1
|
Wang Q, Lin J. Homeostasis of mRNA concentrations through coupling transcription, export, and degradation. iScience 2024; 27:110531. [PMID: 39175768 PMCID: PMC11338957 DOI: 10.1016/j.isci.2024.110531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 04/16/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Many experiments showed that eukaryotic cells maintain a constant mRNA concentration upon various perturbations by actively regulating mRNA production and degradation rates, known as mRNA buffering. However, the underlying mechanism is still unknown. In this work, we unveil a mechanistic model of mRNA buffering: the releasing-shuttling (RS) model. The model incorporates two crucial proteins, X and Y, which play several roles, including transcription, decay, and export factors, in the different stages of mRNA metabolism. The RS model predicts the constant mRNA concentration under genome-wide genetic perturbations and cell volume changes, the slowed-down mRNA degradation after Pol II depletion, and the temporal transcription dynamics after exonuclease depletion, in agreement with multiple experiments. Finally, we present a list of X and Y candidates and propose an experimental method to identify X. Our work uncovers potentially universal pathways coupling transcription, export, and degradation that help cells maintain mRNA homeostasis.
Collapse
Affiliation(s)
- Qirun Wang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jie Lin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Mellis IA, Melzer ME, Bodkin N, Goyal Y. Prevalence of and gene regulatory constraints on transcriptional adaptation in single cells. Genome Biol 2024; 25:217. [PMID: 39135102 PMCID: PMC11320884 DOI: 10.1186/s13059-024-03351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Cells and tissues have a remarkable ability to adapt to genetic perturbations via a variety of molecular mechanisms. Nonsense-induced transcriptional compensation, a form of transcriptional adaptation, has recently emerged as one such mechanism, in which nonsense mutations in a gene trigger upregulation of related genes, possibly conferring robustness at cellular and organismal levels. However, beyond a handful of developmental contexts and curated sets of genes, no comprehensive genome-wide investigation of this behavior has been undertaken for mammalian cell types and conditions. How the regulatory-level effects of inherently stochastic compensatory gene networks contribute to phenotypic penetrance in single cells remains unclear. RESULTS We analyze existing bulk and single-cell transcriptomic datasets to uncover the prevalence of transcriptional adaptation in mammalian systems across diverse contexts and cell types. We perform regulon gene expression analyses of transcription factor target sets in both bulk and pooled single-cell genetic perturbation datasets. Our results reveal greater robustness in expression of regulons of transcription factors exhibiting transcriptional adaptation compared to those of transcription factors that do not. Stochastic mathematical modeling of minimal compensatory gene networks qualitatively recapitulates several aspects of transcriptional adaptation, including paralog upregulation and robustness to mutation. Combined with machine learning analysis of network features of interest, our framework offers potential explanations for which regulatory steps are most important for transcriptional adaptation. CONCLUSIONS Our integrative approach identifies several putative hits-genes demonstrating possible transcriptional adaptation-to follow-up on experimentally and provides a formal quantitative framework to test and refine models of transcriptional adaptation.
Collapse
Affiliation(s)
- Ian A Mellis
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - Madeline E Melzer
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nicholas Bodkin
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- CZ Biohub Chicago, LLC, Chicago, IL, USA.
| |
Collapse
|
3
|
Tomaz da Silva P, Zhang Y, Theodorakis E, Martens LD, Yépez VA, Pelechano V, Gagneur J. Cellular energy regulates mRNA degradation in a codon-specific manner. Mol Syst Biol 2024; 20:506-520. [PMID: 38491213 PMCID: PMC11066088 DOI: 10.1038/s44320-024-00026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/18/2024] Open
Abstract
Codon optimality is a major determinant of mRNA translation and degradation rates. However, whether and through which mechanisms its effects are regulated remains poorly understood. Here we show that codon optimality associates with up to 2-fold change in mRNA stability variations between human tissues, and that its effect is attenuated in tissues with high energy metabolism and amplifies with age. Mathematical modeling and perturbation data through oxygen deprivation and ATP synthesis inhibition reveal that cellular energy variations non-uniformly alter the effect of codon usage. This new mode of codon effect regulation, independent of tRNA regulation, provides a fundamental mechanistic link between cellular energy metabolism and eukaryotic gene expression.
