1
|
Feng MW, Delneri D, Millar CB, O'Keefe RT. Eisosome disruption by noncoding RNA deletion increases protein secretion in yeast. PNAS NEXUS 2022; 1:pgac241. [PMID: 36712349 PMCID: PMC9802208 DOI: 10.1093/pnasnexus/pgac241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Noncoding RNAs (ncRNAs) regulate many aspects of gene expression. We investigated how ncRNAs affected protein secretion in yeast by large-scale screening for improved endogenous invertase secretion in ncRNA deletion strains with deletion of stable unannotated transcripts (SUTs), cryptic unstable transcripts (CUTs), tRNAs, or snRNAs. We identified three candidate ncRNAs, SUT418, SUT390, and SUT125, that improved endogenous invertase secretion when deleted. As SUTs can affect expression of nearby genes, we quantified adjacent gene transcription and found that the PIL1 gene was down-regulated in the SUT125 deletion strain. Pil1 is a core component of eisosomes, nonmobile invaginations found throughout the plasma membrane. PIL1 knockout alone, or in combination with eisosome components LSP1 or SUR7, resulted in further increased secretion of invertase. Secretion of heterologous GFP was also increased upon PIL1 deletion, but this increase was signal sequence dependent. To reveal the potential for increased biopharmaceutical production, secretion of monoclonal antibody Pexelizumab scFv peptide was increased by PIL1 deletion. Global analysis of secreted proteins revealed that approximately 20% of secreted proteins, especially serine-enriched secreted proteins, including invertase, were increased upon eisosome disruption. Eisosomes are enriched with APC transporters and sphingolipids, which are essential components for secretory vesicle formation and protein sorting. Sphingolipid and serine biosynthesis pathways were up-regulated upon PIL1 deletion. We propose that increased secretion of endogenous and heterologous proteins upon PIL1 deletion resulted from sphingolipid redistribution in the plasma membrane and up-regulated sphingolipid biosynthesis. Overall, a new pathway to improve protein secretion in yeast via eisosome disruption has been identified.
Collapse
Affiliation(s)
- Matthew Wenjie Feng
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Daniela Delneri
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK,Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, The University of Manchester, 131 Princess street, Manchester, M1 7DN, UK
| | - Catherine B Millar
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
2
|
Quantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencing. Nat Biotechnol 2021; 39:1278-1291. [PMID: 33986546 DOI: 10.1038/s41587-021-00915-6] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/06/2021] [Indexed: 01/23/2023]
Abstract
Nanopore RNA sequencing shows promise as a method for discriminating and identifying different RNA modifications in native RNA. Expanding on the ability of nanopore sequencing to detect N6-methyladenosine, we show that other modifications, in particular pseudouridine (Ψ) and 2'-O-methylation (Nm), also result in characteristic base-calling 'error' signatures in the nanopore data. Focusing on Ψ modification sites, we detected known and uncovered previously unreported Ψ sites in mRNAs, non-coding RNAs and rRNAs, including a Pus4-dependent Ψ modification in yeast mitochondrial rRNA. To explore the dynamics of pseudouridylation, we treated yeast cells with oxidative, cold and heat stresses and detected heat-sensitive Ψ-modified sites in small nuclear RNAs, small nucleolar RNAs and mRNAs. Finally, we developed a software, nanoRMS, that estimates per-site modification stoichiometries by identifying single-molecule reads with altered current intensity and trace profiles. This work demonstrates that Nm and Ψ RNA modifications can be detected in cellular RNAs and that their modification stoichiometry can be quantified by nanopore sequencing of native RNA.
