1
|
Gu KK, Liu Z, Narayanasamy SR, Shelby ML, Chan N, Coleman MA, Frank M, Kuhl TL. All polymer microfluidic chips-A fixed target sample delivery workhorse for serial crystallography. BIOMICROFLUIDICS 2023; 17:051302. [PMID: 37840537 PMCID: PMC10576627 DOI: 10.1063/5.0167164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
The development of x-ray free electron laser (XFEL) light sources and serial crystallography methodologies has led to a revolution in protein crystallography, enabling the determination of previously unobtainable protein structures and near-atomic resolution of otherwise poorly diffracting protein crystals. However, to utilize XFEL sources efficiently demands the continuous, rapid delivery of a large number of difficult-to-handle microcrystals to the x-ray beam. A recently developed fixed-target system, in which crystals of interest are enclosed within a sample holder, which is rastered through the x-ray beam, is discussed in detail in this Perspective. The fixed target is easy to use, maintains sample hydration, and can be readily modified to allow a broad range of sample types and different beamline requirements. Recent innovations demonstrate the potential of such microfluidic-based fixed targets to be an all-around "workhorse" for serial crystallography measurements. This Perspective will summarize recent advancements in microfluidic fixed targets for serial crystallography, examine needs for future development, and guide users in designing, choosing, and utilizing a fixed-target sample delivery device for their system.
Collapse
Affiliation(s)
- Kevin K. Gu
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| | - Zhongrui Liu
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| | - Sankar Raju Narayanasamy
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Megan L. Shelby
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Nicholas Chan
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| | | | | | - Tonya L. Kuhl
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| |
Collapse
|
2
|
Dynamic Structural Biology Experiments at XFEL or Synchrotron Sources. Methods Mol Biol 2021; 2305:203-228. [PMID: 33950392 DOI: 10.1007/978-1-0716-1406-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Macromolecular crystallography (MX) leverages the methods of physics and the language of chemistry to reveal fundamental insights into biology. Often beautifully artistic images present MX results to support profound functional hypotheses that are vital to entire life science research community. Over the past several decades, synchrotrons around the world have been the workhorses for X-ray diffraction data collection at many highly automated beamlines. The newest tools include X-ray-free electron lasers (XFELs) located at facilities in the USA, Japan, Korea, Switzerland, and Germany that deliver about nine orders of magnitude higher brightness in discrete femtosecond long pulses. At each of these facilities, new serial femtosecond crystallography (SFX) strategies exploit slurries of micron-size crystals by rapidly delivering individual crystals into the XFEL X-ray interaction region, from which one diffraction pattern is collected per crystal before it is destroyed by the intense X-ray pulse. Relatively simple adaptions to SFX methods produce time-resolved data collection strategies wherein reactions are triggered by visible light illumination or by chemical diffusion/mixing. Thus, XFELs provide new opportunities for high temporal and spatial resolution studies of systems engaged in function at physiological temperature. In this chapter, we summarize various issues related to microcrystal slurry preparation, sample delivery into the X-ray interaction region, and some emerging strategies for time-resolved SFX data collection.
Collapse
|
3
|
Developing Rapid Antimicrobial Susceptibility Testing for Motile/Non-Motile Bacteria Treated with Antibiotics Covering Five Bactericidal Mechanisms on the Basis of Bead-Based Optical Diffusometry. BIOSENSORS-BASEL 2020; 10:bios10110181. [PMID: 33228090 PMCID: PMC7699397 DOI: 10.3390/bios10110181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
Rapid antimicrobial susceptibility testing (AST) is an effective measure in the treatment of infections and the prevention of bacterial drug resistance. However, diverse antibiotic types and bacterial characteristics have formed complicated barriers to rapid diagnosis. To counteract these limitations, we investigated the interactions between antibiotic-treated bacteria and functionalized microbeads in optical diffusometry. The conjugation with bacteria increased the effective microbead complex size, thereby resulting in a temporal diffusivity change. The yielded data were sorted and analyzed to delineate a pattern for the prediction of antimicrobial susceptibility. The outcome showed that a completed rapid AST based on the trend of microbead diffusivity could provide results within 3 h (2 h measurement + 1 h computation). In this research, we studied four bacterial strains, including Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Staphylococcus aureus, and six antibiotics. Despite the different inhibitory effects caused by various antibiotics, similar trends in diffusivity alteration for all susceptible and resistant cases in the last 40 min of the 2-h measurement period were deduced. In addition, the AST results obtained using optical diffusometry showed good agreement with those acquired from the commercial instrument and conventional culture methods. Finally, we conducted a single-blinded clinical test, and the sensitivity, specificity, and accuracy of the system reached 92.9%, 91.4%, and 91.8%, respectively. Overall, the developed optical diffusometry showcased rapid AST with a small sample volume (20 μL) and low initial bacterial count (105 CFU/mL). This technique provided a promising way to achieve early therapy against microbial diseases in the future.
