1
|
Abstract
Interactions between RNA and proteins are pervasive in biology, driving fundamental processes such as protein translation and participating in the regulation of gene expression. Modeling the energies of RNA-protein interactions is therefore critical for understanding and repurposing living systems but has been hindered by complexities unique to RNA-protein binding. Here, we bring together several advances to complete a calculation framework for RNA-protein binding affinities, including a unified free energy function for bound complexes, automated Rosetta modeling of mutations, and use of secondary structure-based energetic calculations to model unbound RNA states. The resulting Rosetta-Vienna RNP-ΔΔG method achieves root-mean-squared errors (RMSEs) of 1.3 kcal/mol on high-throughput MS2 coat protein-RNA measurements and 1.5 kcal/mol on an independent test set involving the signal recognition particle, human U1A, PUM1, and FOX-1. As a stringent test, the method achieves RMSE accuracy of 1.4 kcal/mol in blind predictions of hundreds of human PUM2-RNA relative binding affinities. Overall, these RMSE accuracies are significantly better than those attained by prior structure-based approaches applied to the same systems. Importantly, Rosetta-Vienna RNP-ΔΔG establishes a framework for further improvements in modeling RNA-protein binding that can be tested by prospective high-throughput measurements on new systems.
Collapse
|
2
|
Kappel K, Das R. Sampling Native-like Structures of RNA-Protein Complexes through Rosetta Folding and Docking. Structure 2018; 27:140-151.e5. [PMID: 30416038 DOI: 10.1016/j.str.2018.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/27/2018] [Accepted: 10/05/2018] [Indexed: 10/27/2022]
Abstract
RNA-protein complexes underlie numerous cellular processes including translation, splicing, and posttranscriptional regulation of gene expression. The structures of these complexes are crucial to their functions but often elude high-resolution structure determination. Computational methods are needed that can integrate low-resolution data for RNA-protein complexes while modeling de novo the large conformational changes of RNA components upon complex formation. To address this challenge, we describe RNP-denovo, a Rosetta method to simultaneously fold-and-dock RNA to a protein surface. On a benchmark set of diverse RNA-protein complexes not solvable with prior strategies, RNP-denovo consistently sampled native-like structures with better than nucleotide resolution. We revisited three past blind modeling challenges involving the spliceosome, telomerase, and a methyltransferase-ribosomal RNA complex in which previous methods gave poor results. When coupled with the same sparse FRET, crosslinking, and functional data used previously, RNP-denovo gave models with significantly improved accuracy. These results open a route to modeling global folds of RNA-protein complexes from low-resolution data.
Collapse
Affiliation(s)
- Kalli Kappel
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Rhiju Das
- Biophysics Program, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Physics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Weber G, DeKoster GT, Holton N, Hall KB, Wahl MC. Molecular principles underlying dual RNA specificity in the Drosophila SNF protein. Nat Commun 2018; 9:2220. [PMID: 29880797 PMCID: PMC5992148 DOI: 10.1038/s41467-018-04561-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 05/02/2018] [Indexed: 12/22/2022] Open
Abstract
The first RNA recognition motif of the Drosophila SNF protein is an example of an RNA binding protein with multi-specificity. It binds different RNA hairpin loops in spliceosomal U1 or U2 small nuclear RNAs, and only in the latter case requires the auxiliary U2A' protein. Here we investigate its functions by crystal structures of SNF alone and bound to U1 stem-loop II, U2A' or U2 stem-loop IV and U2A', SNF dynamics from NMR spectroscopy, and structure-guided mutagenesis in binding studies. We find that different loop-closing base pairs and a nucleotide exchange at the tips of the loops contribute to differential SNF affinity for the RNAs. U2A' immobilizes SNF and RNA residues to restore U2 stem-loop IV binding affinity, while U1 stem-loop II binding does not require such adjustments. Our findings show how U2A' can modulate RNA specificity of SNF without changing SNF conformation or relying on direct RNA contacts.
Collapse
Affiliation(s)
- Gert Weber
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustraße 6, D-14195, Berlin, Germany. .,Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Straße 15, D-12489, Berlin, Germany.
| | - Gregory T DeKoster
- Department of Biochemistry and Molecular Biophysics, Washington University Medical School, St. Louis, Missouri, 63110, USA
| | - Nicole Holton
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustraße 6, D-14195, Berlin, Germany
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University Medical School, St. Louis, Missouri, 63110, USA.
