1
|
Glover ML, Burroughs AM, Monem PC, Egelhofer TA, Pule MN, Aravind L, Arribere JA. NONU-1 Encodes a Conserved Endonuclease Required for mRNA Translation Surveillance. Cell Rep 2021; 30:4321-4331.e4. [PMID: 32234470 DOI: 10.1016/j.celrep.2020.03.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 01/31/2020] [Accepted: 03/06/2020] [Indexed: 12/31/2022] Open
Abstract
Cellular translation surveillance rescues ribosomes that stall on problematic mRNAs. During translation surveillance, endonucleolytic cleavage of the problematic mRNA is a critical step in rescuing stalled ribosomes. Here we identify NONU-1 as a factor required for translation surveillance pathways including no-go and nonstop mRNA decay. We show that (1) NONU-1 reduces nonstop and no-go mRNA levels; (2) NONU-1 contains an Smr RNase domain required for mRNA decay; (3) the domain architecture and catalytic residues of NONU-1 are conserved throughout metazoans and eukaryotes, respectively; and (4) NONU-1 is required for the formation of mRNA cleavage fragments in the vicinity of stalled ribosomes. We extend our results in C. elegans to homologous factors in S. cerevisiae, showing the evolutionarily conserved function of NONU-1. Our work establishes the identity of a factor critical to translation surveillance and will inform mechanistic studies at the intersection of translation and mRNA decay.
Collapse
Affiliation(s)
- Marissa L Glover
- Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - A Max Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Parissa C Monem
- Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Thea A Egelhofer
- Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Makena N Pule
- Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Joshua A Arribere
- Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
2
|
Boguszewska K, Szewczuk M, Kaźmierczak-Barańska J, Karwowski BT. The Similarities between Human Mitochondria and Bacteria in the Context of Structure, Genome, and Base Excision Repair System. Molecules 2020; 25:E2857. [PMID: 32575813 PMCID: PMC7356350 DOI: 10.3390/molecules25122857] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondria emerged from bacterial ancestors during endosymbiosis and are crucial for cellular processes such as energy production and homeostasis, stress responses, cell survival, and more. They are the site of aerobic respiration and adenosine triphosphate (ATP) production in eukaryotes. However, oxidative phosphorylation (OXPHOS) is also the source of reactive oxygen species (ROS), which are both important and dangerous for the cell. Human mitochondria contain mitochondrial DNA (mtDNA), and its integrity may be endangered by the action of ROS. Fortunately, human mitochondria have repair mechanisms that allow protecting mtDNA and repairing lesions that may contribute to the occurrence of mutations. Mutagenesis of the mitochondrial genome may manifest in the form of pathological states such as mitochondrial, neurodegenerative, and/or cardiovascular diseases, premature aging, and cancer. The review describes the mitochondrial structure, genome, and the main mitochondrial repair mechanism (base excision repair (BER)) of oxidative lesions in the context of common features between human mitochondria and bacteria. The authors present a holistic view of the similarities of mitochondria and bacteria to show that bacteria may be an interesting experimental model for studying mitochondrial diseases, especially those where the mechanism of DNA repair is impaired.
Collapse
Affiliation(s)
| | | | | | - Bolesław T. Karwowski
- DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland; (K.B.); (M.S.); (J.K.-B.)
| |
Collapse
|
3
|
Saito M, Sato A, Nagata S, Tamaki S, Tomita M, Suzuki H, Kanai A. Large-Scale Molecular Evolutionary Analysis Uncovers a Variety of Polynucleotide Kinase Clp1 Family Proteins in the Three Domains of Life. Genome Biol Evol 2020; 11:2713-2726. [PMID: 31513263 PMCID: PMC6777427 DOI: 10.1093/gbe/evz195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2019] [Indexed: 01/13/2023] Open
Abstract
Clp1, a polyribonucleotide 5′-hydroxyl kinase in eukaryotes, is involved in pretRNA splicing and mRNA 3′-end formation. Enzymes similar in amino acid sequence to Clp1, Nol9, and Grc3, are present in some eukaryotes and are involved in prerRNA processing. However, our knowledge of how these Clp1 family proteins evolved and diversified is limited. We conducted a large-scale molecular evolutionary analysis of the Clp1 family proteins in all living organisms for which protein sequences are available in public databases. The phylogenetic distribution and frequencies of the Clp1 family proteins were investigated in complete genomes of Bacteria, Archaea and Eukarya. In total, 3,557 Clp1 family proteins were detected in the three domains of life, Bacteria, Archaea, and Eukarya. Many were from Archaea and Eukarya, but a few were found in restricted, phylogenetically diverse bacterial species. The domain structures of the Clp1 family proteins also differed among the three domains of life. Although the proteins were, on average, 555 amino acids long (range, 196–2,728), 122 large proteins with >1,000 amino acids were detected in eukaryotes. These novel proteins contain the conserved Clp1 polynucleotide kinase domain and various other functional domains. Of these proteins, >80% were from Fungi or Protostomia. The polyribonucleotide kinase activity of Thermus scotoductus Clp1 (Ts-Clp1) was characterized experimentally. Ts-Clp1 preferentially phosphorylates single-stranded RNA oligonucleotides (Km value for ATP, 2.5 µM), or single-stranded DNA at higher enzyme concentrations. We propose a comprehensive assessment of the diversification of the Clp1 family proteins and the molecular evolution of their functional domains.
