1
|
Shah Hosseini R, Nouri SM, Bansal P, Hjazi A, Kaur H, Hussein Kareem A, Kumar A, Al Zuhairi RAH, Al-Shaheri NA, Mahdavi P. The p53/miRNA Axis in Breast Cancer. DNA Cell Biol 2024; 43:549-558. [PMID: 39423159 DOI: 10.1089/dna.2024.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024] Open
Abstract
One of the main health issues in the modern world is cancer, with breast cancer (BC) as one of the most common types of malignancies. Different environmental and genetic risk factors are involved in the development of BC. One of the primary genes implicated in cancer development is the p53 gene, which is also known as the "gatekeeper" gene. p53 is involved in cancer development by interacting with numerous pathways and signaling factors, including microRNAs (miRNAs). miRNAs are small noncoding RNA molecules that regulate gene expression by binding to the 3' untranslated region of target mRNAs, resulting in their translational inhibition or degradation. If the p53 gene is mutated or degraded, it can contribute to the risk of BC by disrupting the expression of miRNAs. Similarly, the disruption of miRNAs causes the negative regulation of p53. Therefore, the p53/miRNA axis is a crucial pathway in the progression or prevention of BC, and understanding the regulation and function of this pathway may contribute to the development of new therapeutic strategies to help treat BC.
Collapse
Affiliation(s)
| | | | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, India
| | | | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg, Russia
| | | | | | - Parya Mahdavi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Cannarella R, Crafa A, Curto R, Mongioì LM, Garofalo V, Cannarella V, Condorelli RA, La Vignera S, Calogero AE. Human sperm RNA in male infertility. Nat Rev Urol 2024:10.1038/s41585-024-00920-9. [PMID: 39256514 DOI: 10.1038/s41585-024-00920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 09/12/2024]
Abstract
The function and value of specific sperm RNAs in apparently idiopathic male infertility are currently poorly understood. Whether differences exist in the sperm RNA profile between patients with infertility and fertile men needs clarification. Similarly, the utility of sperm RNAs in predicting successful sperm retrieval and assisted reproductive technique (ART) outcome is unknown. Patients with infertility and fertile individuals seem to have differences in the expression of non-coding RNAs that regulate genes controlling spermatogenesis. Several RNAs seem to influence embryo quality and development. Also, RNA types seem to predict successful sperm retrieval in patients with azoospermia. These findings suggest that sperm RNAs could influence decision-making during the management of patients with infertility. This evidence might help to identify possible therapeutic approaches aimed at modulating the expression of dysregulated genes in patients with infertility. Performing prospective studies with large sample sizes is necessary to investigate cost-effective panels consisting of proven molecular targets to ensure that this evidence can be translated to clinical practice.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Roberto Curto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura M Mongioì
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Vincenzo Garofalo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Vittorio Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
3
|
Meinag FE, Fatahi M, Vahedian V, Maroufi NF, Mosayyebi B, Ahmadi E, Rahmati M. Modulatory effects of miRNAs in doxorubicin resistance: A mechanistic view. Funct Integr Genomics 2024; 24:150. [PMID: 39222264 DOI: 10.1007/s10142-024-01431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs and play an important role in controlling vital biological processes, including cell cycle control, apoptosis, metabolism, and development and differentiation, which lead to various diseases such as neurological, metabolic disorders, and cancer. Chemotherapy consider as gold treatment approaches for cancer patients. However, chemotherapeutic is one of the main challenges in cancer management. Doxorubicin (DOX) is an anti-cancer drug that interferes with the growth and spread of cancer cells. DOX is used to treat various types of cancer, including breast, nervous tissue, bladder, stomach, ovary, thyroid, lung, bone, muscle, joint and soft tissue cancers. Also recently, miRNAs have been identified as master regulators of specific genes responsible for the mechanisms that initiate chemical resistance. miRNAs have a regulatory effect on chemotherapy resistance through the regulation of apoptosis process. Also, the effect of miRNAs p53 gene as a key tumor suppressor was confirmed via studies. miRNAs can affect main biological pathways include PI3K pathway. This review aimed to present the current understanding of the mechanisms and effects of miRNAs on apoptosis, p53 and PTEN/PI3K/Akt signaling pathway related to DOX resistance.
Collapse
Affiliation(s)
- Fatemeh Ebadi Meinag
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Fatahi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Vahedian
- Department of Hematology, Transfusion Medicine and Cellular Therapy/Cell Therapy Center (CTC-USP), Clinical Hospital and Cancer Institute (ICESP), Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil
- Department of Clinical Medicine, Division of Medical Investigation Laboratory (LIM/31), Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology and Immuno-Oncology, Clinical Hospital, Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil
- Comprehensive Center for Translational and Precision Oncology (CTO), SP State Cancer Institute (ICESP), Sao Paulo, Brazil
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bashir Mosayyebi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Beilankouhi EAV, Maghsoodi MS, Sani MZ, Khosroshahi NS, Zarezadeh R, Nargesi MM, Safaralizadeh R, Valilo M. miRNAs that regulate apoptosis in breast cancer and cervical cancer. Cell Biochem Biophys 2024; 82:1993-2006. [PMID: 38969951 DOI: 10.1007/s12013-024-01405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
In today's world, one of the main problems is cancer, which still has a long way to go to cure it, and it brings a lot of financial and emotional costs to the people of society and governments. Breast cancer (BC) and cervical cancer (CC), two of the most common cancers, are caused by several genetic and environmental factors in women. These two cancers' involvement rate is higher than other cancers in women. microRNAs (miRNAs) are non-coding RNA molecules with a length of 18 to 24 nucleotides, which play an important role in post-translational changes. miRNAs themselves are divided into two categories, oncomiRs and tumor suppressors. OncomiRs have a part in tumor expansion and tumor suppressors prevent tumor development and progress. miRNAs can control cellular processes by regulating various pathways including autophagy, apoptosis, and signaling. Apoptosis is a type of programmed cell death that includes intrinsic and extrinsic pathways and is different from other cell death pathways such as necrosis and ferroptosis. Apoptosis controls the growth, differentiation, and death of cells by regulating the death of damaged and old cells, and since miRNAs are one of the factors that regulate apoptosis, and divided into two categories: pro-apoptotic and anti-apoptotic. We decided in this study to investigate the relationship between miRNAs and apoptosis in the most common women's cancers, BC and CC.
Collapse
Affiliation(s)
| | - Maral Salek Maghsoodi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Maryam Zamani Sani
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Sadi Khosroshahi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Reza Zarezadeh
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mirsaed Miri Nargesi
- Molecular Virology and Covid Unit, LabPlus, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Te Whatu Ora Health New Zealand, Auckland, New Zealand
| | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
5
|
Abdul Manap AS, Wisham AA, Wong FW, Ahmad Najmi HR, Ng ZF, Diba RS. Mapping the function of MicroRNAs as a critical regulator of tumor-immune cell communication in breast cancer and potential treatment strategies. Front Cell Dev Biol 2024; 12:1390704. [PMID: 38726321 PMCID: PMC11079208 DOI: 10.3389/fcell.2024.1390704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Among women, breast cancer ranks as the most prevalent form of cancer, and the presence of metastases significantly reduces prognosis and diminishes overall survival rates. Gaining insights into the biological mechanisms governing the conversion of cancer cells, their subsequent spread to other areas of the body, and the immune system's monitoring of tumor growth will contribute to the advancement of more efficient and targeted therapies. MicroRNAs (miRNAs) play a critical role in the interaction between tumor cells and immune cells, facilitating tumor cells' evasion of the immune system and promoting cancer progression. Additionally, miRNAs also influence metastasis formation, including the establishment of metastatic sites and the transformation of tumor cells into migratory phenotypes. Specifically, dysregulated expression of these genes has been associated with abnormal expression of oncogenes and tumor suppressor genes, thereby facilitating tumor development. This study aims to provide a concise overview of the significance and function of miRNAs in breast cancer, focusing on their involvement as tumor suppressors in the antitumor immune response and as oncogenes in metastasis formation. Furthermore, miRNAs hold tremendous potential as targets for gene therapy due to their ability to modulate specific pathways that can either promote or suppress carcinogenesis. This perspective highlights the latest strategies developed for miRNA-based therapies.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Fei Wen Wong
- Faculty of Biosciences, MAHSA University, Kuala Langat, Selangor, Malaysia
| | | | - Zhi Fei Ng
- Faculty of Biosciences, MAHSA University, Kuala Langat, Selangor, Malaysia
| | | |
Collapse
|
6
|
Elmahboub Y, Albash R, Magdy William M, Rayan AH, Hamed NO, Ousman MS, Raslan NA, Mosallam S. Metformin Loaded Zein Polymeric Nanoparticles to Augment Antitumor Activity against Ehrlich Carcinoma via Activation of AMPK Pathway: D-Optimal Design Optimization, In Vitro Characterization, and In Vivo Study. Molecules 2024; 29:1614. [PMID: 38611893 PMCID: PMC11013883 DOI: 10.3390/molecules29071614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Metformin (MET), an antidiabetic drug, is emerging as a promising anticancer agent. This study was initiated to investigate the antitumor effects and potential molecular targets of MET in mice bearing solid Ehrlich carcinoma (SEC) as a model of breast cancer (BC) and to explore the potential of zein nanoparticles (ZNs) as a carrier for improving the anticancer effect of MET. ZNs were fabricated through ethanol injection followed by probe sonication method. The optimum ZN formulation (ZN8) was spherical and contained 5 mg zein and 30 mg sodium deoxycholate with a small particle size and high entrapment efficiency percentage and zeta potential. A stability study showed that ZN8 was stable for up to three months. In vitro release profiles proved the sustained effect of ZN8 compared to the MET solution. Treatment of SEC-bearing mice with ZN8 produced a more pronounced anticancer effect which was mediated by upregulation of P53 and miRNA-543 as well as downregulation of NF-κB and miRNA-191-5p gene expression. Furthermore, ZN8 produced a marked elevation in pAMPK and caspase-3 levels as well as a significant decrease in cyclin D1, COX-2, and PGE2 levels. The acquired findings verified the potency of MET-loaded ZNs as a treatment approach for BC.
