1
|
Ashrafi AM, Mukherjee A, Saadati A, Matysik FM, Richtera L, Adam V. Enhancing the substrate selectivity of enzyme mimetics in biosensing and bioassay: Novel approaches. Adv Colloid Interface Sci 2024; 331:103233. [PMID: 38924801 DOI: 10.1016/j.cis.2024.103233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
A substantial development in nanoscale materials possessing catalytic activities comparable with natural enzymes has been accomplished. Their advantages were owing to the excellent sturdiness in an extreme environment, possibilities of their large-scale production resulting in higher profitability, and easy manipulation for modification. Despite these advantages, the main challenge for artificial enzyme mimetics is the lack of substrate selectivity where natural enzymes flourish. This review addresses this vital problem by introducing substrate selectivity strategies to three classes of artificial enzymes: molecularly imprinted polymers, nanozymes (NZs), and DNAzymes. These rationally designed strategies enhance the substrate selectivity and are discussed and exemplified throughout the review. Various functional mechanisms associated with applying enzyme mimetics in biosensing and bioassays are also given. Eventually, future directives toward enhancing the substrate selectivity of biomimetics and related challenges are discussed and evaluated based on their efficiency and convenience in biosensing and bioassays.
Collapse
Affiliation(s)
- Amir M Ashrafi
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Institute of Photonics and Electronics, Czech Academy of Sciences, Prague, Czech Republic.
| | - Atripan Mukherjee
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; ELI Beamlines Facility, The Extreme Light Infrastructure ERIC, Za Radnici 835, 252 41 Dolni Brezany, Czech Republic.
| | - Arezoo Saadati
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| | - Frank-Michael Matysik
- Institute of Analytical Chemistry, Chemo- and Biosensors, University Regensburg, 93053 Regensburg, Germany.
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
2
|
Malbert B, Labaurie V, Dorme C, Paget E. Group I Intron as a Potential Target for Antifungal Compounds: Development of a Trans-Splicing High-Throughput Screening Strategy. Molecules 2023; 28:molecules28114460. [PMID: 37298936 DOI: 10.3390/molecules28114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The search for safe and efficient new antifungal compounds for agriculture has led to more efforts in finding new modes of action. This involves the discovery of new molecular targets, including coding and non-coding RNA. Rarely found in plants and animals but present in fungi, group I introns are of interest as their complex tertiary structure may allow selective targeting using small molecules. In this work, we demonstrate that group I introns present in phytopathogenic fungi have a self-splicing activity in vitro that can be adapted in a high-throughput screening to find new antifungal compounds. Ten candidate introns from different filamentous fungi were tested and one group ID intron found in F. oxysporum showed high self-splicing efficiency in vitro. We designed the Fusarium intron to act as a trans-acting ribozyme and used a fluorescence-based reporter system to monitor its real time splicing activity. Together, these results are opening the way to study the druggability of such introns in crop pathogen and potentially discover small molecules selectively targeting group I introns in future high-throughput screenings.
Collapse
Affiliation(s)
- Bastien Malbert
- Early Discovery, Biochemistry Excellence, Centre de Recherche La Dargoire, Bayer SAS, 69009 Lyon, France
| | - Virginie Labaurie
- Early Discovery, Biochemistry Excellence, Centre de Recherche La Dargoire, Bayer SAS, 69009 Lyon, France
| | - Cécile Dorme
- Early Discovery, Biochemistry Excellence, Centre de Recherche La Dargoire, Bayer SAS, 69009 Lyon, France
| | - Eric Paget
- Early Discovery, Biochemistry Excellence, Centre de Recherche La Dargoire, Bayer SAS, 69009 Lyon, France
| |
Collapse
|
3
|
Abstract
BACKGROUND RNA trans-splicing joins exons from different pre-mRNA transcripts to generate a chimeric product. Trans-splicing can also occur at the protein level, with split inteins mediating the ligation of separate gene products to generate a mature protein. SOURCES OF DATA Comprehensive literature search of published research papers and reviews using Pubmed. AREAS OF AGREEMENT Trans-splicing techniques have been used to target a wide range of diseases in both in vitro and in vivo models, resulting in RNA, protein and functional correction. AREAS OF CONTROVERSY Off-target effects can lead to therapeutically undesirable consequences. In vivo efficacy is typically low, and delivery issues remain a challenge. GROWING POINTS Trans-splicing provides a promising avenue for developing novel therapeutic approaches. However, much more research needs to be done before developing towards preclinical studies. AREAS TIMELY FOR DEVELOPING RESEARCH Increasing trans-splicing efficacy and specificity by rational design, screening and competitive inhibition of endogenous cis-splicing.
