1
|
Herridge RP, Dolata J, Migliori V, de Santis Alves C, Borges F, Schorn AJ, van Ex F, Lin A, Bajczyk M, Parent JS, Leonardi T, Hendrick A, Kouzarides T, Martienssen RA. Pseudouridine guides germline small RNA transport and epigenetic inheritance. Nat Struct Mol Biol 2025; 32:277-286. [PMID: 39242979 PMCID: PMC11832342 DOI: 10.1038/s41594-024-01392-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/15/2024] [Indexed: 09/09/2024]
Abstract
Developmental epigenetic modifications in plants and animals are mostly reset during gamete formation but some are inherited from the germline. Small RNAs guide these epigenetic modifications but how inherited small RNAs are distinguished in plants and animals is unknown. Pseudouridine (Ψ) is the most abundant RNA modification but has not been explored in small RNAs. Here, we develop assays to detect Ψ in short RNA sequences, demonstrating its presence in mouse and Arabidopsis microRNAs. Germline small RNAs, namely epigenetically activated small interfering RNAs (easiRNAs) in Arabidopsis pollen and Piwi-interacting RNAs in mouse testes, are enriched for Ψ. In pollen, pseudouridylated easiRNAs are transported to sperm cells from the vegetative nucleus, and PAUSED/HEN5 (PSD), the plant homolog of Exportin-t, interacts genetically with Ψ and is required for this transport. We further show that Exportin-t is required for the triploid block: small RNA dosage-dependent seed lethality that is epigenetically inherited from pollen. Thus, Ψ has a conserved role in marking inherited small RNAs in the germline.
Collapse
Affiliation(s)
- Rowan P Herridge
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Jakub Dolata
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Valentina Migliori
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Filipe Borges
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- CNRS, INRA Versailles, Versailles, France
| | - Andrea J Schorn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Frédéric van Ex
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Inari LLC, Ghent, Belgium
| | - Ann Lin
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Stanford University, Stanford, CA, USA
| | - Mateusz Bajczyk
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Jean-Sebastien Parent
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Agriculture Canada, Ottawa, Ontario, Canada
| | - Tommaso Leonardi
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Center for Genomic Science of IIT@SEMM, Instituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Alan Hendrick
- Storm Therapeutics, Ltd., Moneta Building (B280), Babraham Research Campus, Cambridge, UK
| | | | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
2
|
Bosmeny MS, Pater AA, Zhang L, Sha BE, Lyu Z, Larkai L, Damha MJ, Mamede JI, Gagnon KT. An HIV-1 Reference Epitranscriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635805. [PMID: 39975020 PMCID: PMC11838527 DOI: 10.1101/2025.01.30.635805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Post-transcriptional chemical modifications to RNA, or the epitranscriptome, play important roles in RNA metabolism, gene regulation, and human disease, including viral pathogenesis. Modifications to the RNA viral genome and transcripts of human immunodeficiency virus 1 (HIV-1) have been reported, including methylation of adenosine (m 6 A) and cytosine (m 5 C), acetylation of cytosine, pseudouridylation (psi), and conversion of adenosine to inosine, and their effects on virus and host biology have been investigated. However, diverse experimental approaches have been used, making clear correlations across studies difficult to assess. To address this need, we propose the establishment of a reference HIV-1 epitranscriptome. We sequenced the model NL4-3 HIV-1 genome from infected Jurkat CD4+ T cells cells using the latest nanopore chemistry, custom RNA preparation methods, and commercial base-calling algorithms. This resulted in a reproducible sense and preliminary antisense HIV-1 epitranscriptome where m 6 A, m 5 C, psi, ands inosine could be identified by multiplexed base-calling. Multiplexed base-calling miscalled modifications due to sequence and neighboring modification contexts, which we demonstrate can be corrected with synthetic HIV-1 RNA fragments. We validate m 6 A modification sites with a small molecule inhibitor of methyltransferase-like 3 (METTL3), STM2457. We conclude that modifications do not change substantially under combination antiretroviral therapy (cART) treatment or in primary CD4+ T cells. Samples from patients living with HIV reveal conservation of certain modifications, such as m 6 A. Our approach and reference data offer a straightforward benchmark that can be adopted to help advance rigor, reproducibility, and uniformity across future HIV-1 epitranscriptomics studies.