Collapse
Affiliation(s)
- Yasmina Elmahboub
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12585, Egypt;
| | - Rofida Albash
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12585, Egypt;
| | - Mira Magdy William
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Amal H. Rayan
- Department of Medical Education, College of Medicine, AlMaarefa University, Diriyah, Riyadh 13713, Saudi Arabia
| | - Najat O. Hamed
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Diriyah, Riyadh 13713, Saudi Arabia;
| | - Mona S. Ousman
- Emergency Medical Services, College of Applied Sciences, AlMaarefa University, Diriyah, Riyadh 13713, Saudi Arabia;
| | - Nahed A Raslan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt;
- Clinical Pharmacy Program, College of Health Sciences and Nursing, Al-Rayan Colleges, Medina 42541, Saudi Arabia
| | - Shaimaa Mosallam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt;
| |
Collapse
|
7
|
Sakalli-Tecim E, Gur-Dedeoglu B, Guray NT. Systems biology based miRNA-mRNA expression pattern analysis of Emodin in breast cancer cell lines. Pathol Res Pract 2023; 249:154780. [PMID: 37633004 DOI: 10.1016/j.prp.2023.154780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/20/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Breast cancer has been among the most prominent cancers with high mortality. Currently most of the offered therapeutics are toxic; hence, less toxic therapeutic intervention is required. Here, we studied the molecular mechanisms of the effect of a phytoestrogen Emodin on estrogen receptor positive MCF-7 and negative MDA-MB-231 cells by carrying out a comprehensive network assessment. Differentially expressed microRNAs along with their previously identified differentially expressed mRNAs were analyzed through microarrays by using integrative systems biology approach. For each cell line miRNA-target gene networks were built, gene ontology and pathway enrichment analyses were performed, enrichment maps were constructed and the potential key genes, miRNAs and miRNA-gene interactions were studied.
Collapse
Affiliation(s)
- Elif Sakalli-Tecim
- Department of Biotechnology, Middle East Technical University, Ankara, Turkiye
| | | | - N Tulin Guray
- Department of Biotechnology, Middle East Technical University, Ankara, Turkiye; Department of Biological Sciences, Middle East Technical University, Ankara, Turkiye.
| |
Collapse
|
8
|
Apollonova V, Plevako D, Garanin A, Sidina E, Zabegina L, Knyazeva M, Smirnova V, Artemyeva A, Krivorotko P, Malek A. Resistance of breast cancer cells to paclitaxel is associated with low expressions of miRNA-186 and miRNA-7. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:596-610. [PMID: 37842231 PMCID: PMC10571055 DOI: 10.20517/cdr.2023.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/16/2023] [Accepted: 06/25/2023] [Indexed: 10/17/2023]
Abstract
Aim: Neo-adjuvant chemotherapy is a common approach for the complex treatment of breast cancer (BC) and paclitaxel (PTX) is frequently included in the therapeutic regimen. However, the effect of PTX-based treatment is hard to predict precisely based on routinely used markers. As microRNAs are considered a new promising class of biomarkers, the link between miRNA expression and PTX resistance of BC cells needs to be well investigated. This study aimed at the identification of miRNAs associated with responses of BC cells to PTX. Methods: Intrinsic PTX sensitivity and miRNA profiling were assayed in five BC cell lines to identify candidate miRNAs. Selected miRNA (n. 15) expressions were analyzed by real-time-quantitative polymerase chain reaction (RT-qPCR) in BC tissue samples (n. 31) obtained from a diagnostic biopsy. Results were analyzed in the context of the effect of two cycles of PTX and the effect of the completed scheme of neoadjuvant therapy. The study's design facilitated the evaluation of the effect of PTX on cells and the identification of features of the microRNA expression profiles associated exclusively with sensitivity to this drug. Results: miR-186 and miR-7 expression in BC tissues was higher in patients with better outcomes of PTX-based neoadjuvant therapy. Conclusion: High expressions of miR-186 and miR-7 are associated with good response to PTX, whereas their low expressions may be associated with resistance to PTX in BC, indicating the possibility of developing innovative test systems for the prediction of the PTX response, which can be used before the start of neo-adjuvant chemotherapy for BC.
Collapse
Affiliation(s)
- Vera Apollonova
- Breast Surgical Oncology, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg 197758, Russia
- Authors contributed equally
| | - Daniil Plevako
- Subcellular Technology Lab, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg 197758, Russia
- Authors contributed equally
| | - Alexandr Garanin
- Subcellular Technology Lab, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg 197758, Russia
| | - Elena Sidina
- Subcellular Technology Lab, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg 197758, Russia
| | - Lidia Zabegina
- Subcellular Technology Lab, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg 197758, Russia
| | - Margarita Knyazeva
- Subcellular Technology Lab, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg 197758, Russia
| | - Viktoria Smirnova
- Department of Pathology, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg 197758, Russia
| | - Anna Artemyeva
- Department of Pathology, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg 197758, Russia
| | - Petr Krivorotko
- Breast Surgical Oncology, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg 197758, Russia
| | - Anastasia Malek
- Subcellular Technology Lab, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg 197758, Russia
| |
Collapse
|
9
|
Wang Z, Guan W, Ma Y, Zhou X, Song G, Wei J, Wang C. MicroRNA-191 regulates oral squamous cell carcinoma cells growth by targeting PLCD1 via the Wnt/β-catenin signaling pathway. BMC Cancer 2023; 23:668. [PMID: 37460940 PMCID: PMC10351167 DOI: 10.1186/s12885-023-11113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Studies have shown that microRNA-191 (miR-191) is involved in the development and progression of a variety of tumors. However, the function and mechanism of miR-191 in oral squamous cell carcinoma (OSCC) have not been clarified. METHODS The expression level of miR-191 in tumor tissues of patients with primary OSCC and OSCC cell lines were detected using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. OSCC cells were treated with miR-191 enhancers and inhibitors to investigate the effects of elevated or decreased miR-191 expression on OSCC cells proliferation, migration, cell cycle, and tumorigenesis. The target gene of miR-191 in OSCC cells were analyzed by dual-Luciferase assay, and the downstream signaling pathway of the target genes was detected using western blot assay. RESULTS The expression of miR-191 was significantly upregulated in OSCC tissues and cell lines. Upregulation of miR-191 promoted proliferation, migration, invasion, and cell cycle progression of OSCC cells, as well as tumor growth in nude mice. Meanwhile, reduced expression of miR-191 inhibited these processes. Phospholipase C delta1 (PLCD1) expression was significantly downregulated, and negatively correlated with the expression of miR-191 in OSCC tissues. Dual-Luciferase assays showed that miR-191-5p could bind to PLCD1 mRNA and regulate PLCD1 protein expression. Western blot assay showed that the miR-191 regulated the expression of β-catenin and its downstream gene through targeting PLCD1. CONCLUSION MicroRNA-191 regulates oral squamous cell carcinoma cells growth by targeting PLCD1 via the Wnt/β-catenin signaling pathway. Thus, miR-191 may serve as a potential target for the treatment of OSCC.
Collapse
Affiliation(s)
- Zekun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontic Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wenzhao Guan
- Department of Stomatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yufeng Ma
- Department of Stomatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontic Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Guohua Song
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Taiyuan, 030001, China.
| | - Jianing Wei
- Department of Cardiology, Shanxi Provincial Key Laboratory of Cardiovascular Disease Diagnosis, Treatment and Clinical Pharmacology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chenyang Wang
- Department of Cardiology, Shanxi Provincial Key Laboratory of Cardiovascular Disease Diagnosis, Treatment and Clinical Pharmacology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
10
|
Kang Y. Landscape of NcRNAs involved in drug resistance of breast cancer. Clin Transl Oncol 2023; 25:1869-1892. [PMID: 37067729 PMCID: PMC10250522 DOI: 10.1007/s12094-023-03189-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/02/2022] [Indexed: 04/18/2023]
Abstract
Breast cancer (BC) leads to the most amounts of deaths among women. Chemo-, endocrine-, and targeted therapies are the mainstay drug treatments for BC in the clinic. However, drug resistance is a major obstacle for BC patients, and it leads to poor prognosis. Accumulating evidences suggested that noncoding RNAs (ncRNAs) are intricately linked to a wide range of pathological processes, including drug resistance. Till date, the correlation between drug resistance and ncRNAs is not completely understood in BC. Herein, we comprehensively summarized a dysregulated ncRNAs landscape that promotes or inhibits drug resistance in chemo-, endocrine-, and targeted BC therapies. Our review will pave way for the effective management of drug resistance by targeting oncogenic ncRNAs, which, in turn will promote drug sensitivity of BC in the future.
Collapse
Affiliation(s)
- Yujuan Kang
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
| |
Collapse
|
11
|
Yang Y, Mei C, Xian H, Zhang X, Li J, Liang ZX, Zhi Y, Ma Y, Wang HJ. Toosendanin-induced apoptosis of CMT-U27 is mediated through the mitochondrial apoptotic pathway. Vet Comp Oncol 2023; 21:315-326. [PMID: 36809669 DOI: 10.1111/vco.12889] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
Toosendanin (TSN) is an active compound from the fruit of Melia toosendan Sieb et Zucc. TSN has been shown to have broad-spectrum anti-tumour activities in human cancers. However, there are still many gaps in the knowledge of TSN on canine mammary tumours (CMT). CMT-U27 cells were used to select the optimal acting time and best concentration of TSN to initiate apoptosis. Cell proliferation, cell colony formation, cell migration and cell invasion were analysed. The expression of apoptosis-related genes and proteins were also detected to explore the mechanism of action of TSN. A murine tumour model was established to detect the effect of TSN treatments. The results showed that TSN decreased cell viability of migration and invasion, altered CMT-U27 cell morphology, and inhibited DNA synthesis. TSN-induced cell apoptosis by upregulating BAX, cleaved caspase-3, cleaved caspase-9, p53 and cytochrome C (cytosolic) protein expression, and downregulating Bcl-2 and cytochrome C (mitochondrial) expression. In addition, TSN increased the mRNA transcription levels of cytochrome C, p53 and BAX, and decreased the mRNA expression of Bcl-2. Furthermore, TSN inhibited the growth of CMT xenografts by regulating the expression of genes and proteins activated by the mitochondrial apoptotic pathway. In conclusion, TSN effectively inhibited cell proliferation, migration and invasion activity, as well as induced CMT-U27 cell apoptosis. The study provides a molecular basis for the development of clinical drugs and other therapeutic options.