Collapse
|
3
|
Balarezo-Cisneros LN, Parker S, Fraczek MG, Timouma S, Wang P, O’Keefe RT, Millar CB, Delneri D. Functional and transcriptional profiling of non-coding RNAs in yeast reveal context-dependent phenotypes and in trans effects on the protein regulatory network. PLoS Genet 2021; 17:e1008761. [PMID: 33493158 PMCID: PMC7886133 DOI: 10.1371/journal.pgen.1008761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 02/16/2021] [Accepted: 12/19/2020] [Indexed: 12/19/2022] Open
Abstract
Non-coding RNAs (ncRNAs), including the more recently identified Stable Unannotated Transcripts (SUTs) and Cryptic Unstable Transcripts (CUTs), are increasingly being shown to play pivotal roles in the transcriptional and post-transcriptional regulation of genes in eukaryotes. Here, we carried out a large-scale screening of ncRNAs in Saccharomyces cerevisiae, and provide evidence for SUT and CUT function. Phenotypic data on 372 ncRNA deletion strains in 23 different growth conditions were collected, identifying ncRNAs responsible for significant cellular fitness changes. Transcriptome profiles were assembled for 18 haploid ncRNA deletion mutants and 2 essential ncRNA heterozygous deletants. Guided by the resulting RNA-seq data we analysed the genome-wide dysregulation of protein coding genes and non-coding transcripts. Novel functional ncRNAs, SUT125, SUT126, SUT035 and SUT532 that act in trans by modulating transcription factors were identified. Furthermore, we described the impact of SUTs and CUTs in modulating coding gene expression in response to different environmental conditions, regulating important biological process such as respiration (SUT125, SUT126, SUT035, SUT432), steroid biosynthesis (CUT494, SUT053, SUT468) or rRNA processing (SUT075 and snR30). Overall, these data capture and integrate the regulatory and phenotypic network of ncRNAs and protein-coding genes, providing genome-wide evidence of the impact of ncRNAs on cellular homeostasis. A quarter of the yeast genome comprises non-coding RNA molecules (ncRNAs), which do not translate into proteins but are involved in the regulation of gene expression. ncRNAs can affect nearby genes by physically interfering with their transcription (cis mode of action), or they interact with DNA, proteins or other RNAs to regulate the expression of distant genes (trans mode of action). Examples of cis-acting ncRNAs have been broadly described, however, genome-wide studies to identify functional trans-acting ncRNAs involved in global gene regulation are still lacking. Here, we used a ncRNA yeast deletion collection to score ncRNA impact on cellular function in different environmental conditions. A group of 20 ncRNA deletion mutants with broad fitness diversity were selected to investigate the ncRNA effect on the protein and ncRNA expression network. We showed a high correlation between altered phenotypes and global transcriptional changes, in an environmental dependent manner. We confirmed the trans acting regulation of ncRNAs in the genome and their role in altering the expression of transcription factors. These findings support the notion of the involvement of ncRNAs in fine tuning cellular expression via regulation of transcription factors, as an advantageous RNA-mediated mechanism that can be fast and cost-effective for the cells.
Collapse
Affiliation(s)
- Laura Natalia Balarezo-Cisneros
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Steven Parker
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Marcin G. Fraczek
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Soukaina Timouma
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Ping Wang
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Raymond T. O’Keefe
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Catherine B. Millar
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- * E-mail: (CM); (DD)
| | - Daniela Delneri
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- * E-mail: (CM); (DD)
| |
Collapse
|
4
|
The Small RNA sr8384 Is a Crucial Regulator of Cell Growth in Solventogenic Clostridia. Appl Environ Microbiol 2020; 86:AEM.00665-20. [PMID: 32358006 DOI: 10.1128/aem.00665-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/27/2020] [Indexed: 01/08/2023] Open
Abstract
Small RNAs (sRNAs) are crucial regulatory molecules in organisms and are well-known not only for their roles in the control of diverse crucial biological processes but also for their value in regulation rewiring. However, to date, in Gram-positive anaerobic solventogenic clostridia (a group of important industrial bacteria with exceptional substrate and product diversity), sRNAs remain minimally explored, and thus there is a lack of detailed understanding regarding these important molecules and their use as targets for genetic improvement. Here, we performed large-scale phenotypic screens of a transposon-mediated mutant library of Clostridium acetobutylicum, a typical solventogenic clostridial species, and discovered a novel sRNA (sr8384) that functions as a crucial regulator of cell growth. Comparative transcriptomic data combined with genetic and biochemical analyses revealed that sr8384 acts as