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustraße 6, D-14195, Berlin, Germany. .,Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Straße 15, D-12489, Berlin, Germany.
| |
Collapse
|
4
|
Medvedev KE, Kolchanov NA, Afonnikov DA. High temperature and pressure influence the interdomain orientation of Nip7 proteins from P. abyssi and P. furiosus: MD simulations. J Biomol Struct Dyn 2017; 36:68-82. [DOI: 10.1080/07391102.2016.1268070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kirill E. Medvedev
- Systems Biology Department, Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nikolay A. Kolchanov
- Systems Biology Department, Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia
- Chair of Informational Biology, Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Dmitry A. Afonnikov
- Systems Biology Department, Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia
- Chair of Informational Biology, Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| |
Collapse
|
5
|
Rakesh R, Joseph AP, Bhaskara RM, Srinivasan N. Structural and mechanistic insights into human splicing factor SF3b complex derived using an integrated approach guided by the cryo-EM density maps. RNA Biol 2016; 13:1025-1040. [PMID: 27618338 DOI: 10.1080/15476286.2016.1218590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pre-mRNA splicing in eukaryotes is performed by the spliceosome, a highly complex macromolecular machine. SF3b is a multi-protein complex which recognizes the branch point adenosine of pre-mRNA as part of a larger U2 snRNP or U11/U12 di-snRNP in the dynamic spliceosome machinery. Although a cryo-EM map is available for human SF3b complex, the structure and relative spatial arrangement of all components in the complex are not yet known. We have recognized folds of domains in various proteins in the assembly and generated comparative models. Using an integrative approach involving structural and other experimental data, guided by the available cryo-EM density map, we deciphered a pseudo-atomic model of the closed form of SF3b which is found to be a "fuzzy complex" with highly flexible components and multiplicity of folds. Further, the model provides structural information for 5 proteins (SF3b10, SF3b155, SF3b145, SF3b130 and SF3b14b) and localization information for 4 proteins (SF3b10, SF3b145, SF3b130 and SF3b14b) in the assembly for the first time. Integration of this model with the available U11/U12 di-snRNP cryo-EM map enabled elucidation of an open form. This now provides new insights on the mechanistic features involved in the transition between closed and open forms pivoted by a hinge region in the SF3b155 protein that also harbors cancer causing mutations. Moreover, the open form guided model of the 5' end of U12 snRNA, which includes the branch point duplex, shows that the architecture of SF3b acts as a scaffold for U12 snRNA: pre-mRNA branch point duplex formation with potential implications for branch point adenosine recognition fidelity.
Collapse
Affiliation(s)
- Ramachandran Rakesh
- a Molecular Biophysics Unit, Indian Institute of Science , Bangalore , India
| | - Agnel Praveen Joseph
- b National Center for Biological Sciences, TIFR, GKVK Campus , Bangalore , India
| | - Ramachandra M Bhaskara
- a Molecular Biophysics Unit, Indian Institute of Science , Bangalore , India.,b National Center for Biological Sciences, TIFR, GKVK Campus , Bangalore , India
| | | |
Collapse
|
6
|
Pawlica P, Moss WN, Steitz JA. Host miRNA degradation by Herpesvirus saimiri small nuclear RNA requires an unstructured interacting region. RNA (NEW YORK, N.Y.) 2016; 22:1181-9. [PMID: 27335146 PMCID: PMC4931111 DOI: 10.1261/rna.054817.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 05/16/2016] [Indexed: 06/06/2023]
Abstract
Herpesvirus saimiri, an oncogenic herpesvirus, during latency produces seven small nuclear RNAs, called the Herpesvirus saimiri U RNAs (HSUR1-7). HSUR1 mediates degradation of the host microRNA, miR-27, via a process that requires imperfect base-pairing. The decreased levels of miR-27 lead to prolonged T-cell activation and likely contribute to oncogenesis. To gain insight into HSUR1-mediated degradation of miR-27, we probed the in vivo secondary structure of HSUR1 and coupled this with bioinformatic structural analyses. The results suggest that HSUR1 adopts a conformation different than previously believed and that the region complementary to miR-27 lacks stable structure. To determine whether HSUR1 structural flexibility is important for its ability to mediate miR-27 degradation, we performed structurally informative mutagenic analyses of HSUR1. HSUR1 mutants in which the miR-27 binding site sequence is preserved, but sequestered in predicted helices, lose their ability to decrease miR-27 levels. These results indicate that the HSUR1 miR27-binding region must be available in a conformationally flexible segment for noncoding RNA function.