Collapse
Affiliation(s)
- Motofumi Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Asako Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Shohei Nagata
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Satoshi Tamaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Haruo Suzuki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| |
Collapse
|
4
|
Moreno-Del Álamo M, Tabone M, Muñoz-Martínez J, Valverde JR, Alonso JC. Toxin ζ Reduces the ATP and Modulates the Uridine Diphosphate-N-acetylglucosamine Pool. Toxins (Basel) 2019; 11:E29. [PMID: 30634431 PMCID: PMC6356619 DOI: 10.3390/toxins11010029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/21/2018] [Accepted: 01/04/2019] [Indexed: 11/20/2022] Open
Abstract
Toxin ζ expression triggers a reversible state of dormancy, diminishes the pool of purine nucleotides, promotes (p)ppGpp synthesis, phosphorylates a fraction of the peptidoglycan precursor uridine diphosphate-N-acetylglucosamine (UNAG), leading to unreactive UNAG-P, induces persistence in a reduced subpopulation, and sensitizes cells to different antibiotics. Here, we combined computational analyses with biochemical experiments to examine the mechanism of toxin ζ action. Free ζ toxin showed low affinity for UNAG. Toxin ζ bound to UNAG hydrolyzed ATP·Mg2+, with the accumulation of ADP, Pi, and produced low levels of phosphorylated UNAG (UNAG-P). Toxin ζ, which has a large ATP binding pocket, may temporally favor ATP binding in a position that is distant from UNAG, hindering UNAG phosphorylation upon ATP hydrolysis. The residues D67, E116, R158 and R171, involved in the interaction with metal, ATP, and UNAG, were essential for the toxic and ATPase activities of toxin ζ; whereas the E100 and T128 residues were partially dispensable. The results indicate that ζ bound to UNAG reduces the ATP concentration, which indirectly induces a reversible dormant state, and modulates the pool of UNAG.
Collapse
Affiliation(s)
- María Moreno-Del Álamo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str., 28049 Madrid, Spain.
| | - Mariangela Tabone
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str., 28049 Madrid, Spain.
| | - Juan Muñoz-Martínez
- Scientific Computing Service, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str., 28049 Madrid, Spain.
| | - José R Valverde
- Scientific Computing Service, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str., 28049 Madrid, Spain.
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str., 28049 Madrid, Spain.
| |
Collapse
|
5
|
Oh J, Hong JI. Cation Effect on Fluorescent Sensing of Pyrophosphate by a Bis(Zn-DPA) Probe. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jinrok Oh
- Department of Chemistry; Seoul National University; Seoul 08826 South Korea
| | - Jong-In Hong
- Department of Chemistry; Seoul National University; Seoul 08826 South Korea
| |
Collapse
|
6
|
Pillon MC, Sobhany M, Stanley RE. Characterization of the molecular crosstalk within the essential Grc3/Las1 pre-rRNA processing complex. RNA (NEW YORK, N.Y.) 2018; 24:721-738. [PMID: 29440475 PMCID: PMC5900568 DOI: 10.1261/rna.065037.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Grc3 is an essential well-conserved eukaryotic polynucleotide kinase (PNK) that cooperates with the endoribonuclease Las1 to process the preribosomal RNA (rRNA). Aside from being dependent upon Las1 for coordinated kinase and nuclease function, little is known about Grc3 substrate specificity and the molecular mechanisms governing kinase activity. Here we characterize the kinase activity of Grc3 and identify key similarities and differences between Grc3 and other polynucleotide kinase family members. In contrast to other PNK family members, Grc3 has distinct substrate preference for RNA substrates in vitro. By disrupting conserved residues found at the Grc3 kinase active site, we identified specific residues required to support Grc3-directed Las1-mediated pre-rRNA cleavage in vitro and in vivo. The crosstalk between Grc3 and Las1 ensures the direct coupling of cleavage and phosphorylation during pre-rRNA processing. Taken together, our studies provide key insight into the polynucleotide kinase activity of the essential enzyme Grc3 and its molecular crosstalk with the endoribonuclease Las1.