Collapse
Affiliation(s)
- Pedro Tomaz da Silva
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Munich Center for Machine Learning, Munich, Germany
| | - Yujie Zhang
- Scilifelab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Evangelos Theodorakis
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Laura D Martens
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Vicente A Yépez
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Vicent Pelechano
- Scilifelab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany.
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
4
|
Pérez-Ortín JE, García-Marcelo MJ, Delgado-Román I, Muñoz-Centeno MC, Chávez S. Influence of cell volume on the gene transcription rate. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195008. [PMID: 38246270 DOI: 10.1016/j.bbagrm.2024.195008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Cells vary in volume throughout their life cycle and in many other circumstances, while their genome remains identical. Hence, the RNA production factory must adapt to changing needs, while maintaining the same production lines. This paradox is resolved by different mechanisms in distinct cells and circumstances. RNA polymerases have evolved to cope with the particular circumstances of each case and the different characteristics of the several RNA molecule types, especially their stabilities. Here we review current knowledge on these issues. We focus on the yeast Saccharomyces cerevisiae, where many of the studies have been performed, although we compare and discuss the results obtained in other eukaryotes and propose several ideas and questions to be tested and solved in the future. TAKE AWAY.
Collapse
Affiliation(s)
- José E Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain.
| | - María J García-Marcelo
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain; Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Irene Delgado-Román
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - María C Muñoz-Centeno
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
5
|
García-Martínez J, Singh A, Medina D, Chávez S, Pérez-Ortín JE. Enhanced gene regulation by cooperation between mRNA decay and gene transcription. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194910. [PMID: 36731791 PMCID: PMC10663100 DOI: 10.1016/j.bbagrm.2023.194910] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
It has become increasingly clear in the last few years that gene expression in eukaryotes is not a linear process from mRNA synthesis in the nucleus to translation and degradation in the cytoplasm, but works as a circular one where the mRNA level is controlled by crosstalk between nuclear transcription and cytoplasmic decay pathways. One of the consequences of this crosstalk is the approximately constant level of mRNA. This is called mRNA buffering and happens when transcription and mRNA degradation act at compensatory rates. However, if transcription and mRNA degradation act additively, enhanced gene expression regulation occurs. In this work, we analyzed new and previously published genomic datasets obtained for several yeast mutants related to either transcription or mRNA decay that are not known to play any role in the other process. We show that some, which were presumed only transcription factors (Sfp1) or only decay factors (Puf3, Upf2/3), may represent examples of RNA-binding proteins (RBPs) that make specific crosstalk to enhance the control of the mRNA levels of their target genes by combining additive effects on transcription and mRNA stability. These results were mathematically modeled to see the effects of RBPs when they have positive or negative effects on mRNA synthesis and decay rates. We found that RBPs can be an efficient way to buffer or enhance gene expression responses depending on their respective effects on transcription and mRNA stability.
Collapse
Affiliation(s)
- José García-Martínez
- Instituto de Biotecnología y Biomedicina (Biotecmed), Facultad de Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
| | - Daniel Medina
- Instituto de Biotecnología y Biomedicina (Biotecmed), Facultad de Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain
| | - Sebastián Chávez
- Departamento de Genética, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Seville, Spain; Dirección de Evaluación y Acreditación, Agencia Andaluza del Conocimiento, Doña Berenguela s/n, planta 3ª C.P. 14006, Córdoba, Spain
| | - José E Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (Biotecmed), Facultad de Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain.
