1
|
Ghosh S, Wimberly-Gard G, Jacewicz A, Schwer B, Shuman S. Identification, characterization, and structure of a tRNA splicing enzyme RNA 5'-OH kinase from the pathogenic fungi Mucorales. RNA (NEW YORK, N.Y.) 2024; 30:1674-1685. [PMID: 39357987 PMCID: PMC11571804 DOI: 10.1261/rna.080247.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Fungal Trl1 is an essential tRNA splicing enzyme composed of C-terminal cyclic phosphodiesterase and central polynucleotide kinase end-healing domains that convert the 2',3'-cyclic-PO4 and 5'-OH ends of tRNA exons into the 3'-OH,2'-PO4 and 5'-PO4 termini required for sealing by an N-terminal ATP-dependent ligase domain. Trifunctional Trl1 enzymes are present in most human fungal pathogens and are untapped targets for antifungal drug discovery. Mucorales species, deemed high-priority human pathogens by WHO, elaborate a noncanonical tRNA splicing apparatus in which a stand-alone monofunctional RNA ligase enzyme joins 3'-OH,2'-PO4 and 5'-PO4 termini. Here we identify a stand-alone Mucor circinelloides polynucleotide kinase (MciKIN) and affirm its biological activity in tRNA splicing by genetic complementation in yeast. Recombinant MciKIN catalyzes magnesium-dependent phosphorylation of 5'-OH RNA and DNA ends in vitro. MciKIN displays a strong preference for GTP as the phosphate donor in the kinase reaction, a trait shared with the stand-alone RNA kinase homologs from Mucorales species Rhizopus azygosporus (RazKIN) and Lichtheimia corymbifera (LcoKIN) and with the kinase domains of fungal Trl1 enzymes. We report a 1.65 Å crystal structure of RazKIN in complex with GDP•Mg2+ that illuminates the basis for guanosine nucleotide specificity.
Collapse
Affiliation(s)
- Shreya Ghosh
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Gina Wimberly-Gard
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Agata Jacewicz
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Beate Schwer
- Microbiology and Immunology Department, Weill Cornell Medical College, New York, New York 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
2
|
Ghosh S, Dantuluri S, Jacewicz A, Sanchez AM, Abdullahu L, Damha MJ, Schwer B, Shuman S. Characterization of tRNA splicing enzymes RNA ligase and tRNA 2'-phosphotransferase from the pathogenic fungi Mucorales. RNA (NEW YORK, N.Y.) 2024; 30:367-380. [PMID: 38238085 PMCID: PMC10946426 DOI: 10.1261/rna.079911.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/09/2024] [Indexed: 03/20/2024]
Abstract
Fungal Trl1 is an essential trifunctional tRNA splicing enzyme that heals and seals tRNA exons with 2',3'-cyclic-PO4 and 5'-OH ends. Trl1 is composed of C-terminal cyclic phosphodiesterase and central polynucleotide kinase end-healing domains that generate the 3'-OH,2'-PO4 and 5'-PO4 termini required for sealing by an N-terminal ATP-dependent ligase domain. Trl1 enzymes are present in many human fungal pathogens and are promising targets for antifungal drug discovery because their domain structures and biochemical mechanisms are unique compared to the mammalian RtcB-type tRNA splicing enzyme. Here we report that Mucorales species (deemed high-priority human pathogens by WHO) elaborate a noncanonical tRNA splicing apparatus in which a monofunctional RNA ligase enzyme is encoded separately from any end-healing enzymes. We show that Mucor circinelloides RNA ligase (MciRNL) is active in tRNA splicing in vivo in budding yeast in lieu of the Trl1 ligase domain. Biochemical and kinetic characterization of recombinant MciRNL underscores its requirement for a 2'-PO4 terminus in the end-joining reaction, whereby the 2'-PO4 enhances the rates of RNA 5'-adenylylation (step 2) and phosphodiester synthesis (step 3) by ∼125-fold and ∼6200-fold, respectively. In the canonical fungal tRNA splicing pathway, the splice junction 2'-PO4 installed by RNA ligase is removed by a dedicated NAD+-dependent RNA 2'-phosphotransferase Tpt1. Here we identify and affirm by genetic complementation in yeast the biological activity of Tpt1 orthologs from three Mucorales species. Recombinant M. circinelloides Tpt1 has vigorous NAD+-dependent RNA 2'-phosphotransferase activity in vitro.