Collapse
Affiliation(s)
- Yin Yang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
- School of Veterinary Medicine, Southwest University, Rongchang Chongqing, China
| | - Chen Mei
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Hong Xian
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Xue Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Jun Li
- School of Veterinary Medicine, Southwest University, Rongchang Chongqing, China
| | - Zhi-Xuan Liang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Yan Zhi
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Yue Ma
- School of Veterinary Medicine, Southwest University, Rongchang Chongqing, China
| | - Hong-Jun Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| |
Collapse
|
12
|
Singh R, Deb R, Sengar GS, Raja TV, Kumar S, Singh U, Das AK, Alex R, Kumar A, Tyagi S, Pal P, Patil NV. Differentially expressed microRNAs in biochemically characterized Frieswal TM crossbred bull semen. Anim Biotechnol 2023; 34:25-38. [PMID: 34106815 DOI: 10.1080/10495398.2021.1932519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In addition to the transmission of paternal genome, spermatozoa also carry coding as well as noncoding microRNAs (miRNAs) into the female oocyte during the process of biological fertilization. Based on RNA deep sequencing, a total 28 number of differentially expressed miRNAs were cataloged in categorized FrieswalTM crossbred (Holstein Friesian X Sahiwal) bull semen on the basis of conception rate (CR) in field progeny testing program. Validation of selected miRNAs viz. bta-mir-182, bta-let-7b, bta-mir-34c and bta-mir-20a revealed that, superior bull semen having comparatively (p < .05) lower level of all the miRNAs in contrast to inferior bull semen. Additionally, it was illustrated that, bta-mir-20a and bta-mir-34c miRNAs are negatively (p < .01) correlated with seminal plasma catalase (CAT) activity and glutathione peroxidase (GPx) level. Interactome studies identified that bta-mir-140, bta-mir-342, bta-mir-1306 and bta-mir-217 can target few of the important solute carrier (SLC) proteins viz. SLC30A3, SLC39A9, SLC31A1 and SLC38A2, respectively. Interestingly, it was noticed that all the SLCs were significantly (p < .05) expressed at higher level in superior quality bull semen and they are negatively correlated (p < .01) with their corresponding miRNAs as mentioned. This study may reflect the role of miRNAs in regulating few of the candidate genes and thus may influence the bull semen quality traits.
Collapse
Affiliation(s)
- Rani Singh
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Rajib Deb
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Gyanendra Singh Sengar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - T V Raja
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Sushil Kumar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Umesh Singh
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - A K Das
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Rani Alex
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Amod Kumar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Shrikant Tyagi
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Prasanna Pal
- Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - N V Patil
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| |
Collapse
|
13
|
Pan L, Liu W, Zhao H, Chen B, Yue X. MiR-191-5p inhibits KLF6 to promote epithelial-mesenchymal transition in breast cancer. Technol Health Care 2023; 31:2251-2265. [PMID: 37545272 DOI: 10.3233/thc-230217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) exert certain functions in the development of several cancers and can be a potential hallmark for cancer diagnosis and prognosis. MiR-191-5p has been proven to have high expression in breast cancer (BC), while its biological role and potential regulatory mechanisms in BC remain an open issue. OBJECTIVE Bioinformatics was utilized to assay miR-191-5p level in BC tissues and predict its downstream target gene as well as the enriched signaling pathways of the target gene. METHODS qRT-PCR was carried out to assay miR-191-5p and KLF6 levels in BC cells as well as miR-191-5p level in blood-derived exosomes from BC patients. Western blot was to examine the expression of proteins linked with cell adhesion, epithelial-mesenchymal transition (EMT), and exosome markers. A dual luciferase reporter assay was utilized to verify the interaction between miR-191-5p and KLF6. Abilities of cell phenotypes of BC cells were detected by CCK8, Transwell, and cell adhesion assay, separately. RESULTS Upregulated miR-191-5p expression and downregulated KLF6 expression were observed in BC cells. There was a targeting relationship between miR-191-5p and KLF6. MiR-191-5p negatively regulated KLF6 to promote EMT and malignant progression of BC cells. Additionally, we described a dramatically high level of miR-191-5p in the blood exosomes of BC patients. CONCLUSION MiR-191-5p advances the EMT of BC by targeting KLF6, indicating that miR-191-5p and KLF6 may be new biomarkers for BC.
Collapse
|
14
|
Identification of potential microRNA diagnostic panels and uncovering regulatory mechanisms in breast cancer pathogenesis. Sci Rep 2022; 12:20135. [PMID: 36418345 PMCID: PMC9684445 DOI: 10.1038/s41598-022-24347-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Early diagnosis of breast cancer (BC), as the most common cancer among women, increases the survival rate and effectiveness of treatment. MicroRNAs (miRNAs) control various cell behaviors, and their dysregulation is widely involved in pathophysiological processes such as BC development and progress. In this study, we aimed to identify potential miRNA biomarkers for early diagnosis of BC. We also proposed a consensus-based strategy to analyze the miRNA expression data to gain a deeper insight into the regulatory roles of miRNAs in BC initiation. Two microarray datasets (GSE106817 and GSE113486) were analyzed to explore the differentially expressed miRNAs (DEMs) in serum of BC patients and healthy controls. Utilizing multiple bioinformatics tools, six serum-based miRNA biomarkers (miR-92a-3p, miR-23b-3p, miR-191-5p, miR-141-3p, miR-590-5p and miR-190a-5p) were identified for BC diagnosis. We applied our consensus and integration approach to construct a comprehensive BC-specific miRNA-TF co-regulatory network. Using different combination of these miRNA biomarkers, two novel diagnostic models, consisting of miR-92a-3p, miR-23b-3p, miR-191-5p (model 1) and miR-92a-3p, miR-23b-3p, miR-141-3p, and miR-590-5p (model 2), were obtained from bioinformatics analysis. Validation analysis was carried out for the considered models on two microarray datasets (GSE73002 and GSE41922). The model based on similar network topology features, comprising miR-92a-3p, miR-23b-3p and miR-191-5p was the most promising model in the diagnosis of BC patients from healthy controls with 0.89 sensitivity, 0.96 specificity and area under the curve (AUC) of 0.98. These findings elucidate the regulatory mechanisms underlying BC and represent novel biomarkers for early BC diagnosis.
Collapse
|
15
|
Ismail A, El-Mahdy HA, Abulsoud AI, Sallam AAM, Eldeib MG, Elsakka EG, Zaki MB, Doghish AS. Beneficial and detrimental aspects of miRNAs as chief players in breast cancer: A comprehensive review. Int J Biol Macromol 2022; 224:1541-1565. [DOI: 10.1016/j.ijbiomac.2022.10.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
|
16
|
Karami Fath M, Azargoonjahromi A, Kiani A, Jalalifar F, Osati P, Akbari Oryani M, Shakeri F, Nasirzadeh F, Khalesi B, Nabi-Afjadi M, Zalpoor H, Mard-Soltani M, Payandeh Z. The role of epigenetic modifications in drug resistance and treatment of breast cancer. Cell Mol Biol Lett 2022; 27:52. [PMID: 35764927 PMCID: PMC9238060 DOI: 10.1186/s11658-022-00344-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/24/2022] [Indexed: 02/08/2023] Open
Abstract
Background Breast cancer is defined as a biological and molecular heterogeneous disorder that originates from breast cells. Genetic predisposition is the most important factor giving rise to this malignancy. The most notable mutations in breast cancer occur in the BRCA1 and BRCA2 genes. Owing to disease heterogeneity, lack of therapeutic target, anti-cancer drug resistance, residual disease, and recurrence, researchers are faced with challenges in developing strategies to treat patients with breast cancer. Results It has recently been reported that epigenetic processes such as DNA methylation and histone modification, as well as microRNAs (miRNAs), have potently contributed to the pathophysiology, diagnosis, and treatment of breast cancer. These observations have persuaded researchers to move their therapeutic approaches beyond the genetic framework toward the epigenetic concept. Conclusion Herein we discuss the molecular and epigenetic mechanisms underlying breast cancer progression and resistance as well as various aspects of epigenetic-based therapies as monotherapy and combined with immunotherapy.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Arash Kiani
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Fateme Jalalifar
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Parisa Osati
- Chemical Engineering Department, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fateh Shakeri
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Farhad Nasirzadeh
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Behman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran.
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
17
|
Si Z, Zhong Y, Lao S, Wu Y, Zhong G, Zeng W. The Role of miRNAs in the Resistance of Anthracyclines in Breast Cancer: A Systematic Review. Front Oncol 2022; 12:899145. [PMID: 35664800 PMCID: PMC9157424 DOI: 10.3389/fonc.2022.899145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer has been reported as the most common cancer in women globally, with 2.26 million new cases in 2020. While anthracyclines are the first-line drug for breast cancer, they cause a variety of adverse reactions and drug resistance, especially for triple-negative breast cancer, which can lead to poor prognosis, high relapse, and mortality rate. MicroRNAs (miRNAs) have been shown to be important in the initiation, development and metastasis of malignancies and their abnormal transcription levels may influence the efficacy of anthracyclines by participating in the pathologic mechanisms of breast cancer. Therefore, it is essential to understand the exact role of miRNAs in the treatment of breast cancer with anthracyclines. In this review, we outline the mechanisms and signaling pathways involved in miRNAs in the treatment of breast cancer using anthracyclines. The role of miRNA in the diagnosis, prognosis and treatment of breast cancer patients is discussed, along with the involvement of miRNAs in chemotherapy for breast cancer.