Collapse
Affiliation(s)
- Monica C Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | - Mack Sobhany
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
7
|
Labandera AM, Uhrig RG, Colville K, Moorhead GB, Ng KKS. Structural basis for the preference of the Arabidopsis thaliana phosphatase RLPH2 for tyrosine-phosphorylated substrates. Sci Signal 2018; 11:11/524/eaan8804. [PMID: 29615518 DOI: 10.1126/scisignal.aan8804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Despite belonging to the phosphoserine- and phosphothreonine-specific phosphoprotein phosphatase (PPP) family, Arabidopsis thaliana Rhizobiales-like phosphatase 2 (RLPH2) strongly prefers substrates bearing phosphorylated tyrosine residues. We solved the structures of RLPH2 crystallized in the presence or absence of sodium tungstate. These structures revealed the presence of a central domain that forms a binding site for two divalent metal ions that closely resembles that of other PPP-family enzymes. Unique structural elements from two flanking domains suggest a mechanism for the selective dephosphorylation of phosphotyrosine residues. Cocrystallization with the phosphate mimetic tungstate also suggests how positively charged residues that are highly conserved in the RLPH2 class form an additional pocket that is specific for a phosphothreonine residue located near the phosphotyrosine residue that is bound to the active site. Site-directed mutagenesis confirmed that this auxiliary recognition element facilitates the recruitment of dual-phosphorylated substrates containing a pTxpY motif.
Collapse
Affiliation(s)
- Anne-Marie Labandera
- Department of Biological Sciences, University of Calgary, 2500 University Drive Northwest, Calgary, Alberta T2N 1N4, Canada
| | - R Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Keaton Colville
- Department of Biological Sciences, University of Calgary, 2500 University Drive Northwest, Calgary, Alberta T2N 1N4, Canada
| | - Greg B Moorhead
- Department of Biological Sciences, University of Calgary, 2500 University Drive Northwest, Calgary, Alberta T2N 1N4, Canada.
| | - Kenneth K S Ng
- Department of Biological Sciences, University of Calgary, 2500 University Drive Northwest, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
8
|
Characterization of Runella slithyformis HD-Pnk, a Bifunctional DNA/RNA End-Healing Enzyme Composed of an N-Terminal 2',3'-Phosphoesterase HD Domain and a C-Terminal 5'-OH Polynucleotide Kinase Domain. J Bacteriol 2017; 199:JB.00739-16. [PMID: 27895092 DOI: 10.1128/jb.00739-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/18/2016] [Indexed: 11/20/2022] Open
Abstract
5'- and 3'-end-healing reactions are key steps in nucleic acid break repair in which 5'-OH ends are phosphorylated by a polynucleotide kinase (Pnk) and 3'-PO4 or 2',3'-cyclic-PO4 ends are hydrolyzed by a phosphoesterase to generate the 5'-PO4 and 3'-OH termini required for sealing by classic polynucleotide ligases. End-healing and sealing enzymes are present in diverse bacterial taxa, often organized as modular units within a single multifunctional polypeptide or as subunits of a repair complex. Here we identify and characterize Runella slithyformis HD-Pnk as a novel bifunctional end-healing enzyme composed of an N-terminal 2',3'-phosphoesterase HD domain and a C-terminal 5'-OH polynucleotide kinase P-loop domain. HD-Pnk phosphorylates 5'-OH polynucleotides (9-mers or longer) in the presence of magnesium and any nucleoside triphosphate donor. HD-Pnk dephosphorylates RNA 2',3'-cyclic phosphate, RNA 3'-phosphate, RNA 2'-phosphate, and DNA 3'-phosphate ends in the presence of a transition metal cofactor, which can be nickel, copper, or cobalt. HD-Pnk homologs are present in genera from 11 bacterial phyla and are often encoded in an operon with a putative ATP-dependent polynucleotide ligase. IMPORTANCE The present study provides insights regarding the diversity of nucleic acid repair strategies via the characterization of Runella slithyformis HD-Pnk as the exemplar of a novel clade of dual 5'- and 3'-end-healing enzymes that phosphorylate 5'-OH termini and dephosphorylate 2',3'-cyclic-PO4, 3'-PO4, and 2'-PO4 ends. The distinctive feature of HD-Pnk is its domain composition, i.e., a fusion of an N-terminal HD phosphohydrolase module and a C-terminal P-loop polynucleotide kinase module. Homologs of Runella HD-Pnk with the same domain composition, same domain order, and similar polypeptide sizes are distributed widely among genera from 11 bacterial phyla.