Collapse
Affiliation(s)
- Shreya Ghosh
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Swathi Dantuluri
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Agata Jacewicz
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ana M Sanchez
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York 10065, USA
| | - Leonora Abdullahu
- Department of Chemistry, McGill University, Montreal, Quebec H3A0B8, Canada
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec H3A0B8, Canada
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
3
|
Abstract
Enzymes that phosphorylate, dephosphorylate, and ligate RNA 5' and 3' ends were discovered more than half a century ago and were eventually shown to repair purposeful site-specific endonucleolytic breaks in the RNA phosphodiester backbone. The pace of discovery and characterization of new candidate RNA repair activities in taxa from all phylogenetic domains greatly exceeds our understanding of the biological pathways in which they act. The key questions anent RNA break repair in vivo are (a) identifying the triggers, agents, and targets of RNA cleavage and (b) determining whether RNA repair results in restoration of the original RNA, modification of the RNA (by loss or gain at the ends), or rearrangements of the broken RNA segments (i.e., RNA recombination). This review provides a perspective on the discovery, mechanisms, and physiology of purposeful RNA break repair, highlighting exemplary repair pathways (e.g., tRNA restriction-repair and tRNA splicing) for which genetics has figured prominently in their elucidation.
Collapse
Affiliation(s)
- Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA;
| |
Collapse
|
4
|
Syed Abuthakir MH, Sharmila V, Jeyam M. Screening Balanites aegyptiaca for inhibitors against putative drug targets in Microsporum gypseum - Subtractive proteome, docking and simulation approach. INFECTION GENETICS AND EVOLUTION 2021; 90:104755. [PMID: 33549764 DOI: 10.1016/j.meegid.2021.104755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/31/2020] [Accepted: 01/31/2021] [Indexed: 02/07/2023]
Abstract
Microsporum gypseum is a keratinophilic fungi grouped under dermatophytes infecting skin, hair and nail portions in human and animals causing tinea corporis, tinea facei and tinea capitis. As both human and fungi are eukaryotes, the available drugs for treating dermatophytes produce some side effects due to drug interaction with human also. Apart from this, the gut microbiota has a very big role in the health of human which should not be affected by the drugs. Hence this study focused on finding a target which is unique and essential to M. gypseum and non-homologous to human and gut microbiota, non-homologous to human domain architecture, highly interacting with other proteins, sub-cellular localization of proteins and non-druggability analysis of the targets using subtractive proteomics approach which resulted with 3 novel drug targets from M. gypseum which were modeled using I-TASSER, refined by ModRefiner and validated by PROCHECK. Further these targets were docked with compounds identified through LC-MS of fractioned methanol extract of B. aegyptiaca fruit pulp using Glide module and the stability of the docked complex was analyzed by molecular dynamics simulation using Desmond module of Schrodinger. Cyanidin-3-O-rhamnoside had better interaction with all the targets and Taurocholic acid had better result with ECCP which suggests the multi-targeting potency of these two compounds against M. gypseum which has to be confirmed by in vitro and in vivo studies.
Collapse
Affiliation(s)
| | - Velusamy Sharmila
- Biochematics Lab, Department of Bioinformatics, Bharathiar University, Coimbatore., India
| | - Muthusamy Jeyam
- Biochematics Lab, Department of Bioinformatics, Bharathiar University, Coimbatore., India.
