1
|
Fafard-Couture É, Labialle S, Scott MS. The regulatory roles of small nucleolar RNAs within their host locus. RNA Biol 2024; 21:1-11. [PMID: 38626213 PMCID: PMC11028025 DOI: 10.1080/15476286.2024.2342685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 04/18/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) are a class of conserved noncoding RNAs forming complexes with proteins to catalyse site-specific modifications on ribosomal RNA. Besides this canonical role, several snoRNAs are now known to regulate diverse levels of gene expression. While these functions are carried out in trans by mature snoRNAs, evidence has also been emerging of regulatory roles of snoRNAs in cis, either within their genomic locus or as longer transcription intermediates during their maturation. Herein, we review recent findings that snoRNAs can interact in cis with their intron to regulate the expression of their host gene. We also explore the ever-growing diversity of longer host-derived snoRNA extensions and their functional impact across the transcriptome. Finally, we discuss the role of snoRNA duplications into forging these new layers of snoRNA-mediated regulation, as well as their involvement in the genomic imprinting of their host locus.
Collapse
Affiliation(s)
- Étienne Fafard-Couture
- Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Michelle S Scott
- Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
2
|
Sutanto K, Turcotte M. Assessing Global-Local Secondary Structure Fingerprints to Classify RNA Sequences With Deep Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2736-2747. [PMID: 34633933 DOI: 10.1109/tcbb.2021.3118358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
RNA elements that are transcribed but not translated into proteins are called non-coding RNAs (ncRNAs). They play wide-ranging roles in biological processes and disorders. Just like proteins, their structure is often intimately linked to their function. Many examples have been documented where structure is conserved across taxa despite sequence divergence. Thus, structure is often used to identify function. Specifically, the secondary structure is predicted and ncRNAs with similar structures are assumed to have same or similar functions. However, a strand of RNA can fold into multiple possible structures, and some strands even fold differently in vivo and in vitro. Furthermore, ncRNAs often function as RNA-protein complexes, which can affect structure. Because of these, we hypothesized using one structure per sequence may discard information, possibly resulting in poorer classification accuracy. Therefore, we propose using secondary structure fingerprints, comprising two categories: a higher-level representation derived from RNA-As-Graphs (RAG), and free energy fingerprints based on a curated repertoire of small structural motifs. The fingerprints take into account the difference between global and local structural matches. We also evaluated our deep learning architecture with k-mers. By combining our global-local fingerprints with 6-mer, we achieved an accuracy, precision, and recall of 91.04%, 91.10%, and 91.00%.
Collapse
|
3
|
Choi Y, Lee HH, Park J, Kim S, Choi S, Moon H, Shin J, Kim JE, Choi GJ, Seo YS, Son H. Intron turnover is essential to the development and pathogenicity of the plant pathogenic fungus Fusarium graminearum. Commun Biol 2022; 5:1129. [PMID: 36289323 PMCID: PMC9606315 DOI: 10.1038/s42003-022-04111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Intron lariats excised during the splicing process are rapidly degraded by RNA lariat debranching enzyme (Dbr1) and several exonucleases. Rapid turnover of lariat RNA is essential to cellular RNA homeostasis. However, the functions of Dbr1 have not been investigated in filamentous fungi. Here, we characterized the molecular functions of Dbr1 in Fusarium graminearum, a major fungal plant pathogen. Deletion of FgDBR1 resulted in pleiotropic defects in hyphal growth, conidiation, sexual reproduction, and virulence. Through transcriptome analysis, we revealed that the deletion mutant exhibited global accumulation of intron lariats and upregulation of ribosome-related genes. Excessive accumulation of lariat RNA led to reduced overall protein synthesis, causing various phenotypic defects in the absence of FgDBR1. The results of this study demonstrate that a compromised intron turnover process affects development and pathogenesis in this fungus and that Dbr1 function is critical to plant pathogenic fungi. RNA lariat debranching enzyme Dbr1 is required for intron turnover in the fungal plant pathogen <i>Fusarium graminearum <i > , and accumulation of lariat RNA affects its development and pathogenesis.
