1
|
Šponer JE, Šponer J, Di Mauro E. Structural and Energetic Compatibility: The Driving Principles of Molecular Evolution. ASTROBIOLOGY 2019; 19:1117-1122. [PMID: 31045430 DOI: 10.1089/ast.2018.1978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we provide an answer to the question formulated by Albert Eschenmoser: "How would you envisage the bridge between potentially primordial geochemistry that had been disordered and one that gradually became self-organizing?" Analysis of the free-energy profiles of some of the key reactions leading to formation of nucleotides and their oligomers shows that, whereas the first part of the pathway, up to nucleotides, is energy-driven, in the second low-energy part entropic control in the form of structural compatibility becomes more important. We suggest that the birth of modern metabolism requires structural compatibility, which is enabled by the commensurability of the thermodynamics of the synthetic steps with the stabilizing effect of those intermolecular interactions that play a key role in dictating entropic control of these reactions.
Collapse
Affiliation(s)
- Judit E Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Ernesto Di Mauro
- Institute for Molecular Biology and Pathology, CNR, c/o Università Sapienza, Roma, Italy
| |
Collapse
|
2
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 357] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
3
|
Mlýnský V, Kührová P, Jurečka P, Šponer J, Otyepka M, Banáš P. Mapping the Chemical Space of the RNA Cleavage and Its Implications for Ribozyme Catalysis. J Phys Chem B 2017; 121:10828-10840. [DOI: 10.1021/acs.jpcb.7b09129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vojtěch Mlýnský
- Regional Centre
of Advanced Technologies and Materials, Department of Physical Chemistry,
Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), via
Bonomea 265, 34136 Trieste, Italy
| | - Petra Kührová
- Regional Centre
of Advanced Technologies and Materials, Department of Physical Chemistry,
Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petr Jurečka
- Regional Centre
of Advanced Technologies and Materials, Department of Physical Chemistry,
Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- Regional Centre
of Advanced Technologies and Materials, Department of Physical Chemistry,
Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolská 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre
of Advanced Technologies and Materials, Department of Physical Chemistry,
Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Pavel Banáš
- Regional Centre
of Advanced Technologies and Materials, Department of Physical Chemistry,
Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
4
|
Šponer J, Krepl M, Banáš P, Kührová P, Zgarbová M, Jurečka P, Havrila M, Otyepka M. How to understand atomistic molecular dynamics simulations of RNA and protein-RNA complexes? WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27863061 DOI: 10.1002/wrna.1405] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/13/2016] [Accepted: 10/10/2016] [Indexed: 01/01/2023]
Abstract
We provide a critical assessment of explicit-solvent atomistic molecular dynamics (MD) simulations of RNA and protein/RNA complexes, written primarily for non-specialists with an emphasis to explain the limitations of MD. MD simulations can be likened to hypothetical single-molecule experiments starting from single atomistic conformations and investigating genuine thermal sampling of the biomolecules. The main advantage of MD is the unlimited temporal and spatial resolution of positions of all atoms in the simulated systems. Fundamental limitations are the short physical time-scale of simulations, which can be partially alleviated by enhanced-sampling techniques, and the highly approximate atomistic force fields describing the simulated molecules. The applicability and present limitations of MD are demonstrated on studies of tetranucleotides, tetraloops, ribozymes, riboswitches and protein/RNA complexes. Wisely applied simulations respecting the approximations of the model can successfully complement structural and biochemical experiments. WIREs RNA 2017, 8:e1405. doi: 10.1002/wrna.1405 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Marie Zgarbová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Marek Havrila
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
5
|
Casalino L, Magistrato A. Structural, dynamical and catalytic interplay between Mg2+ ions and RNA. Vices and virtues of atomistic simulations. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
van Schie SNS, Sengupta RN, Herschlag D. Differential Assembly of Catalytic Interactions within the Conserved Active Sites of Two Ribozymes. PLoS One 2016; 11:e0160457. [PMID: 27501145 PMCID: PMC4976970 DOI: 10.1371/journal.pone.0160457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/19/2016] [Indexed: 11/18/2022] Open
Abstract
Molecular recognition is central to biology and a critical aspect of RNA function. Yet structured RNAs typically lack the preorganization needed for strong binding and precise positioning. A striking example is the group I ribozyme from Tetrahymena, which binds its guanosine substrate (G) orders of magnitude slower than diffusion. Binding of G is also thermodynamically coupled to binding of the oligonucleotide substrate (S) and further work has shown that the transition from E•G to E•S•G accompanies a conformational change that allows G to make the active site interactions required for catalysis. The group I ribozyme from Azoarcus has a similarly slow association rate but lacks the coupled binding observed for the Tetrahymena ribozyme. Here we test, using G analogs and metal ion rescue experiments, whether this absence of coupling arises from a higher degree of preorganization within the Azoarcus active site. Our results suggest that the Azoarcus ribozyme forms cognate catalytic metal ion interactions with G in the E•G complex, interactions that are absent in the Tetrahymena E•G complex. Thus, RNAs that share highly similar active site architectures and catalyze the same reactions can differ in the assembly of transition state interactions. More generally, an ability to readily access distinct local conformational states may have facilitated the evolutionary exploration needed to attain RNA machines that carry out complex, multi-step processes.