| |
Collapse
|
5
|
Banerjee A, Goldgur Y, Schwer B, Shuman S. Atomic structures of the RNA end-healing 5'-OH kinase and 2',3'-cyclic phosphodiesterase domains of fungal tRNA ligase: conformational switches in the kinase upon binding of the GTP phosphate donor. Nucleic Acids Res 2020; 47:11826-11838. [PMID: 31722405 PMCID: PMC7145591 DOI: 10.1093/nar/gkz1049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 01/17/2023] Open
Abstract
Fungal tRNA ligase (Trl1) rectifies RNA breaks with 2′,3′-cyclic-PO4 and 5′-OH termini. Trl1 consists of three catalytic modules: an N-terminal ligase (LIG) domain; a central polynucleotide kinase (KIN) domain; and a C-terminal cyclic phosphodiesterase (CPD) domain. Trl1 enzymes found in all human fungal pathogens are untapped targets for antifungal drug discovery. Here we report a 1.9 Å crystal structure of Trl1 KIN-CPD from the pathogenic fungus Candida albicans, which adopts an extended conformation in which separate KIN and CPD domains are connected by an unstructured linker. CPD belongs to the 2H phosphotransferase superfamily by dint of its conserved central concave β sheet and interactions of its dual HxT motif histidines and threonines with phosphate in the active site. Additional active site motifs conserved among the fungal CPD clade of 2H enzymes are identified. We present structures of the Candida Trl1 KIN domain at 1.5 to 2.0 Å resolution—as apoenzyme and in complexes with GTP•Mg2+, IDP•PO4, and dGDP•PO4—that highlight conformational switches in the G-loop (which recognizes the guanine base) and lid-loop (poised over the nucleotide phosphates) that accompany nucleotide binding.
Collapse
Affiliation(s)
- Ankan Banerjee
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Yehuda Goldgur
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Beate Schwer
- Microbiology and Immunology Department, Weill Cornell Medical College, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
6
|
Dantuluri S, Abdullahu L, Munir A, Katolik A, Damha MJ, Shuman S. Substrate analogs that trap the 2'-phospho-ADP-ribosylated RNA intermediate of the Tpt1 (tRNA 2'-phosphotransferase) reaction pathway. RNA (NEW YORK, N.Y.) 2020; 26:373-381. [PMID: 31932322 PMCID: PMC7075268 DOI: 10.1261/rna.074377.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 05/06/2023]
Abstract
The enzyme Tpt1 removes an internal RNA 2'-PO4 via a two-step reaction in which: (i) the 2'-PO4 attacks NAD+ to form an RNA-2'-phospho-(ADP-ribose) intermediate and nicotinamide; and (ii) transesterification of the ADP-ribose O2″ to the RNA 2'-phosphodiester yields 2'-OH RNA and ADP-ribose-1″,2″-cyclic phosphate. Because step 2 is much faster than step 1, the ADP-ribosylated RNA intermediate is virtually undetectable under normal circumstances. Here, by testing chemically modified nucleic acid substrates for activity with bacterial Tpt1 enzymes, we find that replacement of the ribose-2'-PO4 nucleotide with arabinose-2'-PO4 selectively slows step 2 of the reaction pathway and results in the transient accumulation of high levels of the reaction intermediate. We report that replacing the NMN ribose of NAD+ with 2'-fluoroarabinose (thereby eliminating the ribose O2″ nucleophile) results in durable trapping of RNA-2'-phospho-(ADP-fluoroarabinose) as a "dead-end" product of step 1. Tpt1 enzymes from diverse taxa differ in their capacity to use ara-2″F-NAD+ as a substrate.
