PCD CT at 50 keV were above the predefined boundaries of noninferiority (-0.54 [95% CI: -1.71, 0.62] and -0.36 [95% CI: -0.41, -0.31], respectively). Conclusion CTA of the aorta with PCD CT was associated with higher CNR, which was translated into a low-volume contrast media protocol demonstrating noninferior image quality compared with EID CT at the same radiation dose.Keywords: CT Angiography, CT-Spectral, Vascular, Aorta, Contrast Agents-Intravenous, Technology Assessment© RSNA, 2023See also the commentary by Dundas and Leipsic in this issue.
Collapse
Affiliation(s)
- Kai Higashigaito
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zürich, Switzerland (K.H., V.M., M.E., L.J., S.R., B.Z., A.K., K.M., A.E., H.A.); and Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland (M.H.)
| | - Victor Mergen
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zürich, Switzerland (K.H., V.M., M.E., L.J., S.R., B.Z., A.K., K.M., A.E., H.A.); and Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland (M.H.)
| | - Matthias Eberhard
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zürich, Switzerland (K.H., V.M., M.E., L.J., S.R., B.Z., A.K., K.M., A.E., H.A.); and Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland (M.H.)
| | - Lisa Jungblut
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zürich, Switzerland (K.H., V.M., M.E., L.J., S.R., B.Z., A.K., K.M., A.E., H.A.); and Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland (M.H.)
| | - Monika Hebeisen
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zürich, Switzerland (K.H., V.M., M.E., L.J., S.R., B.Z., A.K., K.M., A.E., H.A.); and Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland (M.H.)
| | - Susan Rätzer
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zürich, Switzerland (K.H., V.M., M.E., L.J., S.R., B.Z., A.K., K.M., A.E., H.A.); and Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland (M.H.)
| | - Bettina Zanini
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zürich, Switzerland (K.H., V.M., M.E., L.J., S.R., B.Z., A.K., K.M., A.E., H.A.); and Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland (M.H.)
| | - Adrian Kobe
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zürich, Switzerland (K.H., V.M., M.E., L.J., S.R., B.Z., A.K., K.M., A.E., H.A.); and Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland (M.H.)
| | - Katharina Martini
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zürich, Switzerland (K.H., V.M., M.E., L.J., S.R., B.Z., A.K., K.M., A.E., H.A.); and Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland (M.H.)
| | - André Euler
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zürich, Switzerland (K.H., V.M., M.E., L.J., S.R., B.Z., A.K., K.M., A.E., H.A.); and Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland (M.H.)
| | - Hatem Alkadhi
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zürich, Switzerland (K.H., V.M., M.E., L.J., S.R., B.Z., A.K., K.M., A.E., H.A.); and Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland (M.H.)
| |
Collapse
|
10
|
Rippel K, Decker JA, Wudy R, Trzaska T, Haerting M, Kroencke TJ, Schwarz F, Scheurig-Muenkler C. Evaluation of run-off computed tomography angiography on a first-generation photon-counting detector CT scanner - Comparison with low-kVp energy-integrating CT. Eur J Radiol 2023; 158:110645. [PMID: 36525704 DOI: 10.1016/j.ejrad.2022.110645] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE To assess the overall imaging performance (radiation dose and image quality) of a photon-counting detector CT (PCD-CT) in comparison with a state-of-the-art energy-integrating detector CT (EID-CT) in run-off CTAs. METHODS Consecutive patients who underwent run-off CTA on a PCD-CT were included (PCD-CT cohort). A retrospective cohort of patients who had undergone run-off CTA on an EID-CT was matched for gender, body mass index, height, and age (EID-CT cohort). Virtual monoenergetic imaging (VMI) reconstructions for various keV settings (40-120 keV) were generated. CT values and noise were semiautomatically measured for 13 vascular segments of the abdomen, pelvis, and lower extremities. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated for each segment. Subjective image quality was evaluated by two radiologists along the dimensions 'vessel attenuation', 'vessel sharpness', and 'overall image quality' using 5-point Likert scales. RESULTS Forty patients (age 70.9 ± 9.8 years; 14 women) were included in the PCD-CT cohort and matched with a corresponding number of EID-CT patients. Overall, there was an inverse correlation of signal and noise but also of SNR and CNR with keV levels used for VMI reconstructions. SNR and CNR in the 40 - 60 keV range exceeded EID-CT levels significantly. Subjective image quality was substantially higher at lower keV levels and showed no significant difference to EID-CT. CONCLUSION Low keV VMI reconstructions of run-off CTA scans on a PCD-CT result in substantially higher SNR and CNR than 80 kVp and 100 kVp EID-CT acquisitions with equal subjective image quality.
