Brizard CP, Goussef N, Chachques JC, Carpentier AF. Model of complete separation of the hepatic veins from the systemic venous system.
Ann Thorac Surg 2000;
70:2096-101. [PMID:
11156127 DOI:
10.1016/s0003-4975(00)01528-9]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND
In patients undergoing a Fontan operation, partial diversion of the hepatic veins to the pulmonary venous atrium has been tried with various techniques. They failed because of the development of intrahepatic collaterals leading to an unacceptable right-to-left shunting. We postulate that to avoid the formation of intrahepatic collaterals, the totality of the liver has to be drained into the same pressure compartment. We have designed a model of cavopulmonary anastomosis in which a prosthetic conduit reproduces an azygos continuation, associated with the diversion of the totality of the hepatic venous return. This article reports on the early hemodynamics and the fate of the separation of the two venous compartments in long-term survivors.
METHODS
Eighteen goats were operated on; the pulmonary artery and hepatic vein pressures were recorded. During month 2, an opacification of the inferior vena cava and the cavopulmonary connection was performed. Between months 6 and 14, another opacification was performed, together with pressure recording at both ends of the conduit.
RESULTS
Postoperatively the pulmonary artery pressure was pulsatile with a mean of 10 mm Hg and the hepatic vein pressure was 0 mm Hg. The first angiogram showed patent tubes with fast progression of the contrast. Throughout the inferior vena cava injection, there was no opacification of the portal or hepatic veins. The late study showed a narrowed conduit in all animals. During the injection, a collateral was injected, feeding into the inferior mesenteric vein. No collateral circulation could be seen draining directly into the liver. The median gradient between the two ends of the conduit was 11 mm Hg.
CONCLUSIONS
The isolation of the entire hepatic venous drainage is feasible and efficient for the separation of two pressure compartments. No intrahepatic collaterals are observed with this model at short- or long-term follow-up. The separation of the hepatic venous drainage should persist without collateral circulation as long as the inferior vena cava pressure stays at the levels observed in Fontan circulation.
Collapse