Collapse
Affiliation(s)
- Swathi Dantuluri
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Leonora Abdullahu
- Department of Chemistry, McGill University, Montreal, Quebec H3A0B8, Canada
| | - Annum Munir
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Adam Katolik
- Department of Chemistry, McGill University, Montreal, Quebec H3A0B8, Canada
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec H3A0B8, Canada
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
7
|
Banerjee A, Ghosh S, Goldgur Y, Shuman S. Structure and two-metal mechanism of fungal tRNA ligase. Nucleic Acids Res 2019; 47:1428-1439. [PMID: 30590734 PMCID: PMC6379707 DOI: 10.1093/nar/gky1275] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Fungal tRNA ligase (Trl1) is an essential enzyme that repairs RNA breaks with 2′,3′-cyclic-PO4 and 5′-OH ends inflicted during tRNA splicing and non-canonical mRNA splicing in the fungal unfolded protein response. Trl1 is composed of C-terminal cyclic phosphodiesterase (CPD) and central GTP-dependent polynucleotide kinase (KIN) domains that heal the broken ends to generate the 3′-OH,2′-PO4 and 5′-PO4 termini required for sealing by an N-terminal ATP-dependent ligase domain (LIG). Here we report crystal structures of the Trl1-LIG domain from Chaetomium thermophilum at two discrete steps along the reaction pathway: the covalent LIG-(lysyl-Nζ)–AMP•Mn2+ intermediate and a LIG•ATP•(Mn2+)2 Michaelis complex. The structures highlight a two-metal mechanism whereby a penta-hydrated metal complex stabilizes the transition state of the ATP α phosphate and a second metal bridges the β and γ phosphates to help orient the pyrophosphate leaving group. A LIG-bound sulfate anion is a plausible mimetic of the essential RNA terminal 2′-PO4. Trl1-LIG has a distinctive C-terminal domain that instates fungal Trl1 as the founder of an Rnl6 clade of ATP-dependent RNA ligase. We discuss how the Trl1-LIG structure rationalizes the large body of in vivo structure–function data for Saccharomyces cerevisiae Trl1.
Collapse
Affiliation(s)
- Ankan Banerjee
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Shreya Ghosh
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Yehuda Goldgur
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
8
|
Cherry PD, Peach SE, Hesselberth JR. Multiple decay events target HAC1 mRNA during splicing to regulate the unfolded protein response. eLife 2019; 8:e42262. [PMID: 30874502 PMCID: PMC6456296 DOI: 10.7554/elife.42262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/14/2019] [Indexed: 01/24/2023] Open
Abstract
In the unfolded protein response (UPR), stress in the endoplasmic reticulum (ER) activates a large transcriptional program to increase ER folding capacity. During the budding yeast UPR, Ire1 excises an intron from the HAC1 mRNA and the exon products of cleavage are ligated, and the translated protein induces hundreds of stress-response genes. Using cells with mutations in RNA repair and decay enzymes, we show that phosphorylation of two different HAC1 splicing intermediates is required for their degradation by the 5'→3' exonuclease Xrn1 to enact opposing effects on the UPR. We also found that ligated but 2'-phosphorylated HAC1 mRNA is cleaved, yielding a decay intermediate with both 5'- and 2'-phosphates at its 5'-end that inhibit 5'→3' decay and suggesting that Ire1 degrades incompletely processed HAC1. These decay events expand the scope of RNA-based regulation in the budding yeast UPR and have implications for the control of the metazoan UPR.
Collapse
Affiliation(s)
- Patrick D Cherry
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, School of MedicineUniversity of ColoradoAuroraUnited States
- RNA Bioscience Initiative, School of MedicineUniversity of ColoradoAuroraUnited States
| | - Sally E Peach
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, School of MedicineUniversity of ColoradoAuroraUnited States
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, School of MedicineUniversity of ColoradoAuroraUnited States
| |
Collapse
|
9
|
Remus BS, Goldgur Y, Shuman S. Structural basis for the GTP specificity of the RNA kinase domain of fungal tRNA ligase. Nucleic Acids Res 2018; 45:12945-12953. [PMID: 29165709 PMCID: PMC5728400 DOI: 10.1093/nar/gkx1159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/04/2017] [Indexed: 01/10/2023] Open
Abstract
Fungal tRNA ligase (Trl1) is an essential enzyme that repairs RNA breaks with 2′,3′-cyclic-PO4 and 5′-OH ends inflicted during tRNA splicing and non-canonical mRNA splicing in the fungal unfolded protein response. Trl1 is composed of C-terminal cyclic phosphodiesterase and central polynucleotide kinase domains that heal the broken ends to generate the 3′-OH,2′-PO4 and 5′-PO4 termini required for sealing by an N-terminal ligase domain. Trl1 enzymes are found in all human fungal pathogens and are promising targets for antifungal drug discovery because their domain compositions and biochemical mechanisms are unique compared to the mammalian RtcB-type tRNA splicing enzyme. A distinctive feature of Trl1 is its preferential use of GTP as phosphate donor for the RNA kinase reaction. Here we report the 2.2 Å crystal structure of the kinase domain of Trl1 from the fungal pathogen Candida albicans with GDP and Mg2+ in the active site. The P-loop phosphotransferase fold of the kinase is embellished by a unique ‘G-loop’ element that accounts for guanine nucleotide specificity. Mutations of amino acids that contact the guanine nucleobase efface kinase activity in vitro and Trl1 function in vivo. Our findings fortify the case for the Trl1 kinase as an antifungal target.