Collapse
|
3
|
Pan X, Bruch A, Blango MG. Past, Present, and Future of RNA Modifications in Infectious Disease Research. ACS Infect Dis 2024; 10:4017-4029. [PMID: 39569943 DOI: 10.1021/acsinfecdis.4c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
In early 2024, the National Academies of Sciences, Engineering, and Medicine (NASEM) released a roadmap for the future of research into mapping ribonucleic acid (RNA) modifications, which underscored the importance of better defining these diverse chemical changes to the RNA macromolecule. As nearly all mature RNA molecules harbor some form of modification, we must understand RNA modifications to fully appreciate the functionality of RNA. The NASEM report calls for massive mobilization of resources and investment akin to the transformative Human Genome Project of the early 1990s. Like the Human Genome Project, a concerted effort in improving our ability to assess every single modification on every single RNA molecule in an organism will change the way we approach biological questions, accelerate technological advance, and improve our understanding of the molecular world. Consequently, we are also at the start of a revolution in defining the impact of RNA modifications in the context of host-microbe and even microbe-microbe interactions. In this perspective, we briefly introduce RNA modifications to the infection biologist, highlight key aspects of the NASEM report and exciting examples of RNA modifications contributing to host and pathogen biology, and finally postulate where infectious disease research may benefit from this exciting new endeavor in globally mapping RNA modifications.
Collapse
Affiliation(s)
- Xiaoqing Pan
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology: Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Alexander Bruch
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology: Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Matthew G Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology: Hans Knöll Institute (HKI), 07745 Jena, Germany
| |
Collapse
|
4
|
Su PY(A, Chang CH, Yen SCB, Wu HY, Tung WJ, Hu YP, Chen YYI, Lin MH, Shih C, Chen PJ, Tsai K. Epitranscriptomic cytidine methylation of the hepatitis B viral RNA is essential for viral reverse transcription and particle production. Proc Natl Acad Sci U S A 2024; 121:e2400378121. [PMID: 38830096 PMCID: PMC11181118 DOI: 10.1073/pnas.2400378121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/20/2024] [Indexed: 06/05/2024] Open
Abstract
Epitranscriptomic RNA modifications have emerged as important regulators of the fate and function of viral RNAs. One prominent modification, the cytidine methylation 5-methylcytidine (m5C), is found on the RNA of HIV-1, where m5C enhances the translation of HIV-1 RNA. However, whether m5C functionally enhances the RNA of other pathogenic viruses remains elusive. Here, we surveyed a panel of commonly found RNA modifications on the RNA of hepatitis B virus (HBV) and found that HBV RNA is enriched with m5C as well as ten other modifications, at stoichiometries much higher than host messenger RNA (mRNA). Intriguingly, m5C is mostly found on the epsilon hairpin, an RNA element required for viral RNA encapsidation and reverse transcription, with these m5C mainly deposited by the cellular methyltransferase NSUN2. Loss of m5C from HBV RNA due to NSUN2 depletion resulted in a partial decrease in viral core protein (HBc) production, accompanied by a near-complete loss of the reverse transcribed viral DNA. Similarly, mutations introduced to remove the methylated cytidines resulted in a loss of HBc production and reverse transcription. Furthermore, pharmacological disruption of m5C deposition led to a significant decrease in HBV replication. Thus, our data indicate m5C methylations as a critical mediator of the epsilon elements' function in HBV virion production and reverse transcription, suggesting the therapeutic potential of targeting the m5C methyltransfer process on HBV epsilon as an antiviral strategy.