Collapse
Affiliation(s)
- Sabine N. S. van Schie
- Department of Biochemistry, Stanford University, Stanford, California, 94305, United States of America
- Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, the Netherlands
| | - Raghuvir N. Sengupta
- Department of Biochemistry, Stanford University, Stanford, California, 94305, United States of America
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California, 94305, United States of America
- Departments of Chemical Engineering and Chemistry, Stanford University, Stanford, California, 94305, United States of America
- Stanford ChEM-H (Chemistry, Engineering, and Medicine for Human Health), Stanford University, Stanford, California, 94305, United States of America
- * E-mail:
| |
Collapse
|
7
|
Sureau C, Negro F. The hepatitis delta virus: Replication and pathogenesis. J Hepatol 2016; 64:S102-S116. [PMID: 27084031 DOI: 10.1016/j.jhep.2016.02.013] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/01/2016] [Accepted: 02/10/2016] [Indexed: 02/06/2023]
Abstract
Hepatitis delta virus (HDV) is a defective virus and a satellite of the hepatitis B virus (HBV). Its RNA genome is unique among animal viruses, but it shares common features with some plant viroids, including a replication mechanism that uses a host RNA polymerase. In infected cells, HDV genome replication and formation of a nucleocapsid-like ribonucleoprotein (RNP) are independent of HBV. But the RNP cannot exit, and therefore propagate, in the absence of HBV, as the latter supplies the propagation mechanism, from coating the HDV RNP with the HBV envelope proteins for cell egress to delivery of the HDV virions to the human hepatocyte target. HDV is therefore an obligate satellite of HBV; it infects humans either concomitantly with HBV or after HBV infection. HDV affects an estimated 15 to 20 million individuals worldwide, and the clinical significance of HDV infection is more severe forms of viral hepatitis--acute or chronic--, and a higher risk of developing cirrhosis and hepatocellular carcinoma in comparison to HBV monoinfection. This review covers molecular aspects of HDV replication cycle, including its interaction with the helper HBV and the pathogenesis of infection in humans.
Collapse
Affiliation(s)
- Camille Sureau
- Molecular Virology laboratory, Institut National de la Transfusion Sanguine (INTS), CNRS INSERM U1134, Paris, France.
| | - Francesco Negro
- Division of Gastroenterology and Hepatology, University Hospitals, Geneva, Switzerland; Division of Clinical Pathology, University Hospitals, Geneva, Switzerland.