Collapse
Affiliation(s)
- Elizabeth M Hong
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Carin K Ingemarsdotter
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Andrew M L Lever
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
4
|
Huang X, Zhao Y, Pu Q, Liu G, Peng Y, Wang F, Chen G, Sun M, Du F, Dong J, Cui X, Tang Z, Mo X. Intracellular selection of trans-cleaving hammerhead ribozymes. Nucleic Acids Res 2019; 47:2514-2522. [PMID: 30649474 PMCID: PMC6412130 DOI: 10.1093/nar/gkz018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 02/05/2023] Open
Abstract
Hammerhead ribozyme is the smallest and best characterized catalytic RNA-cleaving ribozyme. It has been reported as potential therapeutic tools to manipulate the expression of target genes. However, most of naturally occurring hammerhead ribozymes process self-cleavage rather than cleave substrate RNA in trans, and its high intracellular activity relies on the tertiary interaction of Loop II and steam I bulge, resulting in decreased performance as applied in gene silencing. We described a direct intracellular selection method to evolve hammerhead variants based on trans-cleavage mode via using a toxin gene as the reporter. And a dual fluorescence proteins system has also been established to quantitatively evaluate the efficiency of selected ribozymes in the cell. Based on this selection strategy, we obtained three mutants with enhanced intracellular cleaving activity compared to wide type hammerhead ribozyme. The best one, TX-2 was revealed to possess better and consistent gene knockdown ability at different positions on diverse targeted mRNA either in prokaryotic or eukaryotic cells than wild-type hammerhead ribozyme. These observations imply the efficiency of the intracellular selection method of the trans-acting ribozyme and the potentials of improved ribozyme variants for research and therapeutic purposes.
Collapse
Affiliation(s)
- Xin Huang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Yongyun Zhao
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Qinlin Pu
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Getong Liu
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Yan Peng
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Fei Wang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Gangyi Chen
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Meiling Sun
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Feng Du
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Juan Dong
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
5
|
Lee CH, Han SR, Lee SW. Group I Intron-Based Therapeutics Through Trans-Splicing Reaction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:79-100. [PMID: 30340790 DOI: 10.1016/bs.pmbts.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In 1982, the Cech group discovered that an intron structure in an rRNA precursor of Tetrahymena thermophila is sufficient to complete splicing without assistance from proteins. This was the first moment that scientists recognized RNAs can have catalytic activities derived from their own unique three-dimensional structures and thus play more various roles in biological processes than thought before. Several additional catalytic RNAs, called ribozymes, were subsequently identified in nature followed by intense studies to reveal their mechanisms of action and to engineer them for use in fields such as molecular cell biology, therapeutics, imaging, etc. Naturally occurring RNA-targeting ribozymes can be broadly classified into two categories by their abilities: Self-cleavage and self-splicing. Since ribozymes use base-pairing to recognize cleavage sites, identification of the catalytic center of naturally occurring ribozymes enables to engineer from "self" to "trans" acting ones which has accelerated to design and use ribozyme as valuable tools in gene therapy fields. Especially, group I intron-based trans-splicing ribozyme has unique property to use as a gene therapeutic agent. It can destroy and simultaneously repair (and/or reprogram) target RNAs to yield the desired therapeutic RNAs, maintaining endogenous spatial and temporal gene regulation of target RNAs. There have been progressive improvements in trans-splicing ribozymes and successful applications of these elements in gene therapy and molecular imaging approaches for various pathogenic conditions. In this chapter, current status of trans-splicing ribozyme therapeutics, focusing on Tetrahymena group I intron-based ribozymes, and their future prospects will be discussed.