Collapse
Affiliation(s)
- Pei-Yi (Alma) Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei115, Taiwan
| | - Chih-Hsu Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei115, Taiwan
| | - Shin-Chwen Bruce Yen
- Institute of Biomedical Sciences, Academia Sinica, Taipei115, Taiwan
- Taiwan International Graduate Program, National Yang-Ming Chiao-Tung University and Academia Sinica, Taipei115, Taiwan
| | - Hsiu-Yi Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei115, Taiwan
| | - Wan-Ju Tung
- Institute of Biomedical Sciences, Academia Sinica, Taipei115, Taiwan
| | - Yu-Pei Hu
- Institute of Biomedical Sciences Summer Undergraduate Internship Program, Academia Sinica, Taipei115, Taiwan
| | - Yen-Yu Ian Chen
- Institute of Biomedical Sciences Summer Undergraduate Internship Program, Academia Sinica, Taipei115, Taiwan
| | - Miao-Hsia Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei100, Taiwan
| | - Chiaho Shih
- Graduate Institute of Cell Biology, College of Life Sciences, China Medical University, Taichung404, Taiwan
| | - Pei-Jer Chen
- National Taiwan University Center for Genomic Medicine, National Taiwan University, Taipei100, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei100, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei100, Taiwan
| | - Kevin Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei115, Taiwan
| |
Collapse
|
5
|
López J, Blanco S. Exploring the role of ribosomal RNA modifications in cancer. Curr Opin Genet Dev 2024; 86:102204. [PMID: 38759459 DOI: 10.1016/j.gde.2024.102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/05/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024]
Abstract
Recent advances have highlighted the significant roles of post-transcriptional modifications in rRNA in various cancers. Evidence suggests that dysregulation of rRNA modifications acts as a common denominator in cancer development, with alterations in these modifications conferring competitive advantages to cancer cells. Specifically, rRNA modifications modulate protein synthesis and favor the specialized translation of oncogenic programs, thereby contributing to the formation of a protumorigenic proteome in cancer cells. These findings reveal a novel regulatory layer mediated by changes in the deposition of rRNA chemical modifications. Moreover, inhibition of these modifications in vitro and in preclinical studies demonstrates potential therapeutic applications. The recurrence of altered rRNA modification patterns across different types of cancer underscores their importance in cancer progression, proposing them as potential biomarkers and novel therapeutic targets. This review will highlight the latest insights into how post-transcriptional rRNA modifications contribute to cancer progression and summarize the main developments and ongoing challenges in this research area.
Collapse
Affiliation(s)
- Judith López
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain. https://twitter.com/@judithlopezluis
| | - Sandra Blanco
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
6
|
Zhang M, Zhang X, Ma Y, Yi C. New directions for Ψ and m 1A decoding in mRNA: deciphering the stoichiometry and function. RNA (NEW YORK, N.Y.) 2024; 30:537-547. [PMID: 38531648 PMCID: PMC11019747 DOI: 10.1261/rna.079950.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Over the past decade, advancements in epitranscriptomics have significantly enhanced our understanding of mRNA metabolism and its role in human development and diseases. This period has witnessed breakthroughs in sequencing technologies and the identification of key proteins involved in RNA modification processes. Alongside the well-studied m6A, Ψ and m1A have emerged as key epitranscriptomic markers. Initially identified through transcriptome-wide profiling, these modifications are now recognized for their broad impact on RNA metabolism and gene expression. In this Perspective, we focus on the detections and functions of Ψ and m1A modifications in mRNA and discuss previous discrepancies and future challenges. We summarize recent advances and highlight the latest sequencing technologies for stoichiometric detection and their mechanistic investigations for functional unveiling in mRNA as the new research directions.