Collapse
Affiliation(s)
- Yejin Choi
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Hyun-Hee Lee
- grid.262229.f0000 0001 0719 8572Department of Integrated Biological Science, Pusan National University, Busan, 46247 Republic of Korea
| | - Jiyeun Park
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sieun Kim
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Soyoung Choi
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Heeji Moon
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jiyoung Shin
- grid.31501.360000 0004 0470 5905Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jung-Eun Kim
- grid.31501.360000 0004 0470 5905Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Gyung Ja Choi
- grid.29869.3c0000 0001 2296 8192Therapeutic & Biotechnology Division, Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, 34114 Republic of Korea
| | - Young-Su Seo
- grid.262229.f0000 0001 0719 8572Department of Integrated Biological Science, Pusan National University, Busan, 46247 Republic of Korea
| | - Hokyoung Son
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
4
|
Höfler S, Lukat P, Blankenfeldt W, Carlomagno T. Eukaryotic Box C/D methylation machinery has two non-symmetric protein assembly sites. Sci Rep 2021; 11:17561. [PMID: 34475498 PMCID: PMC8413462 DOI: 10.1038/s41598-021-97030-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/17/2021] [Indexed: 11/10/2022] Open
Abstract
Box C/D ribonucleoprotein complexes are RNA-guided methyltransferases that methylate the ribose 2'-OH of RNA. The central 'guide RNA' has box C and D motifs at its ends, which are crucial for activity. Archaeal guide RNAs have a second box C'/D' motif pair that is also essential for function. This second motif is poorly conserved in eukaryotes and its function is uncertain. Conflicting literature data report that eukaryotic box C'/D' motifs do or do not bind proteins specialized to recognize box C/D-motifs and are or are not important for function. Despite this uncertainty, the architecture of eukaryotic 2'-O-methylation enzymes is thought to be similar to that of their archaeal counterpart. Here, we use biochemistry, X-ray crystallography and mutant analysis to demonstrate the absence of functional box C'/D' motifs in more than 80% of yeast guide RNAs. We conclude that eukaryotic Box C/D RNPs have two non-symmetric protein assembly sites and that their three-dimensional architecture differs from that of archaeal 2'-O-methylation enzymes.
Collapse
Affiliation(s)
- Simone Höfler
- Institute for Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, 30167, Hannover, Lower Saxony, Germany
| | - Peer Lukat
- Department of Structure and Function of Proteins, Helmholtz Centre of Infection Research, 38124, Braunschweig, Lower Saxony, Germany
| | - Wulf Blankenfeldt
- Department of Structure and Function of Proteins, Helmholtz Centre of Infection Research, 38124, Braunschweig, Lower Saxony, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Teresa Carlomagno
- Institute for Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, 30167, Hannover, Lower Saxony, Germany.
- Group of NMR-Based Structural Chemistry, Helmholtz Centre of Infection Research, 38124, Braunschweig, Lower Saxony, Germany.
| |
Collapse
|
5
|
Gao W, Jones TA, Rivas E. Discovery of 17 conserved structural RNAs in fungi. Nucleic Acids Res 2021; 49:6128-6143. [PMID: 34086938 PMCID: PMC8216456 DOI: 10.1093/nar/gkab355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/25/2021] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
Many non-coding RNAs with known functions are structurally conserved: their intramolecular secondary and tertiary interactions are maintained across evolutionary time. Consequently, the presence of conserved structure in multiple sequence alignments can be used to identify candidate functional non-coding RNAs. Here, we present a bioinformatics method that couples iterative homology search with covariation analysis to assess whether a genomic region has evidence of conserved RNA structure. We used this method to examine all unannotated regions of five well-studied fungal genomes (Saccharomyces cerevisiae, Candida albicans, Neurospora crassa, Aspergillus fumigatus, and Schizosaccharomyces pombe). We identified 17 novel structurally conserved non-coding RNA candidates, which include four H/ACA box small nucleolar RNAs, four intergenic RNAs and nine RNA structures located within the introns and untranslated regions (UTRs) of mRNAs. For the two structures in the 3' UTRs of the metabolic genes GLY1 and MET13, we performed experiments that provide evidence against them being eukaryotic riboswitches.
Collapse
Affiliation(s)
- William Gao
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA
| | - Thomas A Jones
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, USA
| | - Elena Rivas
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA
| |
Collapse
|
6
|
Lim CS, Weinstein BN, Roy SW, Brown CM. Analysis of fungal genomes reveals commonalities of intron gain or loss and functions in intron-poor species. Mol Biol Evol 2021; 38:4166-4186. [PMID: 33772558 PMCID: PMC8476143 DOI: 10.1093/molbev/msab094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous evolutionary reconstructions have concluded that early eukaryotic ancestors including both the last common ancestor of eukaryotes and of all fungi had intron-rich genomes. By contrast, some extant eukaryotes have few introns, underscoring the complex histories of intron–exon structures, and raising the question as to why these few introns are retained. Here, we have used recently available fungal genomes to address a variety of questions related to intron evolution. Evolutionary reconstruction of intron presence and absence using 263 diverse fungal species supports the idea that massive intron reduction through intron loss has occurred in multiple clades. The intron densities estimated in various fungal ancestors differ from zero to 7.6 introns per 1 kb of protein-coding sequence. Massive intron loss has occurred not only in microsporidian parasites and saccharomycetous yeasts, but also in diverse smuts and allies. To investigate the roles of the remaining introns in highly-reduced species, we have searched for their special characteristics in eight intron-poor fungi. Notably, the introns of ribosome-associated genes RPL7 and NOG2 have conserved positions; both intron-containing genes encoding snoRNAs. Furthermore, both the proteins and snoRNAs are involved in ribosome biogenesis, suggesting that the expression of the protein-coding genes and noncoding snoRNAs may be functionally coordinated. Indeed, these introns are also conserved in three-quarters of fungi species. Our study shows that fungal introns have a complex evolutionary history and underappreciated roles in gene expression.