Collapse
Affiliation(s)
- Chang Ho Lee
- Department of Integrated Life Sciences, Dankook University, Yongin, Republic of Korea
| | | | - Seong-Wook Lee
- Department of Integrated Life Sciences, Dankook University, Yongin, Republic of Korea; Rznomics Inc., Gwangju, Republic of Korea.
| |
Collapse
|
6
|
Liemberger B, Piñón Hofbauer J, Wally V, Arzt C, Hainzl S, Kocher T, Murauer EM, Bauer JW, Reichelt J, Koller U. RNA Trans-Splicing Modulation via Antisense Molecule Interference. Int J Mol Sci 2018. [PMID: 29518954 PMCID: PMC5877623 DOI: 10.3390/ijms19030762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In recent years, RNA trans-splicing has emerged as a suitable RNA editing tool for the specific replacement of mutated gene regions at the pre-mRNA level. Although the technology has been successfully applied for the restoration of protein function in various genetic diseases, a higher trans-splicing efficiency is still desired to facilitate its clinical application. Here, we describe a modified, easily applicable, fluorescence-based screening system for the generation and analysis of antisense molecules specifically capable of improving the RNA reprogramming efficiency of a selected KRT14-specific RNA trans-splicing molecule. Using this screening procedure, we identified several antisense RNAs and short rationally designed oligonucleotides, which are able to increase the trans-splicing efficiency. Thus, we assume that besides the RNA trans-splicing molecule, short antisense molecules can act as splicing modulators, thereby increasing the trans-splicing efficiency to a level that may be sufficient to overcome the effects of certain genetic predispositions, particularly those associated with dominantly inherited diseases.
Collapse
Affiliation(s)
- Bernadette Liemberger
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Claudia Arzt
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases, Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Stefan Hainzl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Thomas Kocher
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Eva M Murauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Johann W Bauer
- Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Julia Reichelt
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| |
Collapse
|
7
|
Lee CH, Han SR, Lee SW. Therapeutic applications of group I intron-based trans-splicing ribozymes. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1466. [PMID: 29383855 DOI: 10.1002/wrna.1466] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/10/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
Abstract
Since the breakthrough discovery of catalytic RNAs (ribozymes) in the early 1980s, valuable ribozyme-based gene therapies have been developed for incurable diseases ranging from genetic disorders to viral infections and cancers. Ribozymes can be engineered and used to downregulate or repair pathogenic genes via RNA cleavage mediated by trans-cleaving ribozymes or repair and reprograming mediated by trans-splicing ribozymes, respectively. Uniquely, trans-splicing ribozymes can edit target RNAs via simultaneous destruction and repair (and/or reprograming) to yield the desired therapeutic RNAs, thus selectively inducing therapeutic gene activity in cells expressing the target RNAs. In contrast to traditional gene therapy approaches, such as simple addition of therapeutic transgenes or inhibition of disease-causing genes, the selective repair and/or reprograming abilities of trans-splicing ribozymes in target RNA-expressing cells facilitates the maintenance of endogenous spatial and temporal gene regulation and reduction of disease-associated transcript expression. In molecular imaging technologies, trans-splicing ribozymes can be used to reprogram specific RNAs in living cells and organisms by the 3'-tagging of reporter RNAs. The past two decades have seen progressive improvements in trans-splicing ribozymes and the successful application of these elements in gene therapy and molecular imaging approaches for various pathogenic conditions, such as genetic, infectious, and malignant disease. This review provides an overview of the current status of trans-splicing ribozyme therapeutics, focusing on Tetrahymena group I intron-based ribozymes, and their future prospects. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Chang Ho Lee
- Department of Integrated Life Sciences, Dankook University, Yongin, Republic of Korea
| | - Seung Ryul Han
- Department of Integrated Life Sciences, Dankook University, Yongin, Republic of Korea
| | - Seong-Wook Lee
- Department of Integrated Life Sciences, Dankook University, Yongin, Republic of Korea
| |
Collapse
|
8
|
Petree JR, Yehl K, Galior K, Glazier R, Deal B, Salaita K. Site-Selective RNA Splicing Nanozyme: DNAzyme and RtcB Conjugates on a Gold Nanoparticle. ACS Chem Biol 2018; 13:215-224. [PMID: 29155548 PMCID: PMC6085866 DOI: 10.1021/acschembio.7b00437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Modifying RNA through either splicing or editing is a fundamental biological process for creating protein diversity from the same genetic code. Developing novel chemical biology tools for RNA editing has potential to transiently edit genes and to provide a better understanding of RNA biochemistry. Current techniques used to modify RNA include the use of ribozymes, adenosine deaminase, and tRNA endonucleases. Herein, we report a nanozyme that is capable of splicing virtually any RNA stem-loop. This nanozyme is comprised of a gold nanoparticle functionalized with three enzymes: two catalytic DNA strands with ribonuclease function and an RNA ligase. The nanozyme cleaves and then ligates RNA targets, performing a splicing reaction that is akin to the function of the spliceosome. Our results show that the three-enzyme reaction can remove a 19 nt segment from a 67 nt RNA loop with up to 66% efficiency. The complete nanozyme can perform the same splice reaction at 10% efficiency. These splicing nanozymes represent a new promising approach for gene manipulation that has potential for applications in living cells.