a pleiotropic regulator and controls multiple targets that are associated with crucial biological processes through direct or indirect interactions. Notably, the in vivo expression level of sr8384 determined the cell growth rate, thereby affecting the solvent titer and productivity. These findings indicate the importance of the sr8384-mediated regulatory network in C. acetobutylicum Furthermore, a homolog of sr8384 was discovered and proven to be functional in another important Clostridium species, C. beijerinckii, suggesting the potential broad role of this sRNA in clostridia. Our work showcases a previously unknown potent and complex role of sRNAs in clostridia, providing new opportunities for understanding and engineering these anaerobes.IMPORTANCE The uses of sRNAs as new resources for functional studies and strain modifications are promising strategies in microorganisms. However, these crucial regulatory molecules have hardly been explored in industrially important solventogenic clostridia. Here, we identified sr8384 as a novel determinant sRNA controlling the cell growth of solventogenic Clostridium acetobutylicum Based on a detailed functional analysis, we further reveal the pleiotropic function of sr8384 and its multiple direct and indirect crucial targets, which represents a valuable source for understanding and optimizing this anaerobe. Of note, manipulation of this sRNA achieves improved cell growth and solvent synthesis. Our findings provide a new perspective for future studies on regulatory sRNAs in clostridia.
Collapse
|
5
|
Fraczek MG, Zhao C, Dineen L, Lebedinec R, Bowyer P, Bromley M, Delneri D. Fast and Reliable PCR Amplification from Aspergillus fumigatus Spore Suspension Without Traditional DNA Extraction. CURRENT PROTOCOLS IN MICROBIOLOGY 2019; 54:e89. [PMID: 31518062 PMCID: PMC6916316 DOI: 10.1002/cpmc.89] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Aspergillus fumigatus is an opportunistic human pathogenic mold. DNA extraction from this fungus is usually performed by mechanical perturbation of cells, as it possesses a rigid and complex cell wall. While this is not problematic for single isolates, it can be time consuming for large numbers of strains if using traditional DNA extraction procedures. Therefore, in this article we describe a fast and efficient thermal-shock method to release DNA from spores of A. fumigatus and other filamentous fungi without the need for complex extraction methods. This is especially important for high-throughput PCR analyses of mutants in 96- or 384-well formats in a very short period of time without any concern about sample cross-contamination. This method is currently being used to validate the protein-coding gene and non-coding RNA knockout libraries in A. fumigatus generated in our laboratory, and could be used in the future for diagnostics purposes. © 2019 The Authors.
Collapse
Affiliation(s)
- Marcin G. Fraczek
- Manchester Institute of Biotechnology, Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUnited Kingdom
| | - Can Zhao
- Manchester Fungal Infection Group, Core Technology Facility, Manchester, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUnited Kingdom
| | - Lauren Dineen
- Manchester Fungal Infection Group, Core Technology Facility, Manchester, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUnited Kingdom
| | - Ressa Lebedinec
- Manchester Fungal Infection Group, Core Technology Facility, Manchester, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUnited Kingdom
| | - Paul Bowyer
- Manchester Fungal Infection Group, Core Technology Facility, Manchester, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUnited Kingdom
| | - Michael Bromley
- Manchester Fungal Infection Group, Core Technology Facility, Manchester, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUnited Kingdom
| | - Daniela Delneri
- Manchester Institute of Biotechnology, Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUnited Kingdom
| |
Collapse
|
6
|
Fraczek MG, Naseeb S, Delneri D. History of genome editing in yeast. Yeast 2018; 35:361-368. [PMID: 29345746 PMCID: PMC5969250 DOI: 10.1002/yea.3308] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 12/27/2022] Open
Abstract
For thousands of years humans have used the budding yeast Saccharomyces cerevisiae for the production of bread and alcohol; however, in the last 30-40 years our understanding of the yeast biology has dramatically increased, enabling us to modify its genome. Although S. cerevisiae has been the main focus of many research groups, other non-conventional yeasts have also been studied and exploited for biotechnological purposes. Our experiments and knowledge have evolved from recombination to high-throughput PCR-based transformations to highly accurate CRISPR methods in order to alter yeast traits for either research or industrial purposes. Since the release of the genome sequence of S. cerevisiae in 1996, the precise and targeted genome editing has increased significantly. In this 'Budding topic' we discuss the significant developments of genome editing in yeast, mainly focusing on Cre-loxP mediated recombination, delitto perfetto and CRISPR/Cas.