Collapse
Affiliation(s)
- Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Brooke N Weinstein
- Quantitative & Systems Biology, School of Natural Sciences, University of California-Merced, Merced, CA, USA.,Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Scott W Roy
- Quantitative & Systems Biology, School of Natural Sciences, University of California-Merced, Merced, CA, USA.,Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Chris M Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Small nucleolar RNAs: continuing identification of novel members and increasing diversity of their molecular mechanisms of action. Biochem Soc Trans 2021; 48:645-656. [PMID: 32267490 PMCID: PMC7200641 DOI: 10.1042/bst20191046] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
Abstract
Identified five decades ago amongst the most abundant cellular RNAs, small nucleolar RNAs (snoRNAs) were initially described as serving as guides for the methylation and pseudouridylation of ribosomal RNA through direct base pairing. In recent years, however, increasingly powerful high-throughput genomic approaches and strategies have led to the discovery of many new members of the family and surprising diversity in snoRNA functionality and mechanisms of action. SnoRNAs are now known to target RNAs of many biotypes for a wider range of modifications, interact with diverse binding partners, compete with other binders for functional interactions, recruit diverse players to targets and affect protein function and accessibility through direct interaction. This mini-review presents the continuing characterization of the snoRNome through the identification of new snoRNA members and the discovery of their mechanisms of action, revealing a highly versatile noncoding family playing central regulatory roles and connecting the main cellular processes.
Collapse
|
8
|
Ramachandran S, Krogh N, Jørgensen TE, Johansen SD, Nielsen H, Babiak I. The shift from early to late types of ribosomes in zebrafish development involves changes at a subset of rRNA 2'- O-Me sites. RNA (NEW YORK, N.Y.) 2020; 26:1919-1934. [PMID: 32912962 PMCID: PMC7668251 DOI: 10.1261/rna.076760.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
During zebrafish development, an early type of rRNA is gradually replaced by a late type that is substantially different in sequence. We applied RiboMeth-seq to rRNA from developmental stages for profiling of 2'-O-Me, to learn if changes in methylation pattern were a component of the shift. We compiled a catalog of 2'-O-Me sites and cognate box C/D guide RNAs comprising 98 high-confidence sites, including 10 sites that were not known from other vertebrates, one of which was specific to late-type rRNA. We identified a subset of sites that changed in methylation status during development and found that some of these could be explained by availability of their cognate SNORDs. Sites that changed during development were enriched in the novel sites revealed in zebrafish. We propose that the early type of rRNA is a specialized form and that its structure and ribose methylation pattern may be an adaptation to features of development, including translation of specific maternal mRNAs.
Collapse
Affiliation(s)
- Sowmya Ramachandran
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2400 Copenhagen, Denmark
| | - Tor Erik Jørgensen
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Steinar Daae Johansen
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Henrik Nielsen
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2400 Copenhagen, Denmark
| | - Igor Babiak
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| |
Collapse
|
9
|
Deryusheva S, Talhouarne GJS, Gall JG. "Lost and Found": snoRNA Annotation in the Xenopus Genome and Implications for Evolutionary Studies. Mol Biol Evol 2020; 37:149-166. [PMID: 31553476 PMCID: PMC6984369 DOI: 10.1093/molbev/msz209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) function primarily as guide RNAs for posttranscriptional modification of rRNAs and spliceosomal snRNAs, both of which are functionally important and evolutionarily conserved molecules. It is commonly believed that snoRNAs and the modifications they mediate are highly conserved across species. However, most relevant data on snoRNA annotation and RNA modification are limited to studies on human and yeast. Here, we used RNA-sequencing data from the giant oocyte nucleus of the frog Xenopus tropicalis to annotate a nearly complete set of snoRNAs. We compared the frog data with snoRNA sets from human and other vertebrate genomes, including mammals, birds, reptiles, and fish. We identified many Xenopus-specific (or nonhuman) snoRNAs and Xenopus-specific domains in snoRNAs from conserved RNA families. We predicted that some of these nonhuman snoRNAs and domains mediate modifications at unexpected positions in rRNAs and snRNAs. These modifications were mapped as predicted when RNA modification assays were applied to RNA from nine vertebrate species: frogs X. tropicalis and X. laevis, newt Notophthalmus viridescens, axolotl Ambystoma mexicanum, whiptail lizard Aspidoscelis neomexicana, zebrafish Danio rerio, chicken, mouse, and human. This analysis revealed that only a subset of RNA modifications is evolutionarily conserved and that modification patterns may vary even between closely related species. We speculate that each functional domain in snoRNAs (half of an snoRNA) may evolve independently and shuffle between different snoRNAs.
Collapse
Affiliation(s)
| | | | - Joseph G Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD
| |
Collapse
|