Collapse
Affiliation(s)
- Jessica R. Petree
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
| | - Kevin Yehl
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
| | - Kornelia Galior
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
| | - Roxanne Glazier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Brendan Deal
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
9
|
Tanaka T, Hirata Y, Tominaga Y, Furuta H, Matsumura S, Ikawa Y. Heterodimerization of Group I Ribozymes Enabling Exon Recombination through Pairs of Cooperative trans-Splicing Reactions. Chembiochem 2017; 18:1659-1667. [PMID: 28556398 DOI: 10.1002/cbic.201700053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Indexed: 12/31/2022]
Abstract
Group I (GI) self-splicing ribozymes are attractive tools for biotechnology and synthetic biology. Several trans-splicing and related reactions based on GI ribozymes have been developed for the purpose of recombining their target mRNA sequences. By combining trans-splicing systems with rational modular engineering of GI ribozymes it was possible to achieve more complex editing of target RNA sequences. In this study we have developed a cooperative trans-splicing system through rational modular engineering with use of dimeric GI ribozymes derived from the Tetrahymena group I intron ribozyme. The resulting pairs of ribozymes exhibited catalytic activity depending on their selective dimerization. Rational modular redesign as performed in this study would facilitate the development of sophisticated regulation of double or multiple trans-splicing reactions in a cooperative manner.
Collapse
Affiliation(s)
- Takahiro Tanaka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yusuke Hirata
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Yuto Tominaga
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shigeyoshi Matsumura
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Yoshiya Ikawa
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| |
Collapse
|
10
|
Design and Experimental Evolution of trans-Splicing Group I Intron Ribozymes. Molecules 2017; 22:molecules22010075. [PMID: 28045452 PMCID: PMC6155759 DOI: 10.3390/molecules22010075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/27/2016] [Accepted: 12/29/2016] [Indexed: 12/31/2022] Open
Abstract
Group I intron ribozymes occur naturally as cis-splicing ribozymes, in the form of introns that do not require the spliceosome for their removal. Instead, they catalyze two consecutive trans-phosphorylation reactions to remove themselves from a primary transcript, and join the two flanking exons. Designed, trans-splicing variants of these ribozymes replace the 3′-portion of a substrate with the ribozyme’s 3′-exon, replace the 5′-portion with the ribozyme’s 5′-exon, or insert/remove an internal sequence of the substrate. Two of these designs have been evolved experimentally in cells, leading to variants of group I intron ribozymes that splice more efficiently, recruit a cellular protein to modify the substrate’s gene expression, or elucidate evolutionary pathways of ribozymes in cells. Some of the artificial, trans-splicing ribozymes are promising as tools in therapy, and as model systems for RNA evolution in cells. This review provides an overview of the different types of trans-splicing group I intron ribozymes that have been generated, and the experimental evolution systems that have been used to improve them.
Collapse
|
11
|
Use of a Fluorescent Aptamer RNA as an Exonic Sequence to Analyze Self-Splicing Ability of aGroup I Intron from Structured RNAs. BIOLOGY 2016; 5:biology5040043. [PMID: 27869660 PMCID: PMC5192423 DOI: 10.3390/biology5040043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 11/17/2022]
Abstract
Group I self-splicing intron constitutes an important class of functional RNA molecules that can promote chemical transformation. Although the fundamental mechanism of the auto-excision from its precursor RNA has been established, convenient assay systems for its splicing activity are still useful for a further understanding of its detailed mechanism and of its application. Because some host RNA sequences, to which group I introns inserted form stable three-dimensional (3D) structures, the effects of the 3D structures of exonic elements on the splicing efficiency of group I introns are important but not a fully investigated issue. We developed an assay system for group I intron self-splicing by employing a fluorescent aptamer RNA (spinach RNA) as a model exonic sequence inserted by the Tetrahymena group I intron. We investigated self-splicing of the intron from spinach RNA, serving as a model exonic sequence with a 3D structure.