Collapse
Affiliation(s)
- Meiling Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoting Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yichen Ma
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Pozhydaieva N, Wolfram-Schauerte M, Keuthen H, Höfer K. The enigmatic epitranscriptome of bacteriophages: putative RNA modifications in viral infections. Curr Opin Microbiol 2024; 77:102417. [PMID: 38217927 DOI: 10.1016/j.mib.2023.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/15/2024]
Abstract
RNA modifications play essential roles in modulating RNA function, stability, and fate across all kingdoms of life. The entirety of the RNA modifications within a cell is defined as the epitranscriptome. While eukaryotic RNA modifications are intensively studied, understanding bacterial RNA modifications remains limited, and knowledge about bacteriophage RNA modifications is almost nonexistent. In this review, we shed light on known mechanisms of bacterial RNA modifications and propose how this knowledge might be extended to bacteriophages. We build hypotheses on enzymes potentially responsible for regulating the epitranscriptome of bacteriophages and their host. This review highlights the exciting prospects of uncovering the unexplored field of bacteriophage epitranscriptomics and its potential role to shape bacteriophage-host interactions.
Collapse
Affiliation(s)
| | | | - Helene Keuthen
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katharina Höfer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
8
|
Wang X, Ling R, Peng Y, Qiu W, Chen D. RNPS1 stabilizes NAT10 protein to facilitate translation in cancer via tRNA ac 4C modification. Int J Oral Sci 2024; 16:6. [PMID: 38246918 PMCID: PMC10800354 DOI: 10.1038/s41368-023-00276-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Existing studies have underscored the pivotal role of N-acetyltransferase 10 (NAT10) in various cancers. However, the outcomes of protein-protein interactions between NAT10 and its protein partners in head and neck squamous cell carcinoma (HNSCC) remain unexplored. In this study, we identified a significant upregulation of RNA-binding protein with serine-rich domain 1 (RNPS1) in HNSCC, where RNPS1 inhibits the ubiquitination degradation of NAT10 by E3 ubiquitin ligase, zinc finger SWIM domain-containing protein 6 (ZSWIM6), through direct protein interaction, thereby promoting high NAT10 expression in HNSCC. This upregulated NAT10 stability mediates the enhancement of specific tRNA ac4C modifications, subsequently boosting the translation process of genes involved in pathways such as IL-6 signaling, IL-8 signaling, and PTEN signaling that play roles in regulating HNSCC malignant progression, ultimately influencing the survival and prognosis of HNSCC patients. Additionally, we pioneered the development of TRMC-seq, leading to the discovery of novel tRNA-ac4C modification sites, thereby providing a potent sequencing tool for tRNA-ac4C research. Our findings expand the repertoire of tRNA ac4C modifications and identify a role of tRNA ac4C in the regulation of mRNA translation in HNSCC.
Collapse
Affiliation(s)
- Xiaochen Wang
- Center For Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rongsong Ling
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yurong Peng
- Center For Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weiqiong Qiu
- Center For Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Demeng Chen
- Center For Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Herridge RP, Dolata J, Migliori V, de Santis Alves C, Borges F, Schorn AJ, Van Ex F, Parent JS, Lin A, Bajczyk M, Leonardi T, Hendrick A, Kouzarides T, Martienssen RA. Pseudouridine guides germline small RNA transport and epigenetic inheritance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.27.542553. [PMID: 37398006 PMCID: PMC10312437 DOI: 10.1101/2023.05.27.542553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Epigenetic modifications that arise during plant and animal development, such as DNA and histone modification, are mostly reset during gamete formation, but some are inherited from the germline including those marking imprinted genes1. Small RNAs guide these epigenetic modifications, and some are also inherited by the next generation2,3. In C. elegans, these inherited small RNAs have poly (UG) tails4, but how inherited small RNAs are distinguished in other animals and plants is unknown. Pseudouridine (Ψ) is the most abundant RNA modification but has not been explored in small RNAs. Here, we develop novel assays to detect Ψ in short RNA sequences, demonstrating its presence in mouse and Arabidopsis microRNAs and their precursors. We also detect substantial enrichment in germline small RNAs, namely epigenetically activated siRNAs (easiRNAs) in Arabidopsis pollen, and piwi-interacting piRNAs in mouse testis. In pollen, pseudouridylated easiRNAs are localized to sperm cells, and we found that PAUSED/HEN5 (PSD), the plant homolog of Exportin-t, interacts genetically with Ψ and is required for transport of easiRNAs into sperm cells from the vegetative nucleus. We further show that Exportin-t is required for the triploid block: chromosome dosage-dependent seed lethality that is epigenetically inherited from pollen. Thus, Ψ has a conserved role in marking inherited small RNAs in the germline.