Collapse
Affiliation(s)
- Zihan Si
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Yan Zhong
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Sixian Lao
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Yufeng Wu
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Guoping Zhong
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Weiwei Zeng
- The Second People's Hospital of Longgang District, Shenzhen, China.,Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| |
Collapse
|
18
|
Lessi F, Aretini P, Rizzo M, Morelli M, Menicagli M, Franceschi S, Mazzanti CM. Analysis of exosome-derived microRNAs reveals insights of intercellular communication during invasion of breast, prostate and glioblastoma cancer cells. Cell Adh Migr 2021; 15:180-201. [PMID: 34157951 PMCID: PMC8224203 DOI: 10.1080/19336918.2021.1935407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/08/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022] Open
Abstract
MiRNAs represent a mechanism that regulates gene expression in many pathological conditions. Exosomes are known to be secreted from all types of cells, and the exosomes-released molecules are crucial messengers that can regulate cellular processes. We investigated the miRNAs content of exosomes released by cancer cells during the invasion . An invasion stimulus has been generated through scratches created on the confluent cells of cancer cell lines: glioblastoma, breast and prostate cancers.Several miRNAs were found to be significantly differentially abundant during the cell invasion , both in common among different cell lines and exclusive. Understanding the language codes among cells involved in invasion can lead to the development of therapies that can inhibit cellular communication, slowing or eventually stopping their activity.
Collapse
Affiliation(s)
| | | | - Milena Rizzo
- Institute of Clinical Physiology (IFC), CNR, Pisa, Italy
| | | | | | | | | |
Collapse
|
19
|
Novel lncRNA Panel as for Prognosis in Esophageal Squamous Cell Carcinoma Based on ceRNA Network Mechanism. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:8020879. [PMID: 34603485 PMCID: PMC8486540 DOI: 10.1155/2021/8020879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022]
Abstract
Background The competitive endogenous RNA (ceRNA) mechanism has been discovered recently and regulating cancer-related gene expressions. The ceRNA network participates in multiple processes, such as cell proliferation and metastasis, and potentially drives the progression of cancer. In this study, we focus on the ceRNA networks of esophageal squamous cell carcinoma and discovered a novel biomarker panel for cancer prognosis. Methods RNA expression data of esophageal carcinoma from the TCGA database were achieved and constructed ceRNA network in esophageal carcinoma using R packages. Results Four miRNAs were discovered as the core of the ceRNA model, including miR-93, miR-191, miR-99b, and miR-3615. Moreover, we constructed a ceRNA network in esophageal carcinoma, which included 4 miRNAs and 6 lncRNAs. After ceRNA network modeling, we investigated six lncRNAs which could be taken together as a panel for prognosis prediction of esophageal cancer, including LINC02575, LINC01087, LINC01816, AL136162.1, AC012073.1, and AC117402.1. Finally, we tested the predictive power of the panel in all TCGA samples. Conclusions Our study discovered a new biomarker panel which may have potential values in the prediction of prognosis of esophageal carcinoma.
Collapse
|
20
|
Garrido-Cano I, Pattanayak B, Adam-Artigues A, Lameirinhas A, Torres-Ruiz S, Tormo E, Cervera R, Eroles P. MicroRNAs as a clue to overcome breast cancer treatment resistance. Cancer Metastasis Rev 2021; 41:77-105. [PMID: 34524579 PMCID: PMC8924146 DOI: 10.1007/s10555-021-09992-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/02/2021] [Indexed: 12/31/2022]
Abstract
Breast cancer is the most frequent cancer in women worldwide. Despite the improvement in diagnosis and treatments, the rates of cancer relapse and resistance to therapies remain higher than desirable. Alterations in microRNAs have been linked to changes in critical processes related to cancer development and progression. Their involvement in resistance or sensitivity to breast cancer treatments has been documented by different in vivo and in vitro experiments. The most significant microRNAs implicated in modulating resistance to breast cancer therapies are summarized in this review. Resistance to therapy has been linked to cellular processes such as cell cycle, apoptosis, epithelial-to-mesenchymal transition, stemness phenotype, or receptor signaling pathways, and the role of microRNAs in their regulation has already been described. The modulation of specific microRNAs may modify treatment response and improve survival rates and cancer patients' quality of life. As a result, a greater understanding of microRNAs, their targets, and the signaling pathways through which they act is needed. This information could be useful to design new therapeutic strategies, to reduce resistance to the available treatments, and to open the door to possible new clinical approaches.
Collapse
Affiliation(s)
| | | | | | - Ana Lameirinhas
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | | | - Eduardo Tormo
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain.,Center for Biomedical Network Research On Cancer, CIBERONC-ISCIII, 28029, Madrid, Spain
| | | | - Pilar Eroles
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain. .,Center for Biomedical Network Research On Cancer, CIBERONC-ISCIII, 28029, Madrid, Spain. .,Department of Physiology, University of Valencia, 46010, Valencia, Spain.
| |
Collapse
|
21
|
Zhu J, Zhang F. Circular RNA VANGL1 knockdown suppressed viability, promoted apoptosis, and increased doxorubicin sensitivity through targeting miR-145-5p to regulate SOX4 in bladder cancer cells. Open Med (Wars) 2021; 16:1010-1021. [PMID: 34258391 PMCID: PMC8262520 DOI: 10.1515/med-2021-0299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/13/2021] [Accepted: 04/24/2021] [Indexed: 01/04/2023] Open
Abstract
Background Bladder cancer is a common malignancy in the world. It is reported that circular RNA VANGL1 (circ_VANGL1) was involved in bladder cancer progression. However, the functional role and molecular mechanism of circ_VANGL1 in bladder cancer were still unclear. Methods The levels of circ_VANGL1, microRNA-145-5p (miR-145-5p), and Sex-determining region Y-related high-mobility group box 4 (SOX4) in bladder cancer tissues and cells were determined by quantitative real-time polymerase chain (RT-qPCR). The relative protein expression was detected by western blot. Cell counting kit-8 (CCK8) and flow cytometry analysis were used to measure cell viability, IC50 value, and apoptosis rate. The interaction between miR-145-5p and circ_VANGL1 or SOX4 was predicted by online software starBase v2.0 or Targetscan and verified by the dual-luciferase reporter assay. Besides, xenograft mice model was used to detect the effects of circ_VANGL1 in vivo. Results The level of circ_VANGL1 and SOX4 was increased, while miR-145-5p was decreased in bladder cancer tissues and cells. Knockdown of circ_VANGL1 suppressed viability, while promoted apoptosis and increased doxorubicin sensitivity in bladder cancer cells. Moreover, circ_VANGL1 acted as a sponge for miR-145-5p. In addition, miR-145-5p partially reversed the effects of miR-145-5p knockdown in T24 and J82 cells. SOX4 was a target of miR-145-5p and negatively regulated by miR-145-5p. Furthermore, miR-145-5p regulated SOX4 to affect cell progression in bladder cancer cells, including viability, apoptosis, and doxorubicin sensitivity. Besides, circ_VANGL1 suppressed tumor growth and enhanced the doxorubicin sensitivity in bladder cancer in vivo. Conclusion circ_VANGL1 mediated cell viability, apoptosis, and doxorubicin sensitivity by regulating miR-145-5p/SOX4 axis in bladder cancer, providing a potential therapeutic target for bladder cancer therapy.
Collapse
Affiliation(s)
- Jiangbo Zhu
- Department of Urology, Taizhou First People's Hospital, Huangyan District, 318020, Taizhou, China
| | - Fei Zhang
- Department of Urology, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), No. 41, Northwest Street, Haishu District, 315000, NingBo, China
| |
Collapse
|
22
|
Pourmohammad P, Maroufi NF, Rashidi M, Vahedian V, Pouremamali F, Faridvand Y, Ghaffari-Novin M, Isazadeh A, Hajazimian S, Nejabati HR, Nouri M. Potential Therapeutic Effects of Melatonin Mediate via miRNAs in Cancer. Biochem Genet 2021; 60:1-23. [PMID: 34181134 DOI: 10.1007/s10528-021-10104-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
miRNAs are evolutionarily conserved non-coding ribonucleic acids with a length of between 19 and 25 nucleotides. Because of their ability to regulate gene expression, miRNAs have an important function in the controlling of various biological processes, such as cell cycle, differentiation, proliferation, and apoptosis. Owing to the long-standing regulative potential of miRNAs in tumor-suppressive pathways, scholars have recently paid closer attention to the expression profile of miRNAs in various types of cancer. Melatonin, an indolic compound secreted from pineal gland and some peripheral tissues, has been considered as an effective anti-tumor hormone in a wide spectrum of cancers. Furthermore, it induces apoptosis, inhibits tumor metastasis and invasion, and also angiogenesis. A growing body of evidence indicates the effects of melatonin on miRNAs expression in broad spectrum of diseases, including cancer. Due to the long-term effects of the regulation of miRNAs expression, melatonin could be a promising therapeutic factor in the treatment of cancers via the regulation of miRNAs. Therefore, in this review, we will discuss the effects of melatonin on miRNAs expression in various types of cancers.