Collapse
Affiliation(s)
- K Rippel
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany.
| | - J A Decker
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany.
| | - R Wudy
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany.
| | - T Trzaska
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany.
| | - M Haerting
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany.
| | - T J Kroencke
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, Universitätsstr. 2, 86159 Augsburg, Germany.
| | - F Schwarz
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; Medical Faculty, Ludwig Maximilian University Munich, Bavariaring 19, 80336 Munich, Germany.
| | - C Scheurig-Muenkler
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany.
| |
Collapse
|
11
|
Noda Y, Kawai N, Kawamura T, Kobori A, Miyase R, Iwashima K, Kaga T, Miyoshi T, Hyodo F, Kato H, Matsuo M. Radiation and iodine dose reduced thoraco-abdomino-pelvic dual-energy CT at 40 keV reconstructed with deep learning image reconstruction. Br J Radiol 2022; 95:20211163. [PMID: 35230135 PMCID: PMC10996425 DOI: 10.1259/bjr.20211163] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To evaluate the feasibility of a simultaneous reduction of radiation and iodine doses in dual-energy thoraco-abdomino-pelvic CT reconstructed with deep learning image reconstruction (DLIR). METHODS Thoraco-abdomino-pelvic CT was prospectively performed in 111 participants; 52 participants underwent a standard-dose single-energy CT with a standard iodine dose (600 mgI/kg; SD group), while 59 underwent a low-dose dual-energy CT with a reduced iodine dose [300 mgI/kg; double low-dose (DLD) group]. CT data were reconstructed with a hybrid iterative reconstruction in the SD group and a high-strength level of DLIR at 40 keV in the DLD group. Two radiologists measured the CT numbers of the descending and abdominal aorta, portal vein, hepatic vein, inferior vena cava, liver, pancreas, spleen, and kidney, and background noise. Two other radiologists assessed diagnostic acceptability using a 5-point scale. The CT dose-index volume (CTDIvol), iodine weight, CT numbers of anatomical structures, background noise, and diagnostic acceptability were compared between the two groups using Mann-Whitney U test. RESULTS The median CTDIvol [10 mGy; interquartile range (IQR), 9-13 mGy vs 4 mGy; IQR, 4-5 mGy] and median iodine weight (35 g; IQR, 31-38 g vs 16 g; IQR, 14-18 g) were lower in the DLD group than in the SD group (p < 0.001 for each). The CT numbers of all anatomical structures and background noise were higher in the DLD group than in the SD group (p < 0.001 for all). The diagnostic image quality was obtained in 100% (52/52) of participants in the SD group and 95% (56/59) of participants in the DLD group. CONCLUSION Virtual monochromatic images at 40 keV reconstructed with DLIR could achieve half doses of radiation and iodine while maintaining diagnostic image quality. ADVANCES IN KNOWLEDGE Virtual monochromatic images at 40 keV reconstructed with DLIR algorithm allowed to reduce the doses of radiation and iodine while maintaining diagnostic image quality.