| |
Collapse
|
8
|
Lee TS, Radak BK, Harris ME, York DM. A Two-Metal-Ion-Mediated Conformational Switching Pathway for HDV Ribozyme Activation. ACS Catal 2016; 6:1853-1869. [PMID: 27774349 DOI: 10.1021/acscatal.5b02158] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA enzymes serve as a potentially powerful platform from which to design catalysts and engineer new biotechnology. A fundamental understanding of these systems provides insight to guide design. The hepatitis delta virus ribozyme (HDVr) is a small, self-cleaving RNA motif widely distributed in nature, that has served as a paradigm for understanding basic principles of RNA catalysis. Nevertheless, questions remain regarding the precise roles of divalent metal ions and key nucleotides in catalysis. In an effort to establish a reaction mechanism model consistent with available experimental data, we utilize molecular dynamics simulations to explore different conformations and metal ion binding modes along the HDVr reaction path. Building upon recent crystallographic data, our results provide a dynamic model of the HDVr reaction mechanism involving a conformational switch between multiple non-canonical G25:U20 base pair conformations in the active site. These local nucleobase dynamics play an important role in catalysis by modulating the metal binding environments of two Mg2+ ions that support catalysis at different steps of the reaction pathway. The first ion plays a structural role by inducing a base pair flip necessary to obtain the catalytic fold in which C75 moves towards to the scissile phosphate in the active site. Ejection of this ion then permits a second ion to bind elsewhere in the active site and facilitate nucleophile activation. The simulations collectively describe a mechanistic scenario that is consistent with currently available experimental data from crystallography, phosphorothioate substitutions, and chemical probing studies. Avenues for further experimental verification are suggested.
Collapse
Affiliation(s)
- Tai-Sung Lee
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Brian K. Radak
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
- Argonne National Laboratory, Argonne, Illinois 60439, United State
| | - Michael E. Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Darrin M. York
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
9
|
Sengupta RN, Van Schie SNS, Giambaşu G, Dai Q, Yesselman JD, York D, Piccirilli JA, Herschlag D. An active site rearrangement within the Tetrahymena group I ribozyme releases nonproductive interactions and allows formation of catalytic interactions. RNA (NEW YORK, N.Y.) 2016; 22:32-48. [PMID: 26567314 PMCID: PMC4691833 DOI: 10.1261/rna.053710.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
Biological catalysis hinges on the precise structural integrity of an active site that binds and transforms its substrates and meeting this requirement presents a unique challenge for RNA enzymes. Functional RNAs, including ribozymes, fold into their active conformations within rugged energy landscapes that often contain misfolded conformers. Here we uncover and characterize one such "off-pathway" species within an active site after overall folding of the ribozyme is complete. The Tetrahymena group I ribozyme (E) catalyzes cleavage of an oligonucleotide substrate (S) by an exogenous guanosine (G) cofactor. We tested whether specific catalytic interactions with G are present in the preceding E•S•G and E•G ground-state complexes. We monitored interactions with G via the effects of 2'- and 3'-deoxy (-H) and -amino (-NH(2)) substitutions on G binding. These and prior results reveal that G is bound in an inactive configuration within E•G, with the nucleophilic 3'-OH making a nonproductive interaction with an active site metal ion termed MA and with the adjacent 2'-OH making no interaction. Upon S binding, a rearrangement occurs that allows both -OH groups to contact a different active site metal ion, termed M(C), to make what are likely to be their catalytic interactions. The reactive phosphoryl group on S promotes this change, presumably by repositioning the metal ions with respect to G. This conformational transition demonstrates local rearrangements within an otherwise folded RNA, underscoring RNA's difficulty in specifying a unique conformation and highlighting Nature's potential to use local transitions of RNA in complex function.