Collapse
Affiliation(s)
- Pirouz Pourmohammad
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Science, Ardabil, Islamic Republic of Iran
| | - Nazila Fathi Maroufi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Vahid Vahedian
- Researchers Club of Tums Preclinical Core Facility (TPCF), Tehran University of Medical Science (TUMS), Tehran, Iran.,Department of Medical Laboratory Sciences, Faculty of Medicine, Islamic Azad University (IAU), Sari, Iran
| | - Farhad Pouremamali
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Faridvand
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Ghaffari-Novin
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Hajazimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Abstract
Objective This study aimed to explore the correlation between the SRY-related high-mobility-group box gene 4 (SOX4) 3′ untranslated region (UTR) single nucleotide polymorphism (SNP) and osteoporosis susceptibility. Methods The study recruited 330 osteoporosis patients (the case group) and 330 non-osteoporosis patients (the control group) in Sichuan Chengdu First People’s Hospital and Zibo Central Hospital from August 2016 to August 2019. Sanger sequencing was used to analyze the genotypes of SOX4 gene rs79958549, rs139085828, and rs201335371 loci. Multi-factor dimensionality reduction (MDR) was used to analyze the interaction between the SOX4 gene rs79958549, rs139085828, and rs201335371 loci and the clinical characteristics of the subjects. Results The risk of osteoporosis in the carriers of A allele at SOX4 rs79958549 was 5.40 times that in the carriers of the G allele (95% CI 3.25–8.96, P < 0.01). The risk of osteoporosis in the carriers of the A allele at SOX4 rs139085828 was 1.68 times that in the carriers of the G allele (95% CI 1.45–1.85, P < 0.01). The risk of osteoporosis in the carriers of the T allele at SOX4 rs201335371 was 0.54 times that in the carriers of the C allele (95% CI 0.43–0.69, P < 0.01). The SOX4 gene rs79958549, rs139085828, and rs201335371 A-A-C haplotype (OR = 5.14, 95% CI 2.45–10.57, P < 0.01) were associated with increased risk of osteoporosis and G-G-T haplotype was significantly associated with decreased risk of osteoporosis (OR = 0.48, 95% CI 0.38–0.62, P < 0.01). The interaction among the factors of sex, smoking, drinking, rs79958549, rs201335371 was the best model for osteoporosis prediction, and the risk for osteoporosis in ‘high-risk combination’ was 2.74 times that of ‘low-risk combination’ (95% CI 1.01–7.43, P = 0.04). Multiple logistic regression analysis revealed that the risk factors for osteoporosis were BMD (OR = 5.85, 95% CI 2.88–8.94, P < 0.01), T score (OR = 8.54, 95% CI 5.66–10.49, P < 0.01), Z score (OR = 3.77, 95% CI 2.15–8.50, P < 0.01), rs79958549 SNP (OR = 6.92, 95% CI 3.58–8.93, P < 0.01), and rs139085828 SNP (OR = 2.36, 95% CI 1.85–4.27, P < 0.01). The protective factor for osteoporosis was rs201335371SNP (OR = 0.48, 95% CI 0.32–0.75, P < 0.01). Conclusion The SOX4 gene SNPs rs79958549, rs139085828, and rs201335371 loci were significantly associated with osteoporosis risk.
Collapse
|
24
|
Jamialahmadi K, Zahedipour F, Karimi G. The role of microRNAs on doxorubicin drug resistance in breast cancer. J Pharm Pharmacol 2021; 73:997-1006. [PMID: 33942851 DOI: 10.1093/jpp/rgaa031] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Resistance to chemotherapeutic drugs is a serious challenge for effective therapy of cancers. Doxorubicin is a drug which is typically used for breast cancer treatment. Several mechanisms are involved in resistance to doxorubicin including overexpression of ATP-binding cassette (ABC) transporters, altering apoptosis, autophagy and cell cycle arrest. In this review, we focus on the potential effects of microRNAs on doxorubicin resistance in breast cancer. METHODS Literature review focusing on the 'microRNAs and doxorubicin drug resistance in breast cancer' was conducted comprehensively. The search was performed in PubMed, Scopus, Google and Google Scholar databases and reference lists of relevant articles were also included. KEY FINDINGS MicroRNAs play essential role in resistance of breast cancer to doxorubicin by affecting several key cellular pathways, including overexpression of ABC transporters, altering apoptosis, autophagy and cell signaling pathways, cell cycle arrest, epithelial to mesenchymal transition (EMT) and cancer stem cells (CSCs). CONCLUSIONS Cancer treatment methods are moving from conventional therapies to targeted therapies such as using microRNAs. MiRNAs can act as regulatory molecules to overcome breast cancer doxorubicin resistance by controlling the expression levels of genes involved in different cellular pathways. Thus, exact elucidation of their role in different cellular processes can help overcome the breast cancer development and drug resistance.
Collapse
Affiliation(s)
- Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zahedipour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Zhuang W, Liu J, Li W. hsa-miR-33-5p as a Therapeutic Target Promotes Apoptosis of Breast Cancer Cells via Selenoprotein T. Front Med (Lausanne) 2021; 8:651473. [PMID: 33987194 PMCID: PMC8110722 DOI: 10.3389/fmed.2021.651473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: Increasing evidence suggests that microRNA (miRNA) participates in regulating tumor cell apoptosis. We aimed to observe the effect of hsa-miR-33-5p on the apoptosis of breast cancer cells and to explore its regulatory relationship with selenoprotein T (SelT). Methods: RT-qPCR was used to examine the expression of hsa-miR-33-5p and SelT both in breast cancer tissues and cells. MCF-7 and MDA-MB-231 cells were transfected with hsa-miR-33-5p mimics or si-SelT. Then, a flow cytometry assay was carried out to examine the apoptosis of cells. Furthermore, SelT and apoptosis-related proteins including caspase-3, caspase-8, caspase-9, Bax, and Bcl-2 were detected via RT-qPCR and western blot. A luciferase reporter assay was utilized for assessing whether SelT was targeted by hsa-miR-33-5p. Results: Downregulated hsa-miR-33-5p was found both in breast cancer tissues and cells. After its overexpression, MCF-7 cell apoptosis was significantly promoted. Furthermore, our data showed that miR-33-5p elevated apoptosis-related protein expression in MCF-7 cells. Contrary to hsa-miR-33-5p, SelT was upregulated both in breast cancer tissues and cells. SelT expression was significantly inhibited by hsa-miR-33-5p overexpression. The luciferase reporter assay confirmed that SelT was a direct target of hsa-miR-33-5p. SelT overexpression could ameliorate the increase in apoptosis induced by hsa-miR-33-5p mimics. Conclusion: Our findings revealed that hsa-miR-33-5p, as a potential therapeutic target, could accelerate breast cancer cell apoptosis.
Collapse
Affiliation(s)
- Wei Zhuang
- Department of Laboratory, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jianhui Liu
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, China
| | - Wenjin Li
- Department of Breast, Linyi Cancer Hospital, Linyi, China
| |
Collapse
|
26
|
Taheri M, Mahmud Hussen B, Tondro Anamag F, Shoorei H, Dinger ME, Ghafouri-Fard S. The role of miRNAs and lncRNAs in conferring resistance to doxorubicin. J Drug Target 2021; 30:1-21. [PMID: 33788650 DOI: 10.1080/1061186x.2021.1909052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Doxorubicin is a chemotherapeutic agent that inhibits topoisomerase II, intercalates within DNA base pairs and results in oxidative DNA damage, thus inducing cell apoptosis. Although it is effective in the treatment of a wide range of human cancers, the emergence of resistance to this drug can increase tumour growth and impact patients' survival. Numerous molecular mechanisms and signalling pathways have been identified that induce resistance to doxorubicin via stimulation of cell proliferation, cell cycle switch and preclusion of apoptosis. A number of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have also been identified that alter sensitivity to doxorubicin. Understanding the particular impact of these non-coding RNAs in conferring resistance to doxorubicin has considerable potential to improve selection of chemotherapeutic regimens for cancer patients. Moreover, modulation of expression of these transcripts is a putative strategy for combating resistance. In the current paper, the influence of miRNAs and lncRNAs in the modification of resistance to doxorubicin is discussed.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
GPER1 and microRNA: Two Players in Breast Cancer Progression. Int J Mol Sci 2020; 22:ijms22010098. [PMID: 33374170 PMCID: PMC7795792 DOI: 10.3390/ijms22010098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the main cause of morbidity and mortality in women worldwide. However, the molecular pathogenesis of breast cancer remains poorly defined due to its heterogeneity. Several studies have reported that G Protein-Coupled Estrogen Receptor 1 (GPER1) plays a crucial role in breast cancer progression, by binding to estrogens or synthetic agonists, like G-1, thus modulating genes involved in diverse biological events, such as cell proliferation, migration, apoptosis, and metastasis. In addition, it has been established that the dysregulation of short sequences of non-coding RNA, named microRNAs (miRNAs), is involved in various pathophysiological conditions, including breast cancer. Recent evidence has indicated that estrogens may regulate miRNA expression and therefore modulate the levels of their target genes, not only through the classical estrogen receptors (ERs), but also activating GPER1 signalling, hence suggesting an alternative molecular pathway involved in breast tumor progression. Here, the current knowledge about GPER1 and miRNA action in breast cancer is recapitulated, reporting recent evidence on the liaison of these two players in triggering breast tumorogenic effects. Elucidating the role of GPER1 and miRNAs in breast cancer might provide new tools for innovative approaches in anti-cancer therapy.
Collapse
|
28
|
Xu Y, Zhu H, Ma H, Yuan L, Hu Q, Yang L. LINC01305 inhibits malignant progression of cervical cancer via miR-129-5p/Sox4 axis. Am J Transl Res 2020; 12:7581-7592. [PMID: 33312390 PMCID: PMC7724335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/08/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The association between LINC01305, a newly discovered long non-coding RNA (lncRNA), and cervical cancer (CC) has been poorly analyzed. In the present study, we revealed high expression of LINC01305 in CC by the cancer genome atlas (TCGA) and Gene Expression Omnibus (GEO), and dissected the related mechanisms. METHODS LINC01305, microRNA (miR) -129-5p and SRY-related high-mobility group box 4 (Sox4) mRNA levels were quantitated by quantitative reverse transcription-PCRy qRT-PCR). CC tissues and cell lines and corresponding controls were enrolled for the quantification of LINC01305 expression in CC. Effects of LINC01305 and miR-129-5p on cell proliferation, metastasis, and apoptosis were evaluated by MTT, colony formation, wound healing, Transwell and flow cytometry assays. Sox4 protein levels were tested by Western blot (WB). Bioinformatics analysis, RNA immunoprecipitation (RIP), RNA pull-down and dual-luciferase reporter (DLR) assay were performed to determine molecular mechanisms of LINC01305 in CC. Xenograft models of CC were constructed to evaluate the role of LINC01305 in vivo. RESULTS The expression of LINC01305 was evidently elevated in CC tissues and cell lines than that in controls and associated with clinicopathological features. Downregulating LINC01305 suppressed malignant phenotypes (proliferation, migration, invasion) of Hela and SiHa cells. In addition, silencing miR-129-5p by its inhibitor eliminated the inhibition of growth and metastasis induced by LINC01305 siRNA. Sox4 might serve as a direct target for miR-129-5p and was negatively regulated by miR-129-5p and LINC01305. CONCLUSION LINC01305 acts as a competitive endogenous RNA (ceRNA) and regulates Sox4 via sponging miR-129-5p, contributing to the diagnosis and treatment of CC.