Collapse
Affiliation(s)
- Barbara S Remus
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Yehuda Goldgur
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
10
|
Characterization of Runella slithyformis HD-Pnk, a Bifunctional DNA/RNA End-Healing Enzyme Composed of an N-Terminal 2',3'-Phosphoesterase HD Domain and a C-Terminal 5'-OH Polynucleotide Kinase Domain. J Bacteriol 2017; 199:JB.00739-16. [PMID: 27895092 DOI: 10.1128/jb.00739-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/18/2016] [Indexed: 11/20/2022] Open
Abstract
5'- and 3'-end-healing reactions are key steps in nucleic acid break repair in which 5'-OH ends are phosphorylated by a polynucleotide kinase (Pnk) and 3'-PO4 or 2',3'-cyclic-PO4 ends are hydrolyzed by a phosphoesterase to generate the 5'-PO4 and 3'-OH termini required for sealing by classic polynucleotide ligases. End-healing and sealing enzymes are present in diverse bacterial taxa, often organized as modular units within a single multifunctional polypeptide or as subunits of a repair complex. Here we identify and characterize Runella slithyformis HD-Pnk as a novel bifunctional end-healing enzyme composed of an N-terminal 2',3'-phosphoesterase HD domain and a C-terminal 5'-OH polynucleotide kinase P-loop domain. HD-Pnk phosphorylates 5'-OH polynucleotides (9-mers or longer) in the presence of magnesium and any nucleoside triphosphate donor. HD-Pnk dephosphorylates RNA 2',3'-cyclic phosphate, RNA 3'-phosphate, RNA 2'-phosphate, and DNA 3'-phosphate ends in the presence of a transition metal cofactor, which can be nickel, copper, or cobalt. HD-Pnk homologs are present in genera from 11 bacterial phyla and are often encoded in an operon with a putative ATP-dependent polynucleotide ligase. IMPORTANCE The present study provides insights regarding the diversity of nucleic acid repair strategies via the characterization of Runella slithyformis HD-Pnk as the exemplar of a novel clade of dual 5'- and 3'-end-healing enzymes that phosphorylate 5'-OH termini and dephosphorylate 2',3'-cyclic-PO4, 3'-PO4, and 2'-PO4 ends. The distinctive feature of HD-Pnk is its domain composition, i.e., a fusion of an N-terminal HD phosphohydrolase module and a C-terminal P-loop polynucleotide kinase module. Homologs of Runella HD-Pnk with the same domain composition, same domain order, and similar polypeptide sizes are distributed widely among genera from 11 bacterial phyla.