Collapse
Affiliation(s)
- Paulina Pawlica
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Walter N Moss
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
7
|
Juneja A, Villa A, Nilsson L. Elucidating the Relation between Internal Motions and Dihedral Angles in an RNA Hairpin Using Molecular Dynamics. J Chem Theory Comput 2015; 10:3532-40. [PMID: 26588317 DOI: 10.1021/ct500203m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Molecular dynamics simulations were performed to characterize the internal motions of the ribonucleic acid apical stem loop of human hepatitis B virus. The NMR relaxation rates calculated directly from the trajectory are in good agreement with the experiment. Calculated order parameters follow the experimental pattern. Order parameters lower than 0.8 are observed for nucleotides that are weakly hydrogen bonded to their base pair partner, unpaired, or part of the loop. These residues show slow decay of the internal correlation functions of their base and sugar C-H vectors. Concerted motions around backbone dihedral angles influence the amplitude of motion of the sugar and base C-H vectors. The order parameters for base C-H vectors are also affected by the fluctuation of the glycosidic dihedral angle.
Collapse
Affiliation(s)
- Alok Juneja
- Department of Biosciences and Nutrition, Center of Biosciences, Karolinska Institutet , SE-141 83 Huddinge, Sweden
| | - Alessandra Villa
- Department of Biosciences and Nutrition, Center of Biosciences, Karolinska Institutet , SE-141 83 Huddinge, Sweden
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Center of Biosciences, Karolinska Institutet , SE-141 83 Huddinge, Sweden
| |
Collapse
|
8
|
A compare-and-contrast NMR dynamics study of two related RRMs: U1A and SNF. Biophys J 2015; 107:208-19. [PMID: 24988355 DOI: 10.1016/j.bpj.2014.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 05/14/2014] [Accepted: 05/19/2014] [Indexed: 11/21/2022] Open
Abstract
The U1A/U2B″/SNF family of small nuclear ribonucleoproteins uses a phylogenetically conserved RNA recognition motif (RRM1) to bind RNA stemloops in U1 and/or U2 small nuclear RNA (snRNA). RRMs are characterized by their α/β sandwich topology, and these RRMs use their β-sheet as the RNA binding surface. Unique to this RRM family is the tyrosine-glutamine-phenylalanine (YQF) triad of solvent-exposed residues that are displayed on the β-sheet surface; the aromatic residues form a platform for RNA nucleobases to stack. U1A, U2B″, and SNF have very different patterns of RNA binding affinity and specificity, however, so here we ask how YQF in Drosophila SNF RRM1 contributes to RNA binding, as well as to domain stability and dynamics. Thermodynamic double-mutant cycles using tyrosine and phenylalanine substitutions probe the communication between those two residues in the free and bound states of the RRM. NMR experiments follow corresponding changes in the glutamine side-chain amide in both U1A and SNF, providing a physical picture of the RRM1 β-sheet surface. NMR relaxation and dispersion experiments compare fast (picosecond to nanosecond) and intermediate (microsecond-to-millisecond) dynamics of U1A and SNF RRM1. We conclude that there is a network of amino acid interactions involving Tyr-Gln-Phe in both SNF and U1A RRM1, but whereas mutations of the Tyr-Gln-Phe triad result in small local responses in U1A, they produce extensive microsecond-to-millisecond global motions throughout SNF that alter the conformational states of the RRM.
Collapse
|
9
|
Dishler AL, McMichael EL, Serra MJ. Determination of the secondary structure of group II bulge loops using the fluorescent probe 2-aminopurine. RNA (NEW YORK, N.Y.) 2015; 21:975-984. [PMID: 25805856 PMCID: PMC4408803 DOI: 10.1261/rna.048306.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/17/2015] [Indexed: 06/04/2023]
Abstract
Eleven RNA hairpins containing 2-aminopurine (2-AP) in either base-paired or single nucleotide bulge loop positions were optically melted in 1 M NaCl; and, the thermodynamic parameters ΔH°, ΔS°, ΔG°37, and TM for each hairpin were determined. Substitution of 2-AP for an A (adenosine) at a bulge position (where either the 2-AP or A is the bulge) in the stem of a hairpin, does not affect the stability of the hairpin. For group II bulge loops such as AA/U, where there is ambiguity as to which of the A residues is paired with the U, hairpins with 2-AP substituted for either the 5' or 3' position in the hairpin stem have similar stability. Fluorescent melts were performed to monitor the environment of the 2-AP. When the 2-AP was located distal to the hairpin loop on either the 5' or 3' side of the hairpin stem, the change in fluorescent intensity upon heating was indicative of an unpaired nucleotide. A database of phylogenetically determined RNA secondary structures was examined to explore the presence of naturally occurring bulge loops embedded within a hairpin stem. The distribution of bulge loops is discussed and related to the stability of hairpin structures.