Collapse
Affiliation(s)
| | | | | | | | - Rena Miyase
- Department of Radiology, Gifu University,
Gifu, Japan
| | - Ken Iwashima
- Department of Radiology, Gifu University,
Gifu, Japan
| | - Tetsuro Kaga
- Department of Radiology, Gifu University,
Gifu, Japan
| | - Toshiharu Miyoshi
- Department of Radiology Services, Gifu University
Hospital, Gifu,
Japan
| | - Fuminori Hyodo
- Department of Radiology, Frontier Science for Imaging, Gifu
University, Gifu,
Japan
| | - Hiroki Kato
- Department of Radiology, Gifu University,
Gifu, Japan
| | | |
Collapse
|
12
|
Euler A, Higashigaito K, Mergen V, Sartoretti T, Zanini B, Schmidt B, Flohr TG, Ulzheimer S, Eberhard M, Alkadhi H. High-Pitch Photon-Counting Detector Computed Tomography Angiography of the Aorta: Intraindividual Comparison to Energy-Integrating Detector Computed Tomography at Equal Radiation Dose. Invest Radiol 2022; 57:115-121. [PMID: 34352805 DOI: 10.1097/rli.0000000000000816] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The aims of this study were to determine the objective and subjective image quality of high-pitch computed tomography (CT) angiography of the aorta in clinical dual-source photon-counting detector CT (PCD-CT) and to compare the image quality to conventional dual-source energy-integrating detector CT (EID-CT) in the same patients at equal radiation dose. MATERIALS AND METHODS Patients with prior CT angiography of the thoracoabdominal aorta acquired on third-generation dual-source EID-CT in the high-pitch mode and with automatic tube voltage selection (ATVS, reference tube voltage 100 kV) were included. Follow-up imaging was performed on a first-generation, clinical dual-source PCD-CT scanner in the high-pitch and multienergy (QuantumPlus) mode at 120 kV using the same contrast media protocol as with EID-CT. Radiation doses between scans were matched by adapting the tube current of PCD-CT. Polychromatic images for both EID-CT and PCD-CT (called T3D) and virtual monoenergetic images at 40, 45, 50, and 55 keV for PCD-CT were reconstructed. Computed tomography attenuation was measured in the aorta; noise was defined as the standard deviation of attenuation; contrast-to-noise ratio (CNR) was calculated. Subjective image quality (noise, vessel attenuation, vessel sharpness, and overall quality) was rated by 2 blinded, independent radiologists. RESULTS Forty patients were included (mean age, 63 years; 8 women; mean body mass index [BMI], 26 kg/m2). There was no significant difference in BMI, effective diameter, or radiation dose between scans (all P's > 0.05). The ATVS in EID-CT selected 70, 80, 90, 100, 110, and 120 kV in 2, 14, 14, 7, 2, and 1 patients, respectively. Mean CNR was 17 ± 8 for EID-CT and 22 ± 7, 20 ± 6, 18 ± 5, 16 ± 5, and 12 ± 4 for PCD-CT at 40, 45, 50, 55 keV, and T3D, respectively. Contrast-to-noise ratio was significantly higher for 40 and 45 keV of PCD-CT as compared with EID-CT (both P's < 0.05). The linear regression model (adjusted R2, 0.38; P < 0.001) revealed that PCD-CT reconstruction (P < 0.001), BMI group (P = 0.007), and kV of the EID-CT scan (P = 0.01) were significantly associated with CNR difference, with an increase by 34% with PCD-CT for overweight as compared with normal weight patients. Subjective image quality reading revealed slight differences between readers for subjective vessel attenuation and sharpness, whereas subjective noise was rated significantly higher for 40 and 45 keV (P < 0.001) and overall quality similar (P > 0.05) between scans. CONCLUSIONS High-pitch PCD-CT angiography of the aorta with VMI at 40 and 45 keV resulted in significantly increased CNR compared with EID-CT with ATVS at matched radiation dose. The CNR gain of PCD-CT increased in overweight patients. Taking into account the subjective analysis, VMI at 45 to 50 keV is proposed as the best trade-off between objective and subjective image quality.
Collapse
Affiliation(s)
- André Euler
- From the Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Kai Higashigaito
- From the Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Victor Mergen
- From the Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | | | - Bettina Zanini
- From the Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | | | | | | | - Matthias Eberhard
- From the Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Hatem Alkadhi
- From the Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|