Collapse
|
11
|
Remus BS, Schwer B, Shuman S. Characterization of the tRNA ligases of pathogenic fungi Aspergillus fumigatus and Coccidioides immitis. RNA (NEW YORK, N.Y.) 2016; 22:1500-9. [PMID: 27492257 PMCID: PMC5029449 DOI: 10.1261/rna.057455.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/30/2016] [Indexed: 05/06/2023]
Abstract
Yeast tRNA ligase (Trl1) is an essential trifunctional enzyme that repairs RNA breaks with 2',3'-cyclic-PO4 and 5'-OH ends. Trl1 is composed of C-terminal cyclic phosphodiesterase and central polynucleotide kinase domains that heal the broken ends to generate the 3'-OH, 2'-PO4, and 5'-PO4 termini required for sealing by an N-terminal ligase domain. Trl1 enzymes are found in all human fungal pathogens and they are promising targets for antifungal drug discovery because: (i) their domain structures and biochemical mechanisms are unique compared to the mammalian RtcB-type tRNA splicing enzyme; and (ii) there are no obvious homologs of the Trl1 ligase domain in mammalian proteomes. Here we characterize the tRNA ligases of two human fungal pathogens: Coccidioides immitis and Aspergillus fumigatus The biological activity of CimTrl1 and AfuTrl1 was verified by showing that their expression complements a Saccharomyces cerevisiae trl1Δ mutant. Purified recombinant AfuTrl1 and CimTrl1 proteins were catalytically active in joining 2',3'-cyclic-PO4 and 5'-OH ends in vitro, either as full-length proteins or as a mixture of separately produced healing and sealing domains. The biochemical properties of CimTrl1 and AfuTrl1 are similar to those of budding yeast Trl1, particularly with respect to their preferential use of GTP as the phosphate donor for the polynucleotide kinase reaction. Our findings provide genetic and biochemical tools to screen for inhibitors of tRNA ligases from pathogenic fungi.
Collapse
Affiliation(s)
- Barbara S Remus
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Beate Schwer
- Microbiology and Immunology Department, Weill Cornell Medical College, New York, New York 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
12
|
Peach SE, York K, Hesselberth JR. Global analysis of RNA cleavage by 5'-hydroxyl RNA sequencing. Nucleic Acids Res 2015; 43:e108. [PMID: 26001965 PMCID: PMC4787814 DOI: 10.1093/nar/gkv536] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/10/2015] [Indexed: 11/12/2022] Open
Abstract
RNA cleavage by some endoribonucleases and self-cleaving ribozymes produces RNA fragments with 5′-hydroxyl (5′-OH) and 2′,3′-cyclic phosphate termini. To identify 5′-OH RNA fragments produced by these cleavage events, we exploited the unique ligation mechanism of Escherichia coli RtcB RNA ligase to attach an oligonucleotide linker to RNAs with 5′-OH termini, followed by steps for library construction and analysis by massively parallel DNA sequencing. We applied the method to RNA from budding yeast and captured known 5′-OH fragments produced by tRNA Splicing Endonuclease (SEN) during processing of intron-containing pre-tRNAs and by Ire1 cleavage of HAC1 mRNA following induction of the unfolded protein response (UPR). We identified numerous novel 5′-OH fragments derived from mRNAs: some 5′-OH mRNA fragments were derived from single, localized cleavages, while others were likely produced by multiple, distributed cleavages. Many 5′-OH fragments derived from mRNAs were produced upstream of codons for highly electrostatic peptides, suggesting that the fragments may be generated by co-translational mRNA decay. Several 5′-OH RNA fragments accumulated during the induction of the UPR, some of which share a common sequence motif that may direct cleavage of these mRNAs. This method enables specific capture of 5′-OH termini and complements existing methods for identifying RNAs with 2′,3′-cyclic phosphate termini.
Collapse
Affiliation(s)
- Sally E Peach
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA Program in Molecular Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kerri York
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA Program in Molecular Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
13
|
Unciuleac MC, Shuman S. Characterization of a novel eukaryal nick-sealing RNA ligase from Naegleria gruberi. RNA (NEW YORK, N.Y.) 2015; 21:824-832. [PMID: 25740837 PMCID: PMC4408790 DOI: 10.1261/rna.049197.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
The proteome of the amoebo-flagellate protozoan Naegleria gruberi is rich in candidate RNA repair enzymes, including 15 putative RNA ligases, one of which, NgrRnl, is a eukaryal homolog of Deinococcus radiodurans RNA ligase, DraRnl. Here we report that purified recombinant NgrRnl seals nicked 3'-OH/5'-PO4 duplexes in which the 3'-OH strand is RNA. It does so via the "classic" ligase pathway, entailing reaction with ATP to form a covalent NgrRnl-AMP intermediate, transfer of AMP to the nick 5'-PO4, and attack of the RNA 3'-OH on the adenylylated nick to form a 3'-5' phosphodiester. Unlike members of the four known families of ATP-dependent RNA ligases, NgrRnl lacks a carboxy-terminal appendage to its nucleotidyltransferase domain. Instead, it contains a defining amino-terminal domain that we show is important for 3'-OH/5'-PO4 nick-sealing and ligase adenylylation, but dispensable for phosphodiester synthesis at a preadenylylated nick. We propose that NgrRnl, DraRnl, and their homologs from diverse bacteria, viruses, and unicellular eukarya comprise a new "Rnl5 family" of nick-sealing ligases with a signature domain organization.