| |
Collapse
|
6
|
Esposito E, Weidemann DE, Rogers JM, Morton CM, Baybay EK, Chen J, Hauf S. Mitotic checkpoint gene expression is tuned by codon usage bias. EMBO J 2022; 41:e107896. [PMID: 35811551 PMCID: PMC9340482 DOI: 10.15252/embj.2021107896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022] Open
Abstract
The mitotic checkpoint (also called spindle assembly checkpoint, SAC) is a signaling pathway that safeguards proper chromosome segregation. Correct functioning of the SAC depends on adequate protein concentrations and appropriate stoichiometries between SAC proteins. Yet very little is known about the regulation of SAC gene expression. Here, we show in the fission yeast Schizosaccharomyces pombe that a combination of short mRNA half-lives and long protein half-lives supports stable SAC protein levels. For the SAC genes mad2+ and mad3+ , their short mRNA half-lives are caused, in part, by a high frequency of nonoptimal codons. In contrast, mad1+ mRNA has a short half-life despite a higher frequency of optimal codons, and despite the lack of known RNA-destabilizing motifs. Hence, different SAC genes employ different strategies of expression. We further show that Mad1 homodimers form co-translationally, which may necessitate a certain codon usage pattern. Taken together, we propose that the codon usage of SAC genes is fine-tuned to ensure proper SAC function. Our work shines light on gene expression features that promote spindle assembly checkpoint function and suggests that synonymous mutations may weaken the checkpoint.
Collapse
Affiliation(s)
- Eric Esposito
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Douglas E Weidemann
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Jessie M Rogers
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Claire M Morton
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Erod Keaton Baybay
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Jing Chen
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Silke Hauf
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| |
Collapse
|
7
|
Pérez-Ortín JE, Chávez S. Nucleo-cytoplasmic shuttling of RNA-binding factors: mRNA buffering and beyond. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194849. [PMID: 35907432 DOI: 10.1016/j.bbagrm.2022.194849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Gene expression is a highly regulated process that adapts RNAs and proteins content to the cellular context. Under steady-state conditions, mRNA homeostasis is robustly maintained by tight controls that act on both nuclear transcription and cytoplasmic mRNA stability. In recent years, it has been revealed that several RNA-binding proteins (RBPs) that perform functions in mRNA decay can move to the nucleus and regulate transcription. The RBPs involved in transcription can also travel to the cytoplasm and regulate mRNA degradation and/or translation. The multifaceted functions of these shuttling nucleo-cytoplasm RBPs have raised the possibility that they can act as mRNA metabolism coordinators. In addition, this indicates the existence of crosstalk mechanisms between the enzymatic machineries that drive the different mRNA life-cycle phases. The buffering of the mRNA concentration is the best known consequence of a transcription-degradation crosstalk counteraction, but alternative ways of RBP action can also imply enhanced gene regulation.
Collapse
Affiliation(s)
- José E Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (Biotecmed), Facultad de Biológicas, Universitat de València. C/Dr. Moliner 50, E46100 Burjassot, Spain.
| | - Sebastián Chávez
- Departamento de Genética, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Seville, Spain; Dirección de Evaluación y Acreditación, Agencia Andaluza del Conocimiento, Doña Berenguela s/n, planta 3ª C.P., 14006 Córdoba, Spain
| |
Collapse
|
8
|
Chappleboim A, Joseph-Strauss D, Gershon O, Friedman N. Transcription feedback dynamics in the wake of cytoplasmic mRNA degradation shutdown. Nucleic Acids Res 2022; 50:5864-5880. [PMID: 35640599 PMCID: PMC9177992 DOI: 10.1093/nar/gkac411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 01/02/2023] Open
Abstract
In the last decade, multiple studies demonstrated that cells maintain a balance of mRNA production and degradation, but the mechanisms by which cells implement this balance remain unknown. Here, we monitored cells' total and recently-transcribed mRNA profiles immediately following an acute depletion of Xrn1-the main 5'-3' mRNA exonuclease-which was previously implicated in balancing mRNA levels. We captured the detailed dynamics of the adaptation to rapid degradation of Xrn1 and observed a significant accumulation of mRNA, followed by a delayed global reduction in transcription and a gradual return to baseline mRNA levels. We found that this transcriptional response is not unique to Xrn1 depletion; rather, it is induced earlier when upstream factors in the 5'-3' degradation pathway are perturbed. Our data suggest that the mRNA feedback mechanism monitors the accumulation of inputs to the 5'-3' exonucleolytic pathway rather than its outputs.