Collapse
Affiliation(s)
- Abigael L Dishler
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, USA
| | | | - Martin J Serra
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, USA
| |
Collapse
|
10
|
Mouzakis KD, Dethoff EA, Tonelli M, Al-Hashimi H, Butcher SE. Dynamic motions of the HIV-1 frameshift site RNA. Biophys J 2015; 108:644-54. [PMID: 25650931 PMCID: PMC4317556 DOI: 10.1016/j.bpj.2014.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/11/2014] [Accepted: 12/05/2014] [Indexed: 12/13/2022] Open
Abstract
The HIV-1 frameshift site (FS) plays a critical role in viral replication. During translation, the HIV-1 FS transitions from a 3-helix to a 2-helix junction RNA secondary structure. The 2-helix junction structure contains a GGA bulge, and purine-rich bulges are common motifs in RNA secondary structure. Here, we investigate the dynamics of the HIV-1 FS 2-helix junction RNA. Interhelical motions were studied under different ionic conditions using NMR order tensor analysis of residual dipolar couplings. In 150 mM potassium, the RNA adopts a 43°(±4°) interhelical bend angle (β) and displays large amplitude, anisotropic interhelical motions characterized by a 0.52(±0.04) internal generalized degree of order (GDOint) and distinct order tensor asymmetries for its two helices (η = 0.26(±0.04) and 0.5(±0.1)). These motions are effectively quenched by addition of 2 mM magnesium (GDOint = 0.87(±0.06)), which promotes a near-coaxial conformation (β = 15°(±6°)) of the two helices. Base stacking in the bulge was investigated using the fluorescent purine analog 2-aminopurine. These results indicate that magnesium stabilizes extrahelical conformations of the bulge nucleotides, thereby promoting coaxial stacking of helices. These results are highly similar to previous studies of the HIV transactivation response RNA, despite a complete lack of sequence similarity between the two RNAs. Thus, the conformational space of these RNAs is largely determined by the topology of their interhelical junctions.
Collapse
Affiliation(s)
- Kathryn D Mouzakis
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Elizabeth A Dethoff
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Marco Tonelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
11
|
Bai Y, Tambe A, Zhou K, Doudna JA. RNA-guided assembly of Rev-RRE nuclear export complexes. eLife 2014; 3:e03656. [PMID: 25163983 PMCID: PMC4142337 DOI: 10.7554/elife.03656] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/05/2014] [Indexed: 11/13/2022] Open
Abstract
HIV replication requires nuclear export of unspliced and singly spliced viral transcripts. Although a unique RNA structure has been proposed for the Rev-response element (RRE) responsible for viral mRNA export, how it recruits multiple HIV Rev proteins to form an export complex has been unclear. We show here that initial binding of Rev to the RRE triggers RNA tertiary structural changes, enabling further Rev binding and the rapid formation of a viral export complex. Analysis of the Rev-RRE assembly pathway using SHAPE-Seq and small-angle X-ray scattering (SAXS) reveals two major steps of Rev-RRE complex formation, beginning with rapid Rev binding to a pre-organized region presenting multiple Rev binding sites. This step induces long-range remodeling of the RNA to expose a cryptic Rev binding site, enabling rapid assembly of additional Rev proteins into the RNA export complex. This kinetic pathway may help maintain the balance between viral replication and maturation.DOI: http://dx.doi.org/10.7554/eLife.03656.001.