Collapse
|
9
|
Burroughs AM, Aravind L. RNA damage in biological conflicts and the diversity of responding RNA repair systems. Nucleic Acids Res 2016; 44:8525-8555. [PMID: 27536007 PMCID: PMC5062991 DOI: 10.1093/nar/gkw722] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/08/2016] [Indexed: 12/16/2022] Open
Abstract
RNA is targeted in biological conflicts by enzymatic toxins or effectors. A vast diversity of systems which repair or ‘heal’ this damage has only recently become apparent. Here, we summarize the known effectors, their modes of action, and RNA targets before surveying the diverse systems which counter this damage from a comparative genomics viewpoint. RNA-repair systems show a modular organization with extensive shuffling and displacement of the constituent domains; however, a general ‘syntax’ is strongly maintained whereby systems typically contain: a RNA ligase (either ATP-grasp or RtcB superfamilies), nucleotidyltransferases, enzymes modifying RNA-termini for ligation (phosphatases and kinases) or protection (methylases), and scaffold or cofactor proteins. We highlight poorly-understood or previously-uncharacterized repair systems and components, e.g. potential scaffolding cofactors (Rot/TROVE and SPFH/Band-7 modules) with their respective cognate non-coding RNAs (YRNAs and a novel tRNA-like molecule) and a novel nucleotidyltransferase associating with diverse ligases. These systems have been extensively disseminated by lateral transfer between distant prokaryotic and microbial eukaryotic lineages consistent with intense inter-organismal conflict. Components have also often been ‘institutionalized’ for non-conflict roles, e.g. in RNA-splicing and in RNAi systems (e.g. in kinetoplastids) which combine a distinct family of RNA-acting prim-pol domains with DICER-like proteins.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
10
|
Structures of bacterial polynucleotide kinase in a michaelis complex with nucleoside triphosphate (NTP)-Mg2+ and 5'-OH RNA and a mixed substrate-product complex with NTP-Mg2+ and a 5'-phosphorylated oligonucleotide. J Bacteriol 2014; 196:4285-92. [PMID: 25266383 DOI: 10.1128/jb.02197-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium thermocellum polynucleotide kinase (CthPnk), the 5'-end-healing module of a bacterial RNA repair system, catalyzes reversible phosphoryl transfer from a nucleoside triphosphate (NTP) donor to a 5'-OH polynucleotide acceptor, either DNA or RNA. Here we report the 1.5-Å crystal structure of CthPnk-D38N in a Michaelis complex with GTP-Mg(2+) and a 5'-OH RNA oligonucleotide. The RNA-binding mode of CthPnk is different from that of the metazoan RNA kinase Clp1. CthPnk makes hydrogen bonds to the ribose 2'-hydroxyls of the 5' terminal nucleoside, via Gln51, and the penultimate nucleoside, via Gln83. The 5'-terminal nucleobase is sandwiched by Gln51 and Val129. Mutating Gln51 or Val129 to alanine reduced kinase specific activity 3-fold. Ser37 and Thr80 donate functionally redundant hydrogen bonds to the terminal phosphodiester; a S37A-T80A double mutation reduced kinase activity 50-fold. Crystallization of catalytically active CthPnk with GTP-Mg(2+) and a 5'-OH DNA yielded a mixed substrate-product complex with GTP-Mg(2+) and 5'-PO4 DNA, wherein the product 5' phosphate group is displaced by the NTP γ phosphate and the local architecture of the acceptor site is perturbed.