Collapse
Affiliation(s)
- Rowan P Herridge
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Jakub Dolata
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Valentina Migliori
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Filipe Borges
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Andrea J Schorn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Frédéric Van Ex
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Jean-Sebastien Parent
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Ann Lin
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Mateusz Bajczyk
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Tommaso Leonardi
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
- Center for Genomic Science of IIT@SEMM, Instituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Alan Hendrick
- Storm Therapeutics, Ltd., Moneta Building (B280), Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Tony Kouzarides
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
10
|
Fleming AM, Zhu J, Done VK, Burrows CJ. Advantages and challenges associated with bisulfite-assisted nanopore direct RNA sequencing for modifications. RSC Chem Biol 2023; 4:952-964. [PMID: 37920399 PMCID: PMC10619145 DOI: 10.1039/d3cb00081h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/23/2023] [Indexed: 11/04/2023] Open
Abstract
Nanopore direct RNA sequencing is a technology that allows sequencing for epitranscriptomic modifications with the possibility of a quantitative assessment. In the present work, pseudouridine (Ψ) was sequenced with the nanopore before and after the pH 7 bisulfite reaction that yields stable ribose adducts at C1' of Ψ. The adducted sites produced greater base call errors in the form of deletion signatures compared to Ψ. Sequencing studies on E. coli rRNA and tmRNA before and after the pH 7 bisulfite reaction demonstrated that using chemically-assisted nanopore sequencing has distinct advantages for minimization of false positives and false negatives in the data. The rRNA from E. coli has 19 known U/C sequence variations that give similar base call signatures as Ψ, and therefore, are false positives when inspecting base call data; however, these sites are refractory to reacting with bisulfite as is easily observed in nanopore data. The E. coli tmRNA has a low occupancy Ψ in a pyrimidine-rich sequence context that is called a U representing a false negative; partial occupancy by Ψ is revealed after the bisulfite reaction. In a final study, 5-methylcytidine (m5C) in RNA can readily be observed after the pH 5 bisulfite reaction in which the parent C deaminates to U and the modified site does not react. This locates m5C when using bisulfite-assisted nanopore direct RNA sequencing, which is otherwise challenging to observe. The advantages and challenges of the overall approach are discussed.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah 315 S. 1400 East Salt Lake City UT 84112-0850 USA
| | - Judy Zhu
- Department of Chemistry, University of Utah 315 S. 1400 East Salt Lake City UT 84112-0850 USA
| | - Vilhelmina K Done
- Department of Chemistry, University of Utah 315 S. 1400 East Salt Lake City UT 84112-0850 USA
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah 315 S. 1400 East Salt Lake City UT 84112-0850 USA
| |
Collapse
|
11
|
Shen S, Zhang LS. The regulation of antiviral innate immunity through non-m 6A RNA modifications. Front Immunol 2023; 14:1286820. [PMID: 37915585 PMCID: PMC10616867 DOI: 10.3389/fimmu.2023.1286820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
The post-transcriptional RNA modifications impact the dynamic regulation of gene expression in diverse biological and physiological processes. Host RNA modifications play an indispensable role in regulating innate immune responses against virus infection in mammals. Meanwhile, the viral RNAs can be deposited with RNA modifications to interfere with the host immune responses. The N6-methyladenosine (m6A) has boosted the recent emergence of RNA epigenetics, due to its high abundance and a transcriptome-wide widespread distribution in mammalian cells, proven to impact antiviral innate immunity. However, the other types of RNA modifications are also involved in regulating antiviral responses, and the functional roles of these non-m6A RNA modifications have not been comprehensively summarized. In this Review, we conclude the regulatory roles of 2'-O-methylation (Nm), 5-methylcytidine (m5C), adenosine-inosine editing (A-to-I editing), pseudouridine (Ψ), N1-methyladenosine (m1A), N7-methylguanosine (m7G), N6,2'-O-dimethyladenosine (m6Am), and N4-acetylcytidine (ac4C) in antiviral innate immunity. We provide a systematic introduction to the biogenesis and functions of these non-m6A RNA modifications in viral RNA, host RNA, and during virus-host interactions, emphasizing the biological functions of RNA modification regulators in antiviral responses. Furthermore, we discussed the recent research progress in the development of antiviral drugs through non-m6A RNA modifications. Collectively, this Review conveys knowledge and inspiration to researchers in multiple disciplines, highlighting the challenges and future directions in RNA epitranscriptome, immunology, and virology.