Collapse
Affiliation(s)
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
14
|
Koh KD, Balachander S, Hesselberth JR, Storici F. Ribose-seq: global mapping of ribonucleotides embedded in genomic DNA. Nat Methods 2015; 12:251-7, 3 p following 257. [PMID: 25622106 DOI: 10.1038/nmeth.3259] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/22/2014] [Indexed: 02/06/2023]
Abstract
Abundant ribonucleotide incorporation in DNA during replication and repair has profound consequences for genome stability, but the global distribution of ribonucleotide incorporation is unknown. We developed ribose-seq, a method for capturing unique products generated by alkaline cleavage of DNA at embedded ribonucleotides. High-throughput sequencing of these fragments in DNA from the yeast Saccharomyces cerevisiae revealed widespread ribonucleotide distribution, with a strong preference for cytidine and guanosine, and identified hotspots of ribonucleotide incorporation in nuclear and mitochondrial DNA. Ribonucleotides were primarily incorporated on the newly synthesized leading strand of nuclear DNA and were present upstream of (G+C)-rich tracts in the mitochondrial genome. Ribose-seq is a powerful tool for the systematic profiling of ribonucleotide incorporation in genomic DNA.
Collapse
Affiliation(s)
- Kyung Duk Koh
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sathya Balachander
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical School, Aurora, Colorado, USA
| | - Francesca Storici
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Remus BS, Jacewicz A, Shuman S. Structure and mechanism of E. coli RNA 2',3'-cyclic phosphodiesterase. RNA (NEW YORK, N.Y.) 2014; 20:1697-705. [PMID: 25239919 PMCID: PMC4201822 DOI: 10.1261/rna.046797.114] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/17/2014] [Indexed: 05/23/2023]
Abstract
2H (two-histidine) phosphoesterase enzymes are distributed widely in all domains of life and are implicated in diverse RNA and nucleotide transactions, including the transesterification and hydrolysis of cyclic phosphates. Here we report a biochemical and structural characterization of the Escherichia coli 2H protein YapD YadP [corrected], which was identified originally as a reversible transesterifying "nuclease/ligase" at RNA 2',5'-phosphodiesters. We find that YapD YadP [corrected] is an "end healing" cyclic phosphodiesterase (CPDase) enzyme that hydrolyzes an HORNA>p substrate with a 2',3'-cyclic phosphodiester to a HORNAp product with a 2'-phosphomonoester terminus, without concomitant end joining. Thus we rename this enzyme ThpR (two-histidine 2',3'-cyclic phosphodiesterase acting on RNA). The 2.0 Å crystal structure of ThpR in a product complex with 2'-AMP highlights the roles of extended histidine-containing motifs (43)HxTxxF(48) and (125)HxTxxR(130) in the CPDase reaction. His43-Nε makes a hydrogen bond with the ribose O3' leaving group, thereby implicating His43 as a general acid catalyst. His125-Nε coordinates the O1P oxygen of the AMP 2'-phosphate (inferred from geometry to derive from the attacking water nucleophile), pointing to His125 as a general base catalyst. Arg130 makes bidentate contact with the AMP 2'-phosphate, suggesting a role in transition-state stabilization. Consistent with these inferences, changing His43, His125, or Arg130 to alanine effaced the CPDase activity of ThpR. Phe48 makes a π-π stack on the adenine nucleobase. Mutating Phe28 to alanine slowed the CPDase by an order of magnitude. The tertiary structure and extended active site motifs of ThpR are conserved in a subfamily of bacterial and archaeal 2H enzymes.