Collapse
Affiliation(s)
- Raghuvir N Sengupta
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Sabine N S Van Schie
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
| | - George Giambaşu
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Joseph D Yesselman
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Darrin York
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Joseph A Piccirilli
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA Department of Chemical Engineering, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California 94305, USA Department of Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California 94305, USA Department of Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California 94305, USA
| |
Collapse
|
10
|
Sripathi KN, Banáš P, Réblová K, Šponer J, Otyepka M, Walter NG. Wobble pairs of the HDV ribozyme play specific roles in stabilization of active site dynamics. Phys Chem Chem Phys 2015; 17:5887-900. [PMID: 25631765 DOI: 10.1039/c4cp05083e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hepatitis delta virus (HDV) is the only known human pathogen whose genome contains a catalytic RNA motif (ribozyme). The overall architecture of the HDV ribozyme is that of a double-nested pseudoknot, with two GU pairs flanking the active site. Although extensive studies have shown that mutation of either wobble results in decreased catalytic activity, little work has focused on linking these mutations to specific structural effects on catalytic fitness. Here we use molecular dynamics simulations based on an activated structure to probe the active site dynamics as a result of wobble pair mutations. In both wild-type and mutant ribozymes, the in-line fitness of the active site (as a measure of catalytic proficiency) strongly depends on the presence of a C75(N3H3+)N1(O5') hydrogen bond, which positions C75 as the general acid for the reaction. Our mutational analyses show that each GU wobble supports catalytically fit conformations in distinct ways; the reverse G25U20 wobble promotes high in-line fitness, high occupancy of the C75(N3H3+)G1(O5') general-acid hydrogen bond and stabilization of the G1U37 wobble, while the G1U37 wobble acts more locally by stabilizing high in-line fitness and the C75(N3H3+)G1(O5') hydrogen bond. We also find that stable type I A-minor and P1.1 hydrogen bonding above and below the active site, respectively, prevent local structural disorder from spreading and disrupting global conformation. Taken together, our results define specific, often redundant architectural roles for several structural motifs of the HDV ribozyme active site, expanding the known roles of these motifs within all HDV-like ribozymes and other structured RNAs.
Collapse
Affiliation(s)
- Kamali N Sripathi
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, USA
| | | | | | | | | | | |
Collapse
|
11
|
Dubecký M, Walter NG, Šponer J, Otyepka M, Banáš P. Chemical feasibility of the general acid/base mechanism of glmS ribozyme self-cleavage. Biopolymers 2015; 103:550-62. [PMID: 25858644 PMCID: PMC4553064 DOI: 10.1002/bip.22657] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/17/2015] [Accepted: 04/02/2015] [Indexed: 01/28/2023]
Abstract
In numerous Gram-positive bacteria, the glmS ribozyme or catalytic riboswitch regulates the expression of glucosamine-6-phosphate (GlcN6P) synthase via site-specific cleavage of its sugar-phosphate backbone in response to GlcN6P ligand binding. Biochemical data have suggested a crucial catalytic role for an active site guanine (G40 in Thermoanaerobacter tengcongensis, G33 in Bacillus anthracis). We used hybrid quantum chemical/molecular mechanical (QM/MM) calculations to probe the mechanism where G40 is deprotonated and acts as a general base. The calculations suggest that the deprotonated guanine G40(-) is sufficiently reactive to overcome the thermodynamic penalty arising from its rare protonation state, and thus is able to activate the A-1(2'-OH) group toward nucleophilic attack on the adjacent backbone. Furthermore, deprotonation of A-1(2'-OH) and nucleophilic attack are predicted to occur as separate steps, where activation of A-1(2'-OH) precedes nucleophilic attack. Conversely, the transition state associated with the rate-determining step corresponds to concurrent nucleophilic attack and protonation of the G1(O5') leaving group by the ammonium moiety of the GlcN6P cofactor. Overall, our calculations help to explain the crucial roles of G40 (as a general base) and GlcN6P (as a general acid) during glmS ribozyme self-cleavage. In addition, we show that the QM/MM description of the glmS ribozyme self-cleavage reaction is significantly more sensitive to the size of the QM region and the quality of the QM-MM coupling than that of other small ribozymes.