Collapse
Affiliation(s)
- Shenghai Shen
- Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
| | - Li-Sheng Zhang
- Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
| |
Collapse
|
12
|
Ribeiro DR, Nunes A, Ribeiro D, Soares AR. The hidden RNA code: implications of the RNA epitranscriptome in the context of viral infections. Front Genet 2023; 14:1245683. [PMID: 37614818 PMCID: PMC10443596 DOI: 10.3389/fgene.2023.1245683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Emerging evidence highlights the multifaceted roles of the RNA epitranscriptome during viral infections. By modulating the modification landscape of viral and host RNAs, viruses enhance their propagation and elude host surveillance mechanisms. Here, we discuss how specific RNA modifications, in either host or viral RNA molecules, impact the virus-life cycle and host antiviral responses, highlighting the potential of targeting the RNA epitranscriptome for novel antiviral therapies.
Collapse
|
13
|
Pederiva C, Trevisan DM, Peirasmaki D, Chen S, Savage SA, Larsson O, Ule J, Baranello L, Agostini F, Farnebo M. Control of protein synthesis through mRNA pseudouridylation by dyskerin. SCIENCE ADVANCES 2023; 9:eadg1805. [PMID: 37506213 PMCID: PMC10381945 DOI: 10.1126/sciadv.adg1805] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Posttranscriptional modifications of mRNA have emerged as regulators of gene expression. Although pseudouridylation is the most abundant, its biological role remains poorly understood. Here, we demonstrate that the pseudouridine synthase dyskerin associates with RNA polymerase II, binds to thousands of mRNAs, and is responsible for their pseudouridylation, an action that occurs in chromatin and does not appear to require a guide RNA with full complementarity. In cells lacking dyskerin, mRNA pseudouridylation is reduced, while at the same time, de novo protein synthesis is enhanced, indicating that this modification interferes with translation. Accordingly, mRNAs with fewer pseudouridines due to knockdown of dyskerin are translated more efficiently. Moreover, mRNA pseudouridylation is severely reduced in patients with dyskeratosis congenita caused by inherited mutations in the gene encoding dyskerin (i.e., DKC1). Our findings demonstrate that pseudouridylation by dyskerin modulates mRNA translatability, with important implications for both normal development and disease.