Collapse
Affiliation(s)
- Yuexun Xu
- Department of Gynecology and Obstetrics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou UniversityZhengzhou 450003, China
| | - Haiyan Zhu
- Department of Gynaecology, Shanghai First Maternity and Infant Hospital, Tongji University School of MedicineShanghai 201204, China
| | - Hongbin Ma
- Department of Radiotherapy, Eastern Hepatobiliary Surgery HospitalShanghai, China
| | - Lei Yuan
- The First Department of Biliary Surgery, Eastern Hepatobiliary Surgery HospitalShanghai, China
| | - Qunchao Hu
- Department of Radiation Center, Shanghai First Maternity and Infant Hospital, Tongji University School of MedicineShanghai 201204, China
| | - Liang Yang
- Department of Radiation Center, Shanghai First Maternity and Infant Hospital, Tongji University School of MedicineShanghai 201204, China
| |
Collapse
|
29
|
Saikia M, Paul S, Chakraborty S. Role of microRNA in forming breast carcinoma. Life Sci 2020; 259:118256. [DOI: 10.1016/j.lfs.2020.118256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/19/2022]
|
30
|
Kandettu A, Radhakrishnan R, Chakrabarty S, Sriharikrishnaa S, Kabekkodu SP. The emerging role of miRNA clusters in breast cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1874:188413. [PMID: 32827583 DOI: 10.1016/j.bbcan.2020.188413] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Micro RNAs (miRNAs) are small non-coding RNAs that are essential for regulation of gene expression of the target genes. Large number of miRNAs are organized into defined units known as miRNA clusters (MCs). The MCs consist of two or more than two miRNA encoding genes driven by a single promoter, transcribed together in the same orientation, that are not separated from each other by a transcription unit. Aberrant miRNA clusters expression is reported in breast cancer (BC), exhibiting both pro-tumorogenic and anti-tumorigenic role. Altered MCs expression facilitates to breast carcinogenesis by promoting the breast cells to acquire the various hallmarks of the cancer. Since miRNA clusters contain multiple miRNA encoding genes, targeting cluster may be more attractive than targeting individual miRNAs. Besides targeting dysregulated miRNA clusters in BC, studies have focused on the mechanism of action, and its contribution to the progression of the BC. The present review provides a comprehensive overview of dysregulated miRNA clusters and its role in the acquisition of cancer hallmarks in BC. More specifically, we have presented the regulation, differential expression, classification, targets, mechanism of action, and signaling pathways of miRNA clusters in BC. Additionally, we have also discussed the potential utility of the miRNA cluster as a diagnostic and prognostic indicator in BC.
Collapse
Affiliation(s)
- Amoolya Kandettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - S Sriharikrishnaa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
31
|
Zhang L, Lv L, Zheng N, Li R, Yang R, Li T, Li Y, Liu Y, Luo H, Li X, Zhou Y, Shan H, Bai B, Liang H. Suppression of Sox4 protects against myocardial ischemic injury by reduction of cardiac apoptosis in mice. J Cell Physiol 2020; 236:1094-1104. [PMID: 32657438 DOI: 10.1002/jcp.29918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022]
Abstract
Sox4 participates in the progression of embryo development and regulation of apoptosis in tumors. However, the effect and mechanism of Sox4 in myocardial infarction (MI) remains unclear. Therefore, we aimed at examining the role and molecular mechanism of Sox4 in the process of cardiomyocytes apoptosis during MI. The expression of Sox4 were obviously increased both in MI mice and in neonatal mouse cardiomyocytes treated with H2 O2 . Overexpression of Sox4 promoted cardiomyocyte apoptosis with or without H2 O2 , whereas knocking down of Sox4 alleviated H2 O2 -induced apoptosis in cardiomyocytes. Furthermore, silencing Sox4 by AAV-9 carried short hairpin RNA targeting Sox4 (AAV-9-sh-Sox4) markedly decreased cardiac infarct area, imprfoved cardiac dysfunction, and reversed apoptosis in MI mice. Mechanistically, there is a potential Sox4-binding site in the promoter region of Bim, and forced expression of Sox4 significantly promoted Bim expression in cultured cardiomyocytes with or without H2 O2 , whereas knocking down of Sox4 inhibited the expression of Bim. Further studies showed that silencing Bim attenuated Sox4-induced apoptosis in cardiomyocytes, indicating that Sox4 promoted cardiomyocytes apoptosis through regulation of Bim expression, which can be used as a potential therapeutic target for MI.
Collapse
Affiliation(s)
- Lijia Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lifang Lv
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China.,Department of Basic Medicine, The Centre of Functional Experiment Teaching, Harbin Medical University, Harbin, Heilongjiang, China
| | - Nan Zheng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ruotong Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Rui Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Tianyu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingnan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingqi Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongwei Luo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xuelian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuhong Zhou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Bing Bai
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
32
|
Xu H, Wang X, Wang Z, Li J, Xu Z, Miao M, Chen G, Lei X, Wu J, Shi H, Wang K, Zhang T, Sun X. MicroRNA expression profile analysis in sperm reveals hsa-mir-191 as an auspicious omen of in vitro fertilization. BMC Genomics 2020; 21:165. [PMID: 32066367 PMCID: PMC7027243 DOI: 10.1186/s12864-020-6570-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are a class of noncoding small RNAs that play important roles in many physiological processes by regulating gene expression. Previous studies have shown that the expression levels of total miRNAs increase during mouse embryonic development, and some miRNAs control the regulatory network in development progression. However, few studies have focused on the effects of miRNAs on early human embryonic development. The relationship between miRNAs and early human embryogenesis is still unknown. RESULTS In this study, RNA-seq data collected from sperm samples from 102 patients with a normal sperm index but treated with assisted reproductive technology (ART) were analyzed for the relationships between differentially expressed small RNAs and the fertilization rate (FR), blastocyst rate and high-quality embryo rate (HQER). The sperm samples with high hsa-mir-191 expression had a higher FR, effective embryo rate (EER) and HQER. hsa-mir-191 was used as a single indicator to predict the HQER. The receiver operating characteristic (ROC) curve had an area under the ROC curve (AUC) of 0.686. We also found that hsa-mir-191 expression is correlated with an abnormal sperm rate (cor = 0.29, p < 0.01). We also evaluated the relationship between hsa-mir-34c and early human embryo development in these 102 sperm samples and obtained negative results. CONCLUSIONS These findings suggest that high hsa-mir-191-5p expression in sperm is associated with early human embryonic quality and that hsa-mir-191-5p could be used as a potential marker to screen high-quality sperm to improve the success rates of in vitro fertilization (IVF).
Collapse
Affiliation(s)
- Hua Xu
- Shanghai JiAi Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, No.588 Fangxie Road, Shanghai, 200011, China
| | - Xin Wang
- NHC Key Lab. of Reproduction Regulation(Shanghai Institute of Planned Parenthood Research), Hospital of SIPPR, Fudan University, Shanghai, China
| | - Zhikai Wang
- NHC Key Lab. of Reproduction Regulation(Shanghai Institute of Planned Parenthood Research), Hospital of SIPPR, Fudan University, Shanghai, China
| | - Jianhui Li
- NHC Key Lab. of Reproduction Regulation(Shanghai Institute of Planned Parenthood Research), Hospital of SIPPR, Fudan University, Shanghai, China
| | - Zhiming Xu
- NHC Key Lab. of Reproduction Regulation(Shanghai Institute of Planned Parenthood Research), Hospital of SIPPR, Fudan University, Shanghai, China
| | - Maohua Miao
- NHC Key Lab. of Reproduction Regulation(Shanghai Institute of Planned Parenthood Research), Public School, Fudan University, Shanghai, China
| | - Guowu Chen
- Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Xiangdong Lei
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun Wu
- NHC Key Lab. of Reproduction Regulation(Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, No.2140 xietu road, xuhui district, Shanghai, People's Republic of China
| | - Huijuan Shi
- NHC Key Lab. of Reproduction Regulation(Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, No.2140 xietu road, xuhui district, Shanghai, People's Republic of China
| | - Ke Wang
- NHC Key Lab. of Reproduction Regulation(Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, No.2140 xietu road, xuhui district, Shanghai, People's Republic of China
| | - Tiancheng Zhang
- NHC Key Lab. of Reproduction Regulation(Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, No.2140 xietu road, xuhui district, Shanghai, People's Republic of China.
| | - Xiaoxi Sun
- Shanghai JiAi Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, No.588 Fangxie Road, Shanghai, 200011, China. .,Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
33
|
Peng LN, Deng XY, Gan XX, Zhang JH, Ren GH, Shen F, Feng JH, Cai WS, Xu B. Targeting of TLE3 by miR-3677 in human breast cancer promotes cell proliferation, migration and invasion. Oncol Lett 2019; 19:1409-1417. [PMID: 32002031 PMCID: PMC6960393 DOI: 10.3892/ol.2019.11241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
Numerous studies have indicated an important function of microRNAs (miRs) in breast cancer (BC) progression, oncogenesis and metastasis. However, the function of miR-3677, which has been revealed to be upregulated in BC [The Cancer Genome Atlas (TCGA) data], has not been investigated to date. In the present study, miR-3677 was revealed to be upregulated in BC as determined using TCGA. miR-3677 was significantly upregulated in BC tissues and cell lines compared with those noted in adjacent non-cancerous tissues and primary normal breast cells (P<0.05). The overexpression of miR-3677 promoted the cell proliferation, migration and invasion of BC cells. Using bioinformatics algorithms and luciferase assays, a novel target gene for miR-3677, namely transducin-like enhancer of Split3 (TLE3), was identified. Silencing of TLE3 in miR-3677-transfected BC cells suppressed their proliferation and migration. An inverse correlation was observed between miR-3677 and TLE3 expression levels in human BC tissues. In conclusion, the present study demonstrated that miR-3677 promoted BC cell proliferation, migration and invasion by inhibiting TLE3 expression, which provided a novel mechanism and a promising therapeutic target for patients with BC.