Collapse
Affiliation(s)
- Matúš Dubecký
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- CEITEC – Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
12
|
Radak BK, Lee TS, Harris ME, York DM. Assessment of metal-assisted nucleophile activation in the hepatitis delta virus ribozyme from molecular simulation and 3D-RISM. RNA (NEW YORK, N.Y.) 2015; 21:1566-1577. [PMID: 26170378 PMCID: PMC4536318 DOI: 10.1261/rna.051466.115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
The hepatitis delta virus ribozyme is an efficient catalyst of RNA 2'-O-transphosphorylation and has emerged as a key experimental system for identifying and characterizing fundamental features of RNA catalysis. Recent structural and biochemical data have led to a proposed mechanistic model whereby an active site Mg(2+) ion facilitates deprotonation of the O2' nucleophile, and a protonated cytosine residue (C75) acts as an acid to donate a proton to the O5' leaving group as noted in a previous study. This model assumes that the active site Mg(2+) ion forms an inner-sphere coordination with the O2' nucleophile and a nonbridging oxygen of the scissile phosphate. These contacts, however, are not fully resolved in the crystal structure, and biochemical data are not able to unambiguously exclude other mechanistic models. In order to explore the feasibility of this model, we exhaustively mapped the free energy surfaces with different active site ion occupancies via quantum mechanical/molecular mechanical (QM/MM) simulations. We further incorporate a three-dimensional reference interaction site model for the solvated ion atmosphere that allows these calculations to consider not only the rate associated with the chemical steps, but also the probability of observing the system in the presumed active state with the Mg(2+) ion bound. The QM/MM results predict that a pathway involving metal-assisted nucleophile activation is feasible based on the rate-controlling transition state barrier departing from the presumed metal-bound active state. However, QM/MM results for a similar pathway in the absence of Mg(2+) are not consistent with experimental data, suggesting that a structural model in which the crystallographically determined Mg(2+) is simply replaced with Na(+) is likely incorrect. It should be emphasized, however, that these results hinge upon the assumption of the validity of the presumed Mg(2+)-bound starting state, which has not yet been definitively verified experimentally, nor explored in depth computationally. Thus, further experimental and theoretical study is needed such that a consensus view of the catalytic mechanism emerges.
Collapse
Affiliation(s)
- Brian K Radak
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8076, USA Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Tai-Sung Lee
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8076, USA
| | - Michael E Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Darrin M York
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8076, USA
| |
Collapse
|
13
|
Thaplyal P, Ganguly A, Hammes-Schiffer S, Bevilacqua PC. Inverse thio effects in the hepatitis delta virus ribozyme reveal that the reaction pathway is controlled by metal ion charge density. Biochemistry 2015; 54:2160-75. [PMID: 25799319 PMCID: PMC4824481 DOI: 10.1021/acs.biochem.5b00190] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
The
hepatitis delta virus (HDV) ribozyme self-cleaves in the presence
of a wide range of monovalent and divalent ions. Prior theoretical
studies provided evidence that self-cleavage proceeds via a concerted
or stepwise pathway, with the outcome dictated by the valency of the
metal ion. In the present study, we measure stereospecific thio effects
at the nonbridging oxygens of the scissile phosphate under a wide
range of experimental conditions, including varying concentrations
of diverse monovalent and divalent ions, and combine these with quantum
mechanical/molecular mechanical (QM/MM) free energy simulations on
the stereospecific thio substrates. The RP substrate gives large normal thio effects in the presence of all
monovalent ions. The SP substrate also
gives normal or no thio effects, but only for smaller monovalent and
divalent cations, such as Li+, Mg2+, Ca2+, and Sr2+; in contrast, sizable inverse thio
effects are found for larger monovalent and divalent cations, including
Na+, K+, NH4+, and Ba2+. Proton inventories are found to be unity in the presence
of the larger monovalent and divalent ions, but two in the presence
of Mg2+. Additionally, rate–pH profiles are inverted
for the low charge density ions, and only imidazole plus ammonium
ions rescue an inactive C75Δ variant in the absence of Mg2+. Results from the thio effect experiments, rate–pH
profiles, proton inventories, and ammonium/imidazole rescue experiments,
combined with QM/MM free energy simulations, support a change in the
mechanism of HDV ribozyme self-cleavage from concerted and metal ion-stabilized
to stepwise and proton transfer-stabilized as the charge density of
the metal ion decreases.