Collapse
|
12
|
Amini ZN, Müller UF. Increased efficiency of evolved group I intron spliceozymes by decreased side product formation. RNA (NEW YORK, N.Y.) 2015; 21:1480-1489. [PMID: 26106216 PMCID: PMC4509937 DOI: 10.1261/rna.051888.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/20/2015] [Indexed: 06/04/2023]
Abstract
The group I intron ribozyme from Tetrahymena was recently reengineered into a trans-splicing variant that is able to remove 100-nt introns from pre-mRNA, analogous to the spliceosome. These spliceozymes were improved in this study by 10 rounds of evolution in Escherichia coli cells. One clone with increased activity in E. coli cells was analyzed in detail. Three of its 10 necessary mutations extended the substrate binding duplexes, which led to increased product formation and reduced cleavage at the 5'-splice site. One mutation in the conserved core of the spliceozyme led to a further reduction of cleavage at the 5'-splice site but an increase in cleavage side products at the 3'-splice site. The latter was partially reduced by six additional mutations. Together, the mutations increased product formation while reducing activity at the 5'-splice site and increasing activity at the 3'-splice site. These results show the adaptation of a ribozyme that evolved in nature for cis-splicing to trans-splicing, and they highlight the interdependent function of nucleotides within group I intron ribozymes. Implications for the possible use of spliceozymes as tools in research and therapy, and as a model for the evolution of the spliceosome, are discussed.
Collapse
Affiliation(s)
- Zhaleh N Amini
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0356, USA
| | - Ulrich F Müller
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0356, USA
| |
Collapse
|
13
|
Amini ZN, Olson KE, Müller UF. Spliceozymes: ribozymes that remove introns from pre-mRNAs in trans. PLoS One 2014; 9:e101932. [PMID: 25014025 PMCID: PMC4094466 DOI: 10.1371/journal.pone.0101932] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 06/13/2014] [Indexed: 11/25/2022] Open
Abstract
Group I introns are pre-mRNA introns that do not require the spliceosome for their removal. Instead, they fold into complex three-dimensional structures and catalyze two transesterification reactions, thereby excising themselves and joining the flanking exons. These catalytic RNAs (ribozymes) have been modified previously to work in trans, whereby the ribozymes can recognize a splice site on a substrate RNA and replace the 5′- or 3′-portion of the substrate. Here we describe a new variant of the group I intron ribozyme from Tetrahymena that recognizes two splice sites on a substrate RNA, removes the intron sequences between the splice sites, and joins the flanking exons, analogous to the action of the spliceosome. This ‘group I spliceozyme’ functions in vitro and in vivo, and it is able to mediate a growth phenotype in E. coli cells. The intron sequences of the target pre-mRNAs are constrained near the splice sites but can carry a wide range of sequences in their interior. Because the splice site recognition sequences can be adjusted to different splice sites, the spliceozyme may have the potential for wide applications as tool in research and therapy.