Collapse
|
4
|
Abstract
This chapter introduces this topic for the whole volume. It is not a review, rather it presents the basics, the key considerations and forward references to the other chapters. This starts by setting the scene of principles and overall strategy, moves onto planning an experiment including its feasibility and then outlines practicalities with options for the experiment. The crystal structure that results will lead to publication and associated with it, Protein Data Bank deposition.
Collapse
|
5
|
Helliwell JR. What is the structural chemistry of the living organism at its temperature and pressure? Acta Crystallogr D Struct Biol 2020; 76:87-93. [PMID: 32038039 PMCID: PMC7008516 DOI: 10.1107/s2059798320000546] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/15/2020] [Indexed: 12/02/2022] Open
Abstract
The three probes of the structure of matter (X-rays, neutrons and electrons) in biology have complementary properties and strengths. The balance between these three probes within their strengths and weaknesses is perceived to change, even dramatically so at times. For the study of combined states of order and disorder, NMR crystallography is also applicable. Of course, to understand biological systems the required perspectives are surely physiologically relevant temperatures and relevant chemical conditions, as well as a minimal perturbation owing to the needs of the probe itself. These remain very tough challenges because, for example, cryoEM by its very nature will never be performed at room temperature, crystallization often requires nonphysiological chemical conditions, and X-rays and electrons cause beam damage. However, integrated structural biology techniques and functional assays provide a package towards physiological relevance of any given study. Reporting of protein crystal structures, and their associated database entries, could usefully indicate how close to the biological situation they are, as discussed in detail in this feature article.
Collapse
Affiliation(s)
- John R. Helliwell
- Department of Chemistry, University of Manchester, Manchester M13 9PL, England
| |
Collapse
|
6
|
Shelby ML, Gilbile D, Grant TD, Seuring C, Segelke BW, He W, Evans AC, Pakendorf T, Fischer P, Hunter MS, Batyuk A, Barthelmess M, Meents A, Coleman MA, Kuhl TL, Frank M. A fixed-target platform for serial femtosecond crystallography in a hydrated environment. IUCRJ 2020; 7:30-41. [PMID: 31949902 PMCID: PMC6949605 DOI: 10.1107/s2052252519014003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/15/2019] [Indexed: 05/19/2023]
Abstract
For serial femtosecond crystallography at X-ray free-electron lasers, which entails collection of single-pulse diffraction patterns from a constantly refreshed supply of microcrystalline sample, delivery of the sample into the X-ray beam path while maintaining low background remains a technical challenge for some experiments, especially where this methodology is applied to relatively low-ordered samples or those difficult to purify and crystallize in large quantities. This work demonstrates a scheme to encapsulate biological samples using polymer thin films and graphene to maintain sample hydration in vacuum conditions. The encapsulated sample is delivered into the X-ray beam on fixed targets for rapid scanning using the Roadrunner fixed-target system towards a long-term goal of low-background measurements on weakly diffracting samples. As a proof of principle, we used microcrystals of the 24 kDa rapid encystment protein (REP24) to provide a benchmark for polymer/graphene sandwich performance. The REP24 microcrystal unit cell obtained from our sandwiched in-vacuum sample was consistent with previously established unit-cell parameters and with those measured by us without encapsulation in humidified helium, indicating that the platform is robust against evaporative losses. While significant scattering from water was observed because of the sample-deposition method, the polymer/graphene sandwich itself was shown to contribute minimally to background scattering.