Collapse
|
11
|
Dikfidan A, Loll B, Zeymer C, Magler I, Clausen T, Meinhart A. RNA specificity and regulation of catalysis in the eukaryotic polynucleotide kinase Clp1. Mol Cell 2014; 54:975-986. [PMID: 24813946 DOI: 10.1016/j.molcel.2014.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/27/2014] [Accepted: 04/03/2014] [Indexed: 12/19/2022]
Abstract
RNA-specific polynucleotide kinases of the Clp1 subfamily are key components of various RNA maturation pathways. However, the structural basis explaining their substrate specificity and the enzymatic mechanism is elusive. Here, we report crystal structures of Clp1 from Caenorhabditis elegans (ceClp1) in a number of nucleotide- and RNA-bound states along the reaction pathway. The combined structural and biochemical analysis of ceClp1 elucidates the RNA specificity and lets us derive a general model for enzyme catalysis of RNA-specific polynucleotide kinases. We identified an RNA binding motif referred to as "clasp" as well as a conformational switch that involves the essential Walker A lysine (Lys127) and regulates the enzymatic activity of ceClp1. Structural comparison with other P loop proteins, such as kinases, adenosine triphosphatases (ATPases), and guanosine triphosphatases (GTPases), suggests that the observed conformational switch of the Walker A lysine is a broadly relevant mechanistic feature.
Collapse
Affiliation(s)
- Aytac Dikfidan
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Bernhard Loll
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg 69120, Germany; Institute for Chemistry and Biochemistry/Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Cathleen Zeymer
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Iris Magler
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Tim Clausen
- Research Institute of Molecular Pathology, Vienna 1030, Austria
| | - Anton Meinhart
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg 69120, Germany.
| |
Collapse
|
12
|
Remus BS, Shuman S. Distinctive kinetics and substrate specificities of plant and fungal tRNA ligases. RNA (NEW YORK, N.Y.) 2014; 20:462-73. [PMID: 24554441 PMCID: PMC3964908 DOI: 10.1261/rna.043752.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/07/2014] [Indexed: 05/23/2023]
Abstract
Plant and fungal tRNA ligases are trifunctional enzymes that repair RNA breaks with 2',3'-cyclic-PO4 and 5'-OH ends. They are composed of cyclic phosphodiesterase (CPDase) and polynucleotide kinase domains that heal the broken ends to generate the 3'-OH, 2'-PO4, and 5'-PO4 required for sealing by a ligase domain. Here, we use short HORNA>p substrates to determine, in a one-pot assay format under single-turnover conditions, the order and rates of the CPDase, kinase and ligase steps. The observed reaction sequence for the plant tRNA ligase AtRNL, independent of RNA length, is that the CPDase engages first, converting HORNA>p to HORNA2'p, which is then phosphorylated to pRNA2'p by the kinase. Whereas the rates of the AtRNL CPDase and kinase reactions are insensitive to RNA length, the rate of the ligase reaction is slowed by a factor of 16 in the transition from 10-mer RNA to 8-mer and further by eightfold in the transition from 8-mer RNA to 6-mer. We report that a single ribonucleoside-2',3'-cyclic-PO4 moiety enables AtRNL to efficiently splice an otherwise all-DNA strand. Our characterization of a fungal tRNA ligase (KlaTrl1) highlights important functional distinctions vis à vis the plant homolog. We find that (1) the KlaTrl1 kinase is 300-fold faster than the AtRNL kinase; and (2) the KlaTrl1 kinase is highly specific for GTP or dGTP as the phosphate donor. Our findings recommend tRNA ligase as a tool to map ribonucleotides embedded in DNA and as a target for antifungal drug discovery.
Collapse
|
13
|
Effects of 3'-OH and 5'-PO4 base mispairs and damaged base lesions on the fidelity of nick sealing by Deinococcus radiodurans RNA ligase. J Bacteriol 2014; 196:1704-12. [PMID: 24532777 DOI: 10.1128/jb.00020-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Deinococcus radiodurans RNA ligase (DraRnl) is the founding member of a family of end-joining enzymes encoded by diverse microbes and viruses. DraRnl ligates 3'-OH, 5'-PO4 nicks in double-stranded nucleic acids in which the nick 3'-OH end is RNA. Here we gauge the effects of 3'-OH and 5'-PO4 base mispairs and damaged base lesions on the rate of nick sealing. DraRnl is indifferent to the identity of the 3'-OH nucleobase, provided that it is correctly paired. With 3'-OH mispairs, the DraRnl sealing rate varies widely, with G-T and A-C mispairs being the best substrates and G-G, G-A, and A-A mispairs being the worst. DraRnl accepts 3' A-8-oxoguanine (oxoG) to be correctly paired, while it discriminates against U-oxoG and G-oxoG mispairs. DraRnl displays high activity and low fidelity in sealing 3'-OH ends opposite an 8-oxoadenine lesion. It prefers 3'-OH adenosine when sealing opposite an abasic template site. With 5'-PO4 mispairs, DraRnl seals a 5' T-G mispair as well as it does a 5' C-G pair; in most other respects, the ligation fidelity at 5' mispairs is similar to that at 3' mispairs. DraRnl accepts a 5' A-oxoG end to be correctly paired, yet it is more tolerant of 5' T-oxoG and 5' G-oxoG mispairs than the equivalent configurations on the 3' side of the nick. At 5' nucleobase-abasic site nicks, DraRnl prefers to ligate when the nucleobase is a purine. The biochemical properties of DraRnl are compatible with its participation in the templated repair of RNA damage or in the sealing of filled DNA gaps that have a 3' ribopatch.