Collapse
Affiliation(s)
- Zhaleh N. Amini
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Karen E. Olson
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Ulrich F. Müller
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Dolan GF, Müller UF. Trans-splicing with the group I intron ribozyme from Azoarcus. RNA (NEW YORK, N.Y.) 2014; 20:202-213. [PMID: 24344321 PMCID: PMC3895272 DOI: 10.1261/rna.041012.113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 11/02/2013] [Indexed: 06/02/2023]
Abstract
Group I introns are ribozymes (catalytic RNAs) that excise themselves from RNA primary transcripts by catalyzing two successive transesterification reactions. These cis-splicing ribozymes can be converted into trans-splicing ribozymes, which can modify the sequence of a separate substrate RNA, both in vitro and in vivo. Previous work on trans-splicing ribozymes has mostly focused on the 16S rRNA group I intron ribozyme from Tetrahymena thermophila. Here, we test the trans-splicing potential of the tRNA(Ile) group I intron ribozyme from the bacterium Azoarcus. This ribozyme is only half the size of the Tetrahymena ribozyme and folds faster into its active conformation in vitro. Our results showed that in vitro, the Azoarcus and Tetrahymena ribozymes favored the same set of splice sites on a substrate RNA. Both ribozymes showed the same trans-splicing efficiency when containing their individually optimized 5' terminus. In contrast to the previously optimized 5'-terminal design of the Tetrahymena ribozyme, the Azoarcus ribozyme was most efficient with a trans-splicing design that resembled the secondary structure context of the natural cis-splicing Azoarcus ribozyme, which includes base-pairing between the substrate 5' portion and the ribozyme 3' exon. These results suggested preferred trans-splicing interactions for the Azoarcus ribozyme under near-physiological in vitro conditions. Despite the high activity in vitro, however, the splicing efficiency of the Azoarcus ribozyme in Escherichia coli cells was significantly below that of the Tetrahymena ribozyme.
Collapse
MESH Headings
- Azoarcus/enzymology
- Azoarcus/genetics
- Base Sequence
- Chloramphenicol O-Acetyltransferase/genetics
- Escherichia coli
- Inverted Repeat Sequences
- Molecular Sequence Data
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Protozoan/chemistry
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- Substrate Specificity
- Tetrahymena thermophila/enzymology
- Trans-Splicing
Collapse
|
15
|
Olson KE, Dolan GF, Müller UF. In vivo evolution of a catalytic RNA couples trans-splicing to translation. PLoS One 2014; 9:e86473. [PMID: 24466112 PMCID: PMC3900562 DOI: 10.1371/journal.pone.0086473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/09/2013] [Indexed: 12/17/2022] Open
Abstract
How does a non-coding RNA evolve in cells? To address this question experimentally we evolved a trans-splicing variant of the group I intron ribozyme from Tetrahymena over 21 cycles of evolution in E.coli cells. Sequence variation was introduced during the evolution by mutagenic and recombinative PCR, and increasingly active ribozymes were selected by their repair of an mRNA mediating antibiotic resistance. The most efficient ribozyme contained four clustered mutations that were necessary and sufficient for maximum activity in cells. Surprisingly, these mutations did not increase the trans-splicing activity of the ribozyme. Instead, they appear to have recruited a cellular protein, the transcription termination factor Rho, and facilitated more efficient translation of the ribozyme’s trans-splicing product. In addition, these mutations affected the expression of several other, unrelated genes. These results suggest that during RNA evolution in cells, four mutations can be sufficient to evolve new protein interactions, and four mutations in an RNA molecule can generate a large effect on gene regulation in the cell.
Collapse
Affiliation(s)
- Karen E. Olson
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Gregory F. Dolan
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Ulrich F. Müller
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Amini ZN, Müller UF. Low selection pressure aids the evolution of cooperative ribozyme mutations in cells. J Biol Chem 2013; 288:33096-106. [PMID: 24089519 DOI: 10.1074/jbc.m113.511469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding the evolution of functional RNA molecules is important for our molecular understanding of biology. Here we tested experimentally how two evolutionary parameters, selection pressure and recombination, influenced the evolution of an evolving RNA population. This was done using four parallel evolution experiments that employed low or gradually increasing selection pressure, and recombination events either at the end or dispersed throughout the evolution. As model system, a trans-splicing group I intron ribozyme was evolved in Escherichia coli cells over 12 rounds of selection and amplification, including mutagenesis and recombination. The low selection pressure resulted in higher efficiency of the evolved ribozyme populations, whereas differences in recombination did not have a strong effect. Five mutations were responsible for the highest efficiency. The first mutation swept quickly through all four evolving populations, whereas the remaining four mutations accumulated later and more efficiently under low selection pressure. To determine why low selection pressure aided this evolution, all evolutionary intermediates between the wild type and the 5-mutation variant were constructed, and their activities at three different selection pressures were determined. The resulting fitness profiles showed a high cooperativity among the four late mutations, which can explain why high selection pressure led to inefficient evolution. These results show experimentally how low selection pressure can benefit the evolution of cooperative mutations in functional RNAs.
Collapse
Affiliation(s)
- Zhaleh N Amini
- From the Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093
| | | |
Collapse
|