Collapse
Affiliation(s)
- Li-Na Peng
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China.,Department of General Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Xing-Yan Deng
- Department of General Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China.,Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Xiao-Xiong Gan
- Department of General Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Jin-Hui Zhang
- Department of General Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Guang-Hui Ren
- Department of General Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Fei Shen
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China.,Department of General Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China.,Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Jian-Hua Feng
- Department of General Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Wen-Song Cai
- Department of General Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China.,Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Bo Xu
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China.,Department of General Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China.,Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
34
|
Ray J, Haughey C, Hoey C, Jeon J, Murphy R, Dura-Perez L, McCabe N, Downes M, Jain S, Boutros PC, Mills IG, Liu SK. miR-191 promotes radiation resistance of prostate cancer through interaction with RXRA. Cancer Lett 2019; 473:107-117. [PMID: 31874245 DOI: 10.1016/j.canlet.2019.12.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
Radiation therapy is a common treatment for prostate cancer, however recurrence remains a problem. MicroRNA expression is altered in prostate cancer and may promote therapy resistance. Through bioinformatic analyses of TCGA and CPC-GENE patient cohorts, we identified higher miR-191 expression in tumor versus normal tissue, and increased expression in higher Gleason scores. In vitro and in vivo experiments demonstrated that miR-191 overexpression promotes radiation survival, and contributes to a more aggressive phenotype. Retinoid X receptor alpha, RXRA, was discovered to be a novel target of miR-191, and knockdown recapitulated radioresistance. Furthermore, treatment of prostate cancer cells with the RXRA agonist 9-cis-retinoic acid restored radiosensitivity. Supporting this relationship, patients with high miR-191 and low RXRA abundance experienced quicker biochemical recurrence. Reduced RXRA translated to a higher risk of distant failure after radiotherapy. Notably, this miR-191/RXRA interaction was conserved in a novel primary cell line derived from radiorecurrent prostate cancer. Together, our findings demonstrate that miR-191 promotes prostate cancer survival after radiotherapy, and highlights retinoids as a potential option to improve radiotherapy response.
Collapse
Affiliation(s)
- Jessica Ray
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | - Charles Haughey
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, UK
| | - Christianne Hoey
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | - Jouhyun Jeon
- Ontario Institute for Cancer Research, Toronto, Canada
| | - Ross Murphy
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, UK
| | - Lara Dura-Perez
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, UK
| | - Nuala McCabe
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, UK
| | - Michelle Downes
- Department of Anatomic Pathology, University of Toronto, Canada
| | - Suneil Jain
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, UK
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Canada; Ontario Institute for Cancer Research, Toronto, Canada
| | - Ian G Mills
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, UK; Nuffield Department of Surgical Sciences, University of Oxford, UK
| | - Stanley K Liu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Canada; Department of Radiation Oncology, University of Toronto, Canada.
| |
Collapse
|
35
|
Loh HY, Norman BP, Lai KS, Rahman NMANA, Alitheen NBM, Osman MA. The Regulatory Role of MicroRNAs in Breast Cancer. Int J Mol Sci 2019; 20:E4940. [PMID: 31590453 PMCID: PMC6801796 DOI: 10.3390/ijms20194940] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules which function as critical post-transcriptional gene regulators of various biological functions. Generally, miRNAs negatively regulate gene expression by binding to their selective messenger RNAs (mRNAs), thereby leading to either mRNA degradation or translational repression, depending on the degree of complementarity with target mRNA sequences. Aberrant expression of these miRNAs has been linked etiologically with various human diseases including breast cancer. Different cellular pathways of breast cancer development such as cell proliferation, apoptotic response, metastasis, cancer recurrence and chemoresistance are regulated by either the oncogenic miRNA (oncomiR) or tumor suppressor miRNA (tsmiR). In this review, we highlight the current state of research into miRNA involved in breast cancer, with particular attention to articles published between the years 2000 to 2019, using detailed searches of the databases PubMed, Google Scholar, and Scopus. The post-transcriptional gene regulatory roles of various dysregulated miRNAs in breast cancer and their potential as therapeutic targets are also discussed.
Collapse
Affiliation(s)
- Hui-Yi Loh
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Brendan P Norman
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK.
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, UAE.
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Mohd Azuraidi Osman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| |
Collapse
|
36
|
Wu Z, Wu J, Zhao Q, Fu S, Jin J. Emerging roles of aerobic glycolysis in breast cancer. Clin Transl Oncol 2019; 22:631-646. [PMID: 31359335 DOI: 10.1007/s12094-019-02187-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/05/2019] [Indexed: 12/25/2022]
Abstract
Altered aerobic glycolysis is a well-recognized characteristic of cancer cell energy metabolism, known as the Warburg effect. Even in the presence of abundant oxygen, a majority of tumor cells produce substantial amounts of energy through a high glycolytic metabolism, and breast cancer (BC) is no exception. Breast cancer continues to be the second leading cause of cancer-associated mortality in women worldwide. However, the precise role of aerobic glycolysis in the development of BC remains elusive. Therefore, the present review attempts to address the implication of key enzymes of the aerobic glycolytic pathway including hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK), glucose transporters (GLUTs), together with related signaling pathways including protein kinase B(PI3K/AKT), mammalian target of rapamycin (mTOR) and adenosine monophosphate-activated protein kinase (AMPK) and transcription factors (c-myc, p53 and HIF-1) in the research of BC. Thus, the review of aerobic glycolysis in BC may evoke novel ideas for the BC treatment.
Collapse
Affiliation(s)
- Z Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - J Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Q Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, People's Republic of China
| | - S Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
| | - J Jin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
37
|
SOX4: Epigenetic regulation and role in tumorigenesis. Semin Cancer Biol 2019; 67:91-104. [PMID: 31271889 DOI: 10.1016/j.semcancer.2019.06.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Sex-determining region Y-related (SRY) high-mobility group box 4 (SOX4) is a member of the group C subfamily of SOX transcription factors and promotes tumorigenesis by endowing cancer cells with survival, migratory, and invasive capacities. Emerging evidence has highlighted an unequivocal role for this transcription factor in mediating various signaling pathways involved in tumorigenesis, epithelial-to-mesenchymal transition (EMT), and tumor progression. During the last decade, numerous studies have highlighted the epigenetic interplay between SOX4-targeting microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and SOX4 and the subsequent modulation of tumorigenesis, invasion and metastasis. In this review, we summarize the current state of knowledge about the role of SOX4 in cancer development and progression, the epigenetic regulation of SOX4, and the potential utilization of SOX4 as a diagnostic and prognostic biomarker and its depletion as a therapeutic target.
Collapse
|
38
|
Zhang X, Wu M, Chong QY, Zhang W, Qian P, Yan H, Qian W, Zhang M, Lobie PE, Zhu T. Amplification of hsa-miR-191/425 locus promotes breast cancer proliferation and metastasis by targeting DICER1. Carcinogenesis 2019; 39:1506-1516. [PMID: 30084985 DOI: 10.1093/carcin/bgy102] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
The dysregulation of micro RNAs (miRNAs) is a crucial characteristic of human cancers. Herein, we observed frequent amplification of the MIR191/425 locus in breast cancer, which is correlated with poor survival outcome. We demonstrated that the miR-191/425 cluster binds the 3' untranslated region of the DICER1 transcript and posttranscriptionally represses DICER1 expression, thereby impairing global miRNAs biogenesis. Functionally, the forced expression of miR-191 or miR-425 stimulated the proliferation, survival, migration and invasion of breast cancer cells, whereas the inhibition of miR-191 or miR-425 suppressed these oncogenic behaviors of breast cancer cells, in a manner dependent on miR-191/425-mediated downregulation of DICER1. Furthermore, the miR-191/425 cluster promoted breast tumor growth, invasion and metastasis in vivo. The let-7 family of miRNAs was downregulated upon forced expression of miR-191 or miR-425, with a corresponding increase in the levels of let-7 target, high-mobility group AT-hook 2 (HMGA2). The forced expression of let-7 partially abrogated the miR-191/425-mediated oncogenic effects in breast cancer cells, suggestive of let-7 as a downstream effector of the miR-191/425-DICER1 axis. Collectively, we proposed that the inhibition of global miRNA processing, through miR-191/425-mediated downregulation of DICER1, promotes breast cancer progression.
Collapse
Affiliation(s)
- Xiao Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Mingming Wu
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Qing-Yun Chong
- Cancer Science Institute of Singapore, Singapore, Singapore.,Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Weijie Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Pengxu Qian
- Research Center of Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Hangzhou, P.R. China.,Institute of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Hong Yan
- Department of Pathology, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Wenchang Qian
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Min Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Peter E Lobie
- Cancer Science Institute of Singapore, Singapore, Singapore.,Department of Pharmacology, National University of Singapore, Singapore, Singapore.,Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong, P.R. China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P.R. China
| |
Collapse
|
39
|
Quan X, Li X, Yin Z, Ren Y, Zhou B. p53/miR-30a-5p/ SOX4 feedback loop mediates cellular proliferation, apoptosis, and migration of non-small-cell lung cancer. J Cell Physiol 2019; 234:22884-22895. [PMID: 31124131 DOI: 10.1002/jcp.28851] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/31/2022]
Abstract
Many microRNAs (miRNAs) play vital roles in the tumorigenesis and development of cancers. In this study, we aimed to identify the differentially expressed miRNAs and their specific mechanisms in non-small-cell lung cancer (NSCLC). Based on data from the GSE56036 database, miR-30a-5p expression was identified to be downregulated in NSCLC. Further investigations showed that overexpression of miR-30a-5p inhibited cell proliferation, migration, and promoted apoptosis in NSCLC. Increase of miR-30a-5p level could induce the increase of Bax protein level and decrease of Bcl-2 protein level. In addition, chromatin immunoprecipitation assays showed that miR-30a-5p expression was induced by binding of p53 to the promoter of MIR30A. Bioinformatics prediction indicated that miR-30a-5p targets SOX4, and western blot analysis indicated that overexpression of the miRNA decreases the SOX4 protein expression level, which in turn regulated the level of p53. Thus, this study provides evidence for the existence of a p53/miR-30a-5p/SOX4 feedback loop, which likely plays a key role in the regulation of proliferation, apoptosis, and migration in NSCLC, highlighting a new therapeutic target.