Collapse
Affiliation(s)
- Pallavi Thaplyal
- †Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Abir Ganguly
- ‡Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sharon Hammes-Schiffer
- ‡Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Philip C Bevilacqua
- †Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
14
|
Mlýnský V, Walter NG, Šponer J, Otyepka M, Banáš P. The role of an active site Mg(2+) in HDV ribozyme self-cleavage: insights from QM/MM calculations. Phys Chem Chem Phys 2015; 17:670-9. [PMID: 25412464 PMCID: PMC4256098 DOI: 10.1039/c4cp03857f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The hepatitis delta virus (HDV) ribozyme is a catalytic RNA motif embedded in the human pathogenic HDV RNA. It catalyzes self-cleavage of its sugar-phosphate backbone with direct participation of the active site cytosine C75. Biochemical and structural data support a general acid role of C75. Here, we used hybrid quantum mechanical/molecular mechanical (QM/MM) calculations to probe the reaction mechanism and changes in Gibbs energy along the ribozyme's reaction pathway with an N3-protonated C75H(+) in the active site, which acts as the general acid, and a partially hydrated Mg(2+) ion with one deprotonated, inner-shell coordinated water molecule that acts as the general base. We followed eight reaction paths with a distinct position and coordination of the catalytically important active site Mg(2+) ion. For six of them, we observed feasible activation barriers ranging from 14.2 to 21.9 kcal mol(-1), indicating that the specific position of the Mg(2+) ion in the active site is predicted to strongly affect the kinetics of self-cleavage. The deprotonation of the U-1(2'-OH) nucleophile and the nucleophilic attack of the resulting U-1(2'-O(-)) on the scissile phosphodiester are found to be separate steps, as deprotonation precedes the nucleophilic attack. This sequential mechanism of the HDV ribozyme differs from the concerted nucleophilic activation and attack suggested for the hairpin ribozyme. We estimate the pKa of the U-1(2'-OH) group to range from 8.8 to 11.2, suggesting that it is lowered by several units from that of a free ribose, comparable to and most likely smaller than the pKa of the solvated active site Mg(2+) ion. Our results thus support the notion that the structure of the HDV ribozyme, and particularly the positioning of the active site Mg(2+) ion, facilitate deprotonation and activation of the 2'-OH nucleophile.
Collapse
Affiliation(s)
- Vojtěch Mlýnský
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic.
| | | | | | | | | |
Collapse
|
15
|
Estarellas C, Otyepka M, Koča J, Banáš P, Krepl M, Šponer J. Molecular dynamic simulations of protein/RNA complexes: CRISPR/Csy4 endoribonuclease. Biochim Biophys Acta Gen Subj 2014; 1850:1072-1090. [PMID: 25450173 DOI: 10.1016/j.bbagen.2014.10.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Many prokaryotic genomes comprise Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) offering defense against foreign nucleic acids. These immune systems are conditioned by the production of small CRISPR-derived RNAs matured from long RNA precursors. This often requires a Csy4 endoribonuclease cleaving the RNA 3'-end. METHODS We report extended explicit solvent molecular dynamic (MD) simulations of Csy4/RNA complex in precursor and product states, based on X-ray structures of product and inactivated precursor (55 simulations; ~3.7μs in total). RESULTS The simulations identify double-protonated His29 and deprotonated terminal phosphate as the likely dominant protonation states consistent with the product structure. We revealed potential substates consistent with Ser148 and His29 acting as the general base and acid, respectively. The Ser148 could be straightforwardly deprotonated through solvent and could without further structural rearrangements deprotonate the nucleophile, contrasting similar studies investigating the general base role of nucleobases in ribozymes. We could not locate geometries consistent with His29 acting as general base. However, we caution that the X-ray structures do not always capture the catalytically active geometries and then the reactive structures may be unreachable by the simulation technique. CONCLUSIONS We identified potential catalytic arrangement of the Csy4/RNA complex but we also report limitations of the simulation technique. Even for the dominant protonation state we could not achieve full agreement between the simulations and the structural data. GENERAL SIGNIFICANCE Potential catalytic arrangement of the Csy4/RNA complex is found. Further, we provide unique insights into limitations of simulations of protein/RNA complexes, namely, the influence of the starting experimental structures and force field limitations. This article is part of a Special Issue entitled Recent developments of molecular dynamics.
Collapse
Affiliation(s)
- Carolina Estarellas
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jaroslav Koča
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic; Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic.
| |
Collapse
|