Collapse
Affiliation(s)
- Marcin G. Fraczek
- The University of Manchester, Faculty of Biology, Medicine and HealthManchester Institute of BiotechnologyManchesterM1 7DNUK
| | - Samina Naseeb
- The University of Manchester, Faculty of Biology, Medicine and HealthManchester Institute of BiotechnologyManchesterM1 7DNUK
| | - Daniela Delneri
- The University of Manchester, Faculty of Biology, Medicine and HealthManchester Institute of BiotechnologyManchesterM1 7DNUK
| |
Collapse
|
7
|
Parker S, Fraczek MG, Wu J, Shamsah S, Manousaki A, Dungrattanalert K, de Almeida RA, Invernizzi E, Burgis T, Omara W, Griffiths-Jones S, Delneri D, O’Keefe RT. Large-scale profiling of noncoding RNA function in yeast. PLoS Genet 2018; 14:e1007253. [PMID: 29529031 PMCID: PMC5864082 DOI: 10.1371/journal.pgen.1007253] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/22/2018] [Accepted: 02/13/2018] [Indexed: 11/19/2022] Open
Abstract
Noncoding RNAs (ncRNAs) are emerging as key regulators of cellular function. We have exploited the recently developed barcoded ncRNA gene deletion strain collections in the yeast Saccharomyces cerevisiae to investigate the numerous ncRNAs in yeast with no known function. The ncRNA deletion collection contains deletions of tRNAs, snoRNAs, snRNAs, stable unannotated transcripts (SUTs), cryptic unstable transcripts (CUTs) and other annotated ncRNAs encompassing 532 different individual ncRNA deletions. We have profiled the fitness of the diploid heterozygous ncRNA deletion strain collection in six conditions using batch and continuous liquid culture, as well as the haploid ncRNA deletion strain collections arrayed individually onto solid rich media. These analyses revealed many novel environmental-specific haplo-insufficient and haplo-proficient phenotypes providing key information on the importance of each specific ncRNA in every condition. Co-fitness analysis using fitness data from the heterozygous ncRNA deletion strain collection identified two ncRNA groups required for growth during heat stress and nutrient deprivation. The extensive fitness data for each ncRNA deletion strain has been compiled into an easy to navigate database called Yeast ncRNA Analysis (YNCA). By expanding the original ncRNA deletion strain collection we identified four novel essential ncRNAs; SUT527, SUT075, SUT367 and SUT259/691. We defined the effects of each new essential ncRNA on adjacent gene expression in the heterozygote background identifying both repression and induction of nearby genes. Additionally, we discovered a function for SUT527 in the expression, 3' end formation and localization of SEC4, an essential protein coding mRNA. Finally, using plasmid complementation we rescued the SUT075 lethal phenotype revealing that this ncRNA acts in trans. Overall, our findings provide important new insights into the function of ncRNAs.
Collapse
Affiliation(s)
- Steven Parker
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Marcin G. Fraczek
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Jian Wu
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Sara Shamsah
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Alkisti Manousaki
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Kobchai Dungrattanalert
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Rogerio Alves de Almeida
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Edith Invernizzi
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Tim Burgis
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Walid Omara
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Sam Griffiths-Jones
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Daniela Delneri
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Raymond T. O’Keefe
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|