Collapse
|
14
|
Rewriting the rules for end joining via enzymatic splicing of DNA 3'-PO4 and 5'-OH ends. Proc Natl Acad Sci U S A 2013; 110:20437-42. [PMID: 24218597 DOI: 10.1073/pnas.1314289110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
There are many biological contexts in which DNA damage generates "dirty" breaks with 3'-PO4 (or cyclic-PO4) and 5'-OH ends that cannot be sealed by DNA ligases. Here we show that the Escherichia coli RNA ligase RtcB can splice these dirty DNA ends via a unique chemical mechanism. RtcB transfers GMP from a covalent RtcB-GMP intermediate to a DNA 3'-PO4 to form a "capped" 3' end structure, DNA3'pp5'G. When a suitable DNA 5'-OH end is available, RtcB catalyzes attack of the 5'-OH on DNA3'pp5'G to form a 3'-5' phosphodiester splice junction. Our findings unveil an enzymatic capacity for DNA 3' capping and the sealing of DNA breaks with 3'-PO4 and 5'-OH termini, with implications for DNA repair and DNA rearrangements.
Collapse
|
15
|
Das U, Wang LK, Smith P, Jacewicz A, Shuman S. Structures of bacterial polynucleotide kinase in a Michaelis complex with GTP•Mg2+ and 5'-OH oligonucleotide and a product complex with GDP•Mg2+ and 5'-PO4 oligonucleotide reveal a mechanism of general acid-base catalysis and the determinants of phosphoacceptor recognition. Nucleic Acids Res 2013; 42:1152-61. [PMID: 24150947 PMCID: PMC3902929 DOI: 10.1093/nar/gkt936] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clostridium thermocellum polynucleotide kinase (CthPnk), the 5' end-healing module of a bacterial RNA repair system, catalyzes reversible phosphoryl transfer from an NTP donor to a 5'-OH polynucleotide acceptor. Here we report the crystal structures of CthPnk-D38N in a Michaelis complex with GTP•Mg(2+) and a 5'-OH oligonucleotide and a product complex with GDP•Mg(2+) and a 5'-PO4 oligonucleotide. The O5' nucleophile is situated 3.0 Å from the GTP γ phosphorus in the Michaelis complex, where it is coordinated by Asn38 and is apical to the bridging β phosphate oxygen of the GDP leaving group. In the product complex, the transferred phosphate has undergone stereochemical inversion and Asn38 coordinates the 5'-bridging phosphate oxygen of the oligonucleotide. The D38N enzyme is poised for catalysis, but cannot execute because it lacks Asp38-hereby implicated as the essential general base catalyst that abstracts a proton from the 5'-OH during the kinase reaction. Asp38 serves as a general acid catalyst during the 'reverse kinase' reaction by donating a proton to the O5' leaving group of the 5'-PO4 strand. The acceptor strand binding mode of CthPnk is distinct from that of bacteriophage T4 Pnk.