Collapse
Affiliation(s)
- Barbara S Remus
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Agata Jacewicz
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
16
|
Zhelkovsky AM, McReynolds LA. Polynucleotide 3'-terminal phosphate modifications by RNA and DNA ligases. J Biol Chem 2014; 289:33608-16. [PMID: 25324547 DOI: 10.1074/jbc.m114.612929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNA and DNA ligases catalyze the formation of a phosphodiester bond between the 5'-phosphate and 3'-hydroxyl ends of nucleic acids. In this work, we describe the ability of the thermophilic RNA ligase MthRnl from Methanobacterium thermoautotrophicum to recognize and modify the 3'-terminal phosphate of RNA and single-stranded DNA (ssDNA). This ligase can use an RNA 3'p substrate to generate an RNA 2',3'-cyclic phosphate or convert DNA3'p to ssDNA(3')pp(5')A. An RNA ligase from the Thermus scotoductus bacteriophage TS2126 and a predicted T4 Rnl1-like protein from Thermovibrio ammonificans, TVa, were also able to adenylate ssDNA 3'p. These modifications of RNA and DNA 3'-phosphates are similar to the activities of RtcA, an RNA 3'-phosphate cyclase. The initial step involves adenylation of the enzyme by ATP, which is then transferred to either RNA 3'p or DNA 3'p to generate the adenylated intermediate. For RNA (3')pp(5')A, the third step involves attack of the adjacent 2' hydroxyl to generate the RNA 2',3'-cyclic phosphate. These steps are analogous to those in classical 5' phosphate ligation. MthRnl and TS2126 RNA ligases were not able to modify a 3'p in nicked double-stranded DNA. However, T4 DNA ligase and RtcA can use 3'-phosphorylated nicks in double-stranded DNA to produce a 3'-adenylated product. These 3'-terminal phosphate-adenylated intermediates are substrates for deadenylation by yeast 5'Deadenylase. Our findings that classic ligases can duplicate the adenylation and phosphate cyclization activity of RtcA suggests that they have an essential role in metabolism of nucleic acids with 3'-terminal phosphates.
Collapse
Affiliation(s)
- Alexander M Zhelkovsky
- From the Division of RNA Biology, New England Biolabs, Inc., Ipswich, Massachusetts 01938
| | - Larry A McReynolds
- From the Division of RNA Biology, New England Biolabs, Inc., Ipswich, Massachusetts 01938
| |
Collapse
|
17
|
Structures of bacterial polynucleotide kinase in a michaelis complex with nucleoside triphosphate (NTP)-Mg2+ and 5'-OH RNA and a mixed substrate-product complex with NTP-Mg2+ and a 5'-phosphorylated oligonucleotide. J Bacteriol 2014; 196:4285-92. [PMID: 25266383 DOI: 10.1128/jb.02197-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium thermocellum polynucleotide kinase (CthPnk), the 5'-end-healing module of a bacterial RNA repair system, catalyzes reversible phosphoryl transfer from a nucleoside triphosphate (NTP) donor to a 5'-OH polynucleotide acceptor, either DNA or RNA. Here we report the 1.5-Å crystal structure of CthPnk-D38N in a Michaelis complex with GTP-Mg(2+) and a 5'-OH RNA oligonucleotide. The RNA-binding mode of CthPnk is different from that of the metazoan RNA kinase Clp1. CthPnk makes hydrogen bonds to the ribose 2'-hydroxyls of the 5' terminal nucleoside, via Gln51, and the penultimate nucleoside, via Gln83. The 5'-terminal nucleobase is sandwiched by Gln51 and Val129. Mutating Gln51 or Val129 to alanine reduced kinase specific activity 3-fold. Ser37 and Thr80 donate functionally redundant hydrogen bonds to the terminal phosphodiester; a S37A-T80A double mutation reduced kinase activity 50-fold. Crystallization of catalytically active CthPnk with GTP-Mg(2+) and a 5'-OH DNA yielded a mixed substrate-product complex with GTP-Mg(2+) and 5'-PO4 DNA, wherein the product 5' phosphate group is displaced by the NTP γ phosphate and the local architecture of the acceptor site is perturbed.
Collapse
|