Collapse
Affiliation(s)
- Yun Bai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Akshay Tambe
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Kaihong Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States Department of Chemistry, University of California, Berkeley, Berkeley, United States Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
12
|
Abstract
Drosophila SNF is a member of the U1A/U2B″/SNF protein family that is found in U1 and U2 snRNPs, where it binds to Stemloop II and Stemloop IV of U1 and U2 snRNA, respectively. SNF also binds to the U2A' protein, but only in the U2 snRNP. Although previous reports have implicated U2A' as a necessary auxiliary protein for the binding of SNF to Stemloop IV, there are no mechanisms that explain the partitioning of U2A' to the U2 snRNP and its absence from the U1 snRNP. Using in vitro RNA binding isotherms and isothermal titration calorimetry, the thermodynamics of SNF/RNA/U2A' ternary complex formation have now been characterized. There is a very large binding cooperativity unique to Stemloop IV that favors formation of the SLIV/SNF/U2A' complex. The binding cooperativity, or heterotropic linkage, is interpreted with respect to linked conformational equilibria of both SNF and its RNA ligand and so represents an example of protein-RNA allostery.
Collapse
Affiliation(s)
- Sandra G Williams
- Department of Biochemistry and Molecular Biophysics, Washington University Medical School , St. Louis, Missouri 63110, United States
| | | |
Collapse
|
13
|
Protein-guided RNA dynamics during early ribosome assembly. Nature 2014; 506:334-8. [PMID: 24522531 PMCID: PMC3968076 DOI: 10.1038/nature13039] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/20/2014] [Indexed: 01/30/2023]
Abstract
The assembly of 30S ribosomes requires the precise addition of 20 proteins to the 16S ribosomal RNA. How early binding proteins change the rRNA structure so that later proteins may join the complex is poorly understood. Here we use single molecule fluorescence resonance energy transfer (smFRET) to observe real-time encounters between ribosomal protein S4 and the 16S 5′ domain RNA at an early stage of 30S assembly. Dynamic initial S4-RNA complexes pass through a stable non-native intermediate before converting to the native complex, showing that non-native structures can offer a low free energy path to protein-RNA recognition. Three-color FRET and molecular dynamics (MD) simulations reveal how S4 changes the frequency and direction of RNA helix motions, guiding a conformational switch that enforces the hierarchy of protein addition. This protein-guided dynamics offers an alternative explanation for induced fit in RNA-protein complexes.
Collapse
|
14
|
Stefanovic L, Longo L, Zhang Y, Stefanovic B. Characterization of binding of LARP6 to the 5' stem-loop of collagen mRNAs: implications for synthesis of type I collagen. RNA Biol 2014; 11:1386-401. [PMID: 25692237 PMCID: PMC4615758 DOI: 10.1080/15476286.2014.996467] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 01/11/2023] Open
Abstract
Type I collagen is composed of 2 polypeptides, α1(I) and α2(I), which fold into triple helix. Collagen α1(I) and α2(I) mRNAs have a conserved stem-loop structure in their 5' UTRs, the 5'SL. LARP6 binds the 5'SL to regulate type I collagen expression. We show that 5 nucleotides within the single stranded regions of 5'SL contribute to the high affinity of LARP6 binding. Mutation of individual nucleotides abolishes the binding in gel mobility shift assay. LARP6 binding to 5'SL of collagen α2(I) mRNA is more stable than the binding to 5'SL of α1(I) mRNA, although the equilibrium binding constants are similar. The more stable binding to α2(I) mRNA may favor synthesis of the heterotrimeric type I collagen. LARP6 needs 2 domains to contact 5'SL, the La domain and the RRM. T133 in the La domain is critical for folding of the protein, while loop 3 in the RRM is critical for binding 5'SL. Loop 3 is also involved in the interaction of LARP6 and protein translocation channel SEC61. This interaction is essential for type I collagen synthesis, because LARP6 mutant which binds 5'SL but which does not interact with SEC61, suppresses collagen synthesis in a dominant negative manner. We postulate that LARP6 directly targets collagen mRNAs to the SEC61 translocons to facilitate coordinated translation of the 2 collagen mRNAs. The unique sequences of LARP6 identified in this work may have evolved to enable its role in type I collagen biosynthesis.
Collapse
Affiliation(s)
- Lela Stefanovic
- Department of Biomedical Sciences; College of Medicine; Florida State University; Tallahassee, FL USA
- Current affiliation: Molecular Biophysics; Florida State University; Tallahassee, FL USA
| | - Liam Longo
- Current affiliation: Molecular Biophysics; Florida State University; Tallahassee, FL USA
| | - Yujie Zhang
- Department of Biomedical Sciences; College of Medicine; Florida State University; Tallahassee, FL USA
- Current affiliation: Molecular Biophysics; Florida State University; Tallahassee, FL USA
| | | |
Collapse
|