Collapse
Affiliation(s)
- Ushati Das
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
16
|
Das U, Wang LK, Smith P, Shuman S. Structural and biochemical analysis of the phosphate donor specificity of the polynucleotide kinase component of the bacterial pnkp•hen1 RNA repair system. Biochemistry 2013; 52:4734-43. [PMID: 23721485 DOI: 10.1021/bi400412x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Clostridium thermocellum Pnkp is the end-healing and end-sealing subunit of a bacterial RNA repair system. CthPnkp is composed of three catalytic modules: an N-terminal 5'-OH polynucleotide kinase, a central 2',3' phosphatase, and a C-terminal ligase. The crystal structure of the kinase domain bound to ATP•Mg(2+) revealed a rich network of ionic and hydrogen-bonding contacts to the α, β, and γ phosphates. By contrast, there are no enzymic contacts to the ribose and none with the adenine base other than a π-cation interaction with Arg116. Here we report that the enzyme uses ATP, GTP, CTP, UTP, or dATP as a phosphate donor for the 5'-OH kinase reaction. The enzyme also catalyzes the reverse reaction, in which a polynucleotide 5'-PO4 group is transferred to ADP, GDP, CDP, UDP, or dADP to form the corresponding NTP. We report new crystal structures of the kinase in complexes with GTP, CTP, UTP, and dATP in which the respective nucleobases are stacked on Arg116 but make no other enzymic contacts. Mutating Arg116 to alanine elicits a 10-fold increase in Km for ATP but has little effect on kcat. These findings illuminate the basis for nonspecific donor nucleotide utilization by a P-loop phosphotransferase.
Collapse
Affiliation(s)
- Ushati Das
- Molecular Biology Program, Sloan-Kettering Institute , New York, New York 10065, United States
| | | | | | | |
Collapse
|
17
|
Remus BS, Shuman S. A kinetic framework for tRNA ligase and enforcement of a 2'-phosphate requirement for ligation highlights the design logic of an RNA repair machine. RNA (NEW YORK, N.Y.) 2013; 19:659-69. [PMID: 23515942 PMCID: PMC3677281 DOI: 10.1261/rna.038406.113] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/22/2013] [Indexed: 05/23/2023]
Abstract
tRNA ligases are essential components of informational and stress-response pathways entailing repair of RNA breaks with 2',3'-cyclic phosphate and 5'-OH ends. Plant and fungal tRNA ligases comprise three catalytic domains. Phosphodiesterase and kinase modules heal the broken ends to generate the 3'-OH, 2'-PO₄, and 5'-PO₄ required for sealing by the ligase. We exploit RNA substrates with different termini to define rates of individual steps or subsets of steps along the repair pathway of plant ligase AtRNL. The results highlight rate-limiting transactions, how repair is affected by active-site mutations, and how mutations are bypassed by RNA alterations. We gain insights to 2'-PO₄ specificity by showing that AtRNL is deficient in transferring AMP to pRNAOH to form AppRNAOH but proficient at sealing pre-adenylylated AppRNAOH. This strategy for discriminating 2'-PO₄ versus 2'-OH ends provides a quality-control checkpoint to ensure that only purposeful RNA breaks are sealed and to avoid nonspecific "capping" of 5'-PO₄ ends.
Collapse
|
18
|
Wang LK, Smith P, Shuman S. Structure and mechanism of the 2',3' phosphatase component of the bacterial Pnkp-Hen1 RNA repair system. Nucleic Acids Res 2013; 41:5864-73. [PMID: 23595150 PMCID: PMC3675462 DOI: 10.1093/nar/gkt221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Pnkp is the end-healing and end-sealing component of an RNA repair system present in diverse bacteria from many phyla. Pnkp is composed of three catalytic modules: an N-terminal polynucleotide 5′ kinase, a central 2′,3′ phosphatase and a C-terminal ligase. The phosphatase module is a Mn2+-dependent phosphodiesterase–monoesterase that dephosphorylates 2′,3′-cyclic phosphate RNA ends. Here we report the crystal structure of the phosphatase domain of Clostridium thermocellum Pnkp with Mn2+ and citrate in the active site. The protein consists of a core binuclear metallo-phosphoesterase fold (exemplified by bacteriophage λ phosphatase) embellished by distinctive secondary structure elements. The active site contains a single Mn2+ in an octahedral coordination complex with Asp187, His189, Asp233, two citrate oxygens and a water. The citrate fills the binding site for the scissile phosphate, wherein it is coordinated by Arg237, Asn263 and His264. The citrate invades the site normally occupied by a second metal (engaged by Asp233, Asn263, His323 and His376), and thereby dislocates His376. A continuous tract of positive surface potential flanking the active site suggests an RNA binding site. The structure illuminates a large body of mutational data regarding the metal and substrate specificity of Clostridium thermocellum Pnkp phosphatase.
Collapse
Affiliation(s)
- Li Kai Wang
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | |
Collapse
|