Collapse
Affiliation(s)
- Chiara Pederiva
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Sweden
| | - Davide M. Trevisan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14152, Sweden
| | - Dimitra Peirasmaki
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Sweden
| | - Shan Chen
- Department of Oncology and Pathology, Karolinska Institutet, Solna 17165, Sweden
- Science for Life Laboratory, Stockholm 17165, Sweden
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20852, USA
| | - Ola Larsson
- Department of Oncology and Pathology, Karolinska Institutet, Solna 17165, Sweden
- Science for Life Laboratory, Stockholm 17165, Sweden
| | - Jernej Ule
- The Francis Crick Institute, London NW1 1AT, UK
- UK Dementia Research Institute, King’s College London, London W1T 7NF, UK
- National Institute of Chemistry, 1001 Ljubljana, Slovenia
| | - Laura Baranello
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Sweden
| | - Federico Agostini
- Science for Life Laboratory, Stockholm 17165, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna 17165, Sweden
| | - Marianne Farnebo
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14152, Sweden
| |
Collapse
|
14
|
Role of Epitranscriptomic and Epigenetic Modifications during the Lytic and Latent Phases of Herpesvirus Infections. Microorganisms 2022; 10:microorganisms10091754. [PMID: 36144356 PMCID: PMC9503318 DOI: 10.3390/microorganisms10091754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022] Open
Abstract
Herpesviruses are double-stranded DNA viruses occurring at a high prevalence in the human population and are responsible for a wide array of clinical manifestations and diseases, from mild to severe. These viruses are classified in three subfamilies (Alpha-, Beta- and Gammaherpesvirinae), with eight members currently known to infect humans. Importantly, all herpesviruses can establish lifelong latent infections with symptomatic or asymptomatic lytic reactivations. Accumulating evidence suggest that chemical modifications of viral RNA and DNA during the lytic and latent phases of the infections caused by these viruses, are likely to play relevant roles in key aspects of the life cycle of these viruses by modulating and regulating their replication, establishment of latency and evasion of the host antiviral response. Here, we review and discuss current evidence regarding epitranscriptomic and epigenetic modifications of herpesviruses and how these can influence their life cycles. While epitranscriptomic modifications such as m6A are the most studied to date and relate to positive effects over the replication of herpesviruses, epigenetic modifications of the viral genome are generally associated with defense mechanisms of the host cells to suppress viral gene transcription. However, herpesviruses can modulate these modifications to their own benefit to persist in the host, undergo latency and sporadically reactivate.
Collapse
|
15
|
Ramakrishnan M, Rajan KS, Mullasseri S, Palakkal S, Kalpana K, Sharma A, Zhou M, Vinod KK, Ramasamy S, Wei Q. The plant epitranscriptome: revisiting pseudouridine and 2'-O-methyl RNA modifications. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1241-1256. [PMID: 35445501 PMCID: PMC9241379 DOI: 10.1111/pbi.13829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 06/01/2023]
Abstract
There is growing evidence that post-transcriptional RNA modifications are highly dynamic and can be used to improve crop production. Although more than 172 unique types of RNA modifications have been identified throughout the kingdom of life, we are yet to leverage upon the understanding to optimize RNA modifications in crops to improve productivity. The contributions of internal mRNA modifications such as N6-methyladenosine (m6 A) and 5-methylcytosine (m5 C) methylations to embryonic development, root development, leaf morphogenesis, flowering, fruit ripening and stress response are sufficiently known, but the roles of the two most abundant RNA modifications, pseudouridine (Ψ) and 2'-O-methylation (Nm), in the cell remain unclear due to insufficient advances in high-throughput technologies in plant development. Therefore, in this review, we discuss the latest methods and insights gained in mapping internal Ψ and Nm and their unique properties in plants and other organisms. In addition, we discuss the limitations that remain in high-throughput technologies for qualitative and quantitative mapping of these RNA modifications and highlight future challenges in regulating the plant epitranscriptome.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingJiangsuChina
- Bamboo Research InstituteNanjing Forestry UniversityNanjingJiangsuChina
| | - K. Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology InstituteBar‐Ilan University52900Ramat‐GanIsrael
- Department of Chemical and Structural BiologyWeizmann Institute7610001RehovotIsrael
| | - Sileesh Mullasseri
- School of Ocean Science and TechnologyKerala University of Fisheries and Ocean StudiesCochinIndia
| | - Sarin Palakkal
- The Institute for Drug ResearchSchool of PharmacyThe Hebrew University of JerusalemJerusalemIsrael
| | - Krishnan Kalpana
- Department of Plant PathologyAgricultural College and Research InstituteTamilnadu Agricultural University625 104MaduraiTamil NaduIndia
| | - Anket Sharma
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouZhejiangChina
| | - Mingbing Zhou
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouZhejiangChina
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High‐Efficiency UtilizationZhejiang A&F UniversityHangzhouZhejiangChina
| | | | - Subbiah Ramasamy
- Cardiac Metabolic Disease LaboratoryDepartment of BiochemistrySchool of Biological SciencesMadurai Kamaraj UniversityMaduraiTamil NaduIndia
| | - Qiang Wei
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingJiangsuChina
- Bamboo Research InstituteNanjing Forestry UniversityNanjingJiangsuChina
| |
Collapse
|
16
|
Barozzi C, Zacchini F, Asghar S, Montanaro L. Ribosomal RNA Pseudouridylation: Will Newly Available Methods Finally Define the Contribution of This Modification to Human Ribosome Plasticity? Front Genet 2022; 13:920987. [PMID: 35719370 PMCID: PMC9198423 DOI: 10.3389/fgene.2022.920987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/09/2022] [Indexed: 12/05/2022] Open
Abstract
In human rRNA, at least 104 specific uridine residues are modified to pseudouridine. Many of these pseudouridylation sites are located within functionally important ribosomal domains and can influence ribosomal functional features. Until recently, available methods failed to reliably quantify the level of modification at each specific rRNA site. Therefore, information obtained so far only partially explained the degree of regulation of pseudouridylation in different physiological and pathological conditions. In this focused review, we provide a summary of the methods that are now available for the study of rRNA pseudouridylation, discussing the perspectives that newly developed approaches are offering.