Collapse
Affiliation(s)
- Xiaowei Quan
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Department of Education, Liaoning, China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Department of Education, Liaoning, China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Department of Education, Liaoning, China
| | - Yangwu Ren
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Department of Education, Liaoning, China
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Department of Education, Liaoning, China
| |
Collapse
|
40
|
Si H, Chen P, Li H, Wang X. Long non-coding RNA H19 regulates cell growth and metastasis via miR-138 in breast cancer. Am J Transl Res 2019; 11:3213-3225. [PMID: 31217890 PMCID: PMC6556666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Breast cancer is one of the most common cancers among women. Long non-coding RNAs (lncRNAs) are involved in the initiation and development of breast cancer and lncRNA H19 is a potential oncogenic factor; however, the underlying mechanisms remain unknown. In the present study, the regulatory functions of H19 in breast cancer were investigated. We found that H19 was upregulated in breast cancer tissues and cells and associated with poor prognosis. MiR-138 was downregulated in breast cancer tissues and negatively correlated with the expression of H19 and SOX4. Furthermore, SOX4 was upregulated in breast cancer tissues and positively correlated with H19. Downregulated H19 suppressed the proliferation, invasion and migration of breast cancer cells, but promoted cell cycle arrest and apoptosis. Additionally, miR-138 was identified as a direct target of H19 and SOX4; overexpression of miR-138 inhibited the proliferation, invasion and migration of MDA-MB-231 and MCF-7 cells, but promoted apoptosis, which were abrogated by SOX4 overexpression. Downregulated miR-138 induced cell proliferation, invasion and migration, but inhibited apoptosis of MDA-MB-231 and MCF-7 cells, which were promoted by SOX4 overexpression. In addition, miR-138 overexpression reversed the effects of H19 in breast cancer cells; silencing of H19 inhibited tumor growth and downregulate EMT markers in vivo. In summary, H19 was upregulated in breast cancer and associated with poor prognosis. Silencing of H19 inhibited cell proliferation, invasion and migration, but induced cell cycle arrest and apoptosis by regulating miR-138 and SOX4 in breast cancer.
Collapse
Affiliation(s)
- Haiyan Si
- Department of Breast and Thyroid Surgery, First People’s Hospital of Jiaozuo CityJiaozuo 454000, China
| | - Ping Chen
- Department of Pharmacy, Affiliated Hospital of Shandong Medical CollegeJinan 276000, Shandong, China
| | - Hongtao Li
- Department of Breast and Thyroid Surgery, First People’s Hospital of Jiaozuo CityJiaozuo 454000, China
| | - Xiang Wang
- Physical Examination Centre, The Third Affiliated Hospital of Chongqing Medical UniversityChongqing 401120, China
| |
Collapse
|
41
|
Yu S, Lu Y, Zong M, Tan Q, Fan L. Hypoxia-induced miR-191-C/EBPβ signaling regulates cell proliferation and apoptosis of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Res Ther 2019; 21:78. [PMID: 30894209 PMCID: PMC6425666 DOI: 10.1186/s13075-019-1861-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/06/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Hypoxia plays an important role in the proliferation of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS), leading to pathology of RA. This study was conducted to evaluate hypoxia-induced microRNAs (hypoxamiR) in RA-FLS and its role in the function of RA-FLS. METHODS RA-FLS were cultured under normoxia (21% O2) or hypoxia (3% O2) condition, followed by a microRNA (miRNA) array analysis. The upregulation of miR-191 by hypoxia was confirmed in RA-FLS and FLS from osteoarthritis (OA) patients by quantitative real-time polymerase chain reaction (RT-PCR). Transfection of miR-191 mimic and inhibitor was used to investigate the function of miR-191 in RA-FLS. The functional targets of miR-191 were predicted by bioinfomatics and then validated by reporter gene assay. RESULTS A subset of miRNAs was identified to be induced by hypoxia including miR-191. The upregulation of miR-191 was found to be specific in hypoxic RA-FLS, compared to hypoxic OA-FLS. We observed that miR-191 in RA-FLS increased cellular proliferation via promoting G1/S transition of the cell cycle and suppressed cell apoptosis induced by cell starvation. Bioinformatical analysis and experimental assays identified CCAAT/enhancer binding protein β (C/EBPβ) as a target gene of miR-191 in RA-FLS. Enforced expression of C/EBPβ rescued the cellular phenotypes induced by miR-191. In addition, an inverse correlation between the C/EBPβ level and hypoxia stimulation was found in RA-FLS, and overexpression of C/EBPβ could partly rescue the hypoxia-induced cell proliferation. CONCLUSION We demonstrated the miR-191-C/EBPβ signaling pathway mediating the hypoxia-induced cell proliferation in RA.
Collapse
Affiliation(s)
- Shanshan Yu
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, People's Republic of China
| | - Ying Lu
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, People's Republic of China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, People's Republic of China
| | - Ming Zong
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, People's Republic of China
| | - Qi Tan
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, People's Republic of China
| | - Lieying Fan
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, People's Republic of China.
| |
Collapse
|
42
|
Biersack B. Alkylating anticancer agents and their relations to microRNAs. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1-17. [PMID: 35582140 PMCID: PMC9019174 DOI: 10.20517/cdr.2019.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/17/2019] [Accepted: 01/25/2019] [Indexed: 11/12/2022]
Abstract
Alkylating agents represent an important class of anticancer drugs. The occurrence and emergence of tumor resistance to the treatment with alkylating agents denotes a severe problem in the clinics. A detailed understanding of the mechanisms of activity of alkylating drugs is essential in order to overcome drug resistance. In particular, the role of non-coding microRNAs concerning alkylating drug activity and resistance in various cancers is highlighted in this review. Both synthetic and natural alkylating agents, which are approved for cancer therapy, are discussed concerning their interplay with microRNAs.
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Bayreuth 95440, Germany
| |
Collapse
|
43
|
Nagpal N, Sharma S, Maji S, Durante G, Ferracin M, Thakur JK, Kulshreshtha R. Essential role of MED1 in the transcriptional regulation of ER-dependent oncogenic miRNAs in breast cancer. Sci Rep 2018; 8:11805. [PMID: 30087366 PMCID: PMC6081450 DOI: 10.1038/s41598-018-29546-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 07/12/2018] [Indexed: 01/24/2023] Open
Abstract
Mediator complex has been extensively shown to regulate the levels of several protein-coding genes; however, its role in the regulation of miRNAs in humans remains unstudied so far. Here we show that MED1, a Mediator subunit in the Middle module of Mediator complex, is overexpressed in breast cancer and is a negative prognostic factor. The levels of several miRNAs (miR-100-5p, -191-5p, -193b-3p, -205-5p, -326, -422a and -425-5p) were found to be regulated by MED1. MED1 induces miR-191/425 cluster in an estrogen receptor-alpha (ER-α) dependent manner. Occupancy of MED1 on estrogen response elements (EREs) upstream of miR-191/425 cluster is estrogen and ER-α-dependent and ER-α-induced expression of these miRNAs is MED1-dependent. MED1 mediates induction of cell proliferation and migration and the genes associated with it (JUN, FOS, EGFR, VEGF, MMP1, and ERBB4) in breast cancer, which is abrogated when used together with miR-191-inhibition. Additionally, we show that MED1 also regulates the levels of direct miR-191 target genes such as SATB1, CDK6 and BDNF. Overall, the results show that MED1/ER-α/miR-191 axis promotes breast cancer cell proliferation and migration and may serve as a novel target for therapy.
Collapse
Affiliation(s)
- Neha Nagpal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.,Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shivani Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Sourobh Maji
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Giorgio Durante
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126, Bologna, Italy
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
44
|
Sharma S, Rajendran V, Kulshreshtha R, Ghosh PC. Enhanced efficacy of anti-miR-191 delivery through stearylamine liposome formulation for the treatment of breast cancer cells. Int J Pharm 2017; 530:387-400. [PMID: 28774852 DOI: 10.1016/j.ijpharm.2017.07.079] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/20/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023]
Abstract
MicroRNAs are gaining rapid attention as promising targets for cancer treatment; however, efficient delivery of therapeutic miRNA or anti-miRNA into cancer cells remains a major challenge. Our previous work identified miR-191 as an oncogenic miRNA overexpressed in breast cancer that assists in progression of malignant transformation. Thus, inhibition of miR-191 using antisense miR-191 (anti-miR-191) has immense therapeutic potential. Here, we have developed a stearylamine (SA) based cationic liposome for delivery of miR-191 inhibitor (anti-miR-191), and studied its efficacy in breast cancer cells (MCF-7 and ZR-75-1) in culture. SA liposomes alone inhibited cancer cell growth with lesser IC50s (50% inhibitory concentration) values as compared to normal mouse fibroblast cells (L929). The efficient delivery of anti-miR-191 in SA liposome complex was found to be highly effective in killing the cancer cells than a comparable dose of SA free anti-miR-191 liposome complex. The formulation also showed negligible cytotoxicity in human erythrocytes. Combined treatment of SA liposome with anti-miR-191 markedly enhanced apoptotic cell death and suppressed the migration of cancer cells in vitro. Notably, anti-miR-191 loaded SA liposome complex increased chemosensitivity of breast cancer cells to currently used anti-cancer drugs (doxorubicin or cisplatin) in free form. Our work demonstrates that anti-miR-191 loaded in SA liposome complex has promising clinical application for breast cancer therapy.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Vinoth Rajendran
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Prahlad C Ghosh
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|