Collapse
Affiliation(s)
- Alon Chappleboim
- Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Rachel and Selim Benin School of Computer Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Daphna Joseph-Strauss
- Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Rachel and Selim Benin School of Computer Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Omer Gershon
- Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Rachel and Selim Benin School of Computer Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nir Friedman
- Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Rachel and Selim Benin School of Computer Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
9
|
Alalam H, Zepeda-Martínez JA, Sunnerhagen P. Global SLAM-seq for accurate mRNA decay determination and identification of NMD targets. RNA (NEW YORK, N.Y.) 2022; 28:905-915. [PMID: 35296539 PMCID: PMC9074897 DOI: 10.1261/rna.079077.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Gene expression analysis requires accurate measurements of global RNA degradation rates, earlier problematic with methods disruptive to cell physiology. Recently, metabolic RNA labeling emerged as an efficient and minimally invasive technique applied in mammalian cells. Here, we have adapted SH-linked alkylation for the metabolic sequencing of RNA (SLAM-seq) for a global mRNA stability study in yeast using 4-thiouracil pulse-chase labeling. We assign high-confidence half-life estimates for 67.5% of expressed ORFs, and measure a median half-life of 9.4 min. For mRNAs where half-life estimates exist in the literature, their ranking order was in good agreement with previous data, indicating that SLAM-seq efficiently classifies stable and unstable transcripts. We then leveraged our yeast protocol to identify targets of the nonsense-mediated decay (NMD) pathway by measuring the change in RNA half-lives, instead of steady-state RNA level changes. With SLAM-seq, we assign 580 transcripts as putative NMD targets, based on their measured half-lives in wild-type and upf3Δ mutants. We find 225 novel targets, and observe a strong agreement with previous reports of NMD targets, 61.2% of our candidates being identified in previous studies. This indicates that SLAM-seq is a simpler and more economic method for global quantification of mRNA half-lives. Our adaptation for yeast yielded global quantitative measures of the NMD effect on transcript half-lives, high correlation with RNA half-lives measured previously with more technically challenging protocols, and identification of novel NMD regulated transcripts that escaped prior detection.
Collapse
Affiliation(s)
- Hanna Alalam
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, S-405 30 Göteborg, Sweden
| | | | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, S-405 30 Göteborg, Sweden
| |
Collapse
|
10
|
Romero AM, García-Martínez J, Pérez-Ortín JE, Martínez-Pastor MT, Puig S. Changes in mRNA stability play an important role in the adaptation of yeast cells to iron deprivation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194800. [PMID: 35218933 DOI: 10.1016/j.bbagrm.2022.194800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Eukaryotic cells rely on iron as an indispensable cofactor for multiple biological functions including mitochondrial respiration and protein synthesis. The budding yeast Saccharomyces cerevisiae utilizes both transcriptional and posttranscriptional mechanisms to couple mRNA levels to the requirements of iron deprivation. Thus, in response to iron deficiency, transcription factors Aft1 and Aft2 activate the expression of genes implicated in iron acquisition and mobilization, whereas two mRNA-binding proteins, Cth1 and Cth2, posttranscriptionally control iron metabolism. By using a genome-wide approach, we describe here a global stabilization of mRNAs, including transcripts encoding ribosomal proteins (RPs), when iron bioavailability diminishes. mRNA decay assays indicate that the mRNA-binding protein Pub1 contributes to RP transcript stabilization during adaptation to iron limitation. In fact, Pub1 becomes critical for growth and translational repression in low-iron conditions. Remarkably, we observe that pub1Δ cells also exhibit an increase in the transcription of RP genes that evidences the crosstalk between transcription and degradation mechanisms to maintain the appropriate mRNA balance under iron deficiency conditions.
Collapse
Affiliation(s)
- Antonia María Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, E-46980 Paterna, Valencia, Spain.
| | - José García-Martínez
- Departamento de Genética, Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain; Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - José Enrique Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain; Departamento de Bioquímica y Biología Molecular, Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - María Teresa Martínez-Pastor
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, E-46980 Paterna, Valencia, Spain.
| |
Collapse
|