Collapse
Affiliation(s)
- Chiara Barozzi
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Alma Mater Studiorum—Università di Bologna, Bologna, Italy
- Centro di Ricerca Biomedica Applicata, CRBA, Universita di Bologna, Policlinico di Sant’Orsola, Bologna, Italy
| | - Federico Zacchini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Alma Mater Studiorum—Università di Bologna, Bologna, Italy
- Centro di Ricerca Biomedica Applicata, CRBA, Universita di Bologna, Policlinico di Sant’Orsola, Bologna, Italy
| | - Sidra Asghar
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Alma Mater Studiorum—Università di Bologna, Bologna, Italy
- Centro di Ricerca Biomedica Applicata, CRBA, Universita di Bologna, Policlinico di Sant’Orsola, Bologna, Italy
| | - Lorenzo Montanaro
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Alma Mater Studiorum—Università di Bologna, Bologna, Italy
- Centro di Ricerca Biomedica Applicata, CRBA, Universita di Bologna, Policlinico di Sant’Orsola, Bologna, Italy
- Departmental Program in Laboratory Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
17
|
Fleming AM, Mathewson NJ, Howpay Manage SA, Burrows CJ. Nanopore Dwell Time Analysis Permits Sequencing and Conformational Assignment of Pseudouridine in SARS-CoV-2. ACS CENTRAL SCIENCE 2021; 7:1707-1717. [PMID: 34729414 PMCID: PMC8554835 DOI: 10.1021/acscentsci.1c00788] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Indexed: 05/08/2023]
Abstract
Direct RNA sequencing for the epitranscriptomic modification pseudouridine (Ψ), an isomer of uridine (U), was conducted with a protein nanopore sensor using a helicase brake to slowly feed the RNA into the sensor. Synthetic RNAs with 100% Ψ or U in 20 different known human sequence contexts identified differences during sequencing in the base-calling, ionic current, and dwell time in the nanopore sensor; however, the signals were found to have a dependency on the context that would result in biases when sequencing unknown samples. A solution to the challenge was the identification that the passage of Ψ through the helicase brake produced a long-range dwell time impact with less context bias that was used for modification identification. The data analysis approach was employed to analyze publicly available direct RNA sequencing data for SARS-CoV-2 RNA taken from cell culture to locate five conserved Ψ sites in the genome. Two sites were found to be substrates for pseudouridine synthase 1 and 7 in an in vitro assay, providing validation of the analysis. Utilization of the helicase as an additional sensor in direct RNA nanopore sequencing provides greater confidence in calling RNA modifications.
Collapse
Affiliation(s)
- Aaron M. Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake
City, Utah 84112-0850, United States
| | - Nicole J. Mathewson
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake
City, Utah 84112-0850, United States
| | - Shereen A. Howpay Manage
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake
City, Utah 84112-0850, United States
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake
City, Utah 84112-0850, United States
| |
Collapse
|