Collapse
Affiliation(s)
- M. L. Shelby
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - D. Gilbile
- University of California at Davis, California, USA
| | - T. D. Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, Hauptman-Woodward Institute, SUNY University at Buffalo, Buffalo, New York, USA
| | - C. Seuring
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - B. W. Segelke
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - W. He
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - A. C. Evans
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- University of California at Davis, California, USA
| | - T. Pakendorf
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - P. Fischer
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - M. S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - A. Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - M. Barthelmess
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - A. Meents
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - M. A. Coleman
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- University of California at Davis, California, USA
| | - T. L. Kuhl
- University of California at Davis, California, USA
| | - M. Frank
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- University of California at Davis, California, USA
| |
Collapse
|
7
|
Echelmeier A, Sonker M, Ros A. Microfluidic sample delivery for serial crystallography using XFELs. Anal Bioanal Chem 2019; 411:6535-6547. [PMID: 31250066 DOI: 10.1007/s00216-019-01977-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/23/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022]
Abstract
Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) is an emerging field for structural biology. One of its major impacts lies in the ability to reveal the structure of complex proteins previously inaccessible with synchrotron-based crystallography techniques and allowing time-resolved studies from femtoseconds to seconds. The nature of this serial technique requires new approaches for crystallization, data analysis, and sample delivery. With continued advancements in microfabrication techniques, various developments have been reported in the past decade for innovative and efficient microfluidic sample delivery for crystallography experiments using XFELs. This article summarizes the recent developments in microfluidic sample delivery with liquid injection and fixed-target approaches, which allow exciting new research with XFELs. Graphical abstract.
Collapse
Affiliation(s)
- Austin Echelmeier
- School of Molecular Sciences, Arizona State University, Box 871604, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Box 875001, Tempe, AZ, 85287-7401, USA
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Box 871604, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Box 875001, Tempe, AZ, 85287-7401, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Box 871604, Tempe, AZ, 85287-1604, USA. .,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Box 875001, Tempe, AZ, 85287-7401, USA.
| |
Collapse
|
8
|
I Ciftci H, G Sierra R, Yoon CH, Su Z, Tateishi H, Koga R, Kotaro K, Yumoto F, Senda T, Liang M, Wakatsuki S, Otsuka M, Fujita M, DeMirci H. Serial Femtosecond X-Ray Diffraction of HIV-1 Gag MA-IP6 Microcrystals at Ambient Temperature. Int J Mol Sci 2019; 20:ijms20071675. [PMID: 30987231 PMCID: PMC6479536 DOI: 10.3390/ijms20071675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 01/24/2023] Open
Abstract
The Human immunodeficiency virus-1 (HIV-1) matrix (MA) domain is involved in the highly regulated assembly process of the virus particles that occur at the host cell’s plasma membrane. High-resolution structures of the MA domain determined using cryo X-ray crystallography have provided initial insights into the possible steps in the viral assembly process. However, these structural studies have relied on large and frozen crystals in order to reduce radiation damage caused by the intense X-rays. Here, we report the first X-ray free-electron laser (XFEL) study of the HIV-1 MA domain’s interaction with inositol hexaphosphate (IP6), a phospholipid headgroup mimic. We also describe the purification, characterization and microcrystallization of two MA crystal forms obtained in the presence of IP6. In addition, we describe the capabilities of serial femtosecond X-ray crystallography (SFX) using an XFEL to elucidate the diffraction data of MA-IP6 complex microcrystals in liquid suspension at ambient temperature. Two different microcrystal forms of the MA-IP6 complex both diffracted to beyond 3.5 Å resolution, demonstrating the feasibility of using SFX to study the complexes of MA domain of HIV-1 Gag polyprotein with IP6 at near-physiological temperatures. Further optimization of the experimental and data analysis procedures will lead to better understanding of the MA domain of HIV-1 Gag and IP6 interaction at high resolution and will provide basis for optimization of the lead compounds for efficient inhibition of the Gag protein recruitment to the plasma membrane prior to virion formation.
Collapse
Affiliation(s)
- Halil I Ciftci
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan.
- Department of Bioorganic Medicinal Chemistry, School of Pharmacy, Kumamoto University, Kumamoto 862-0973, Japan.
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| | - Chun Hong Yoon
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| | - Zhen Su
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
| | - Hiroshi Tateishi
- Department of Bioorganic Medicinal Chemistry, School of Pharmacy, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Ryoko Koga
- Department of Bioorganic Medicinal Chemistry, School of Pharmacy, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Koiwai Kotaro
- Structural Biology Research Center, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0034, Japan.
| | - Fumiaki Yumoto
- Structural Biology Research Center, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0034, Japan.
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0034, Japan.
| | - Mengling Liang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| | - Soichi Wakatsuki
- Biosciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| | - Masami Otsuka
- Department of Bioorganic Medicinal Chemistry, School of Pharmacy, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Mikako Fujita
- Research Institute for Drug Discovery, School of Pharmacy, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Hasan DeMirci
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
- Biosciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| |
Collapse
|