1
|
Mushtaq A, Mir US, Altaf M. Multifaceted functions of RNA-binding protein vigilin in gene silencing, genome stability, and autism-related disorders. J Biol Chem 2023; 299:102988. [PMID: 36758804 PMCID: PMC10011833 DOI: 10.1016/j.jbc.2023.102988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
RNA-binding proteins (RBPs) are emerging as important players in regulating eukaryotic gene expression and genome stability. Specific RBPs have been shown to mediate various chromatin-associated processes ranging from transcription to gene silencing and DNA repair. One of the prominent classes of RBPs is the KH domain-containing proteins. Vigilin, an evolutionarily conserved KH domain-containing RBP has been shown to be associated with diverse biological processes like RNA transport and metabolism, sterol metabolism, chromosome segregation, and carcinogenesis. We have previously reported that vigilin is essential for heterochromatin-mediated gene silencing in fission yeast. More recently, we have identified that vigilin in humans plays a critical role in efficient repair of DNA double-stranded breaks and functions in homology-directed DNA repair. In this review, we highlight the multifaceted functions of vigilin and discuss the findings in the context of gene expression, genome organization, cancer, and autism-related disorders.
Collapse
Affiliation(s)
- Arjamand Mushtaq
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Ulfat Syed Mir
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mohammad Altaf
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
2
|
Yuan J, Lv T, Yang J, Wu Z, Yan L, Yang J, Shi Y, Jiang L. HDLBP Promotes Hepatocellular Carcinoma Proliferation and Sorafenib Resistance by Suppressing Trim71-dependent RAF1 Degradation. Cell Mol Gastroenterol Hepatol 2023; 15:307-325. [PMID: 36244648 PMCID: PMC9772558 DOI: 10.1016/j.jcmgh.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS The contribution of abnormal metabolic targets to hepatocellular carcinoma (HCC) progression and the associated regulatory mechanisms are attractive research areas. High-density lipoprotein binding protein (HDLBP) is an important transporter that protects cells from excessive cholesterol accumulation, but few studies have identified a role for HDLBP in HCC progression. METHODS HDLBP expression was determined in HCC tissues and published datasets. The biological roles of HDLBP in vitro and in vivo were examined by performing a series of functional experiments. RESULTS An integrated analysis confirmed that HDLBP expression was significantly elevated in HCC compared with noncancerous liver tissues. The knockdown or overexpression of HDLBP substantially inhibited or enhanced, respectively, HCC proliferation and sorafenib resistance. Subsequently, a mass spectrometry screen identified RAF1 as a potential downstream target of HDLBP. Mechanistically, when RAF1 was stabilized by HDLBP, MEKK1 continuously induced RAF1Ser259-dependent MAPK signaling. Meanwhile, HDLBP interacted with RAF1 by competing with the TRIM71 E3 ligase and inhibited RAF1 degradation through the ubiquitin-proteasome pathway. CONCLUSIONS Our study reveals that HDLBP is an important mediator that stabilizes the RAF1 protein and maintains its activity, leading to HCC progression and sorafenib resistance. Thus, HDLBP might represent a potential biomarker and future therapeutic target for HCC.
Collapse
Affiliation(s)
- Jingsheng Yuan
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Lv
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Jian Yang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Zhenru Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, China
| | - Lvnan Yan
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Jiayin Yang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China.
| | - Yujun Shi
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, China.
| | - Li Jiang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Yuan J, Lv T, Yang J, Wu Z, Yan L, Yang J, Shi Y, Jiang L. The lipid transporter HDLBP promotes hepatocellular carcinoma metastasis through BRAF-dependent epithelial-mesenchymal transition. Cancer Lett 2022; 549:215921. [PMID: 36122630 DOI: 10.1016/j.canlet.2022.215921] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Tumor metastasis is a major cause of cancer mortality. However, little is known regarding the regulation of abnormal cholesterol metabolism in hepatocellular carcinoma (HCC) metastasis. Here, we show that the expression of high-density lipoprotein binding protein (HDLBP), a lipid transporter, is clinically correlated with tumor metastasis in HCC patients. Moreover, HDLBP was required for cholesterol-induced HCC metastasis. We revealed that knockdown and overexpression of HDLBP significantly inhibited and enhanced, respectively, the metastasis, invasion and epithelial-mesenchymal transition (EMT) of HCC cells in vitro and in vivo. Mechanistically, coimmunoprecipitation and mass spectrometry screening uncovered BRAF as a protein target of HDLBP. HDLBP was found to promote EMT signaling in a BRAF-dependent manner. Furthermore, HDLBP interacts with BRAF and inhibits its ubiquitinated degradation by abrogating BRAF-ITCH interactions. Notably, further studies suggest that dabrafenib exhibited a greater metastasis-suppressive effect in HDLBP knockout HCC than isolated treatment. Overall, our findings imply that cholesterol-induced HDLBP contributes to the metastasis and invasion of HCC through BRAF-dependent EMT signaling and that HDLBP may be applied as a biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Jingsheng Yuan
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Tao Lv
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jian Yang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Zhenru Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Lvnan Yan
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jiayin Yang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Yujun Shi
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Li Jiang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Fu Y, Zhang X, Liu X, Wang P, Chu W, Zhao W, Wang Y, Zhou G, Yu Y, Zhang H. The DNMT1-PAS1-PH20 axis drives breast cancer growth and metastasis. Signal Transduct Target Ther 2022; 7:81. [PMID: 35307730 PMCID: PMC8934873 DOI: 10.1038/s41392-022-00896-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 01/31/2023] Open
Abstract
PH20 is a member of the human hyaluronidase family that degrades hyaluronan in the extracellular matrix and controls tumor progression. Inhibition of DNA methyltransferases (DNMTs) leads to elevated hyaluronan levels; however, whether DNMT inhibitors control PH20 remains unclear. Here, we report that the DNMT1 inhibitor, decitabine, suppresses PH20 expression by activating the long non-coding RNA PHACTR2-AS1 (PAS1). PAS1 forms a tripartite complex with the RNA-binding protein vigilin and histone methyltransferase SUV39H1. The interaction between PAS1 and vigilin maintains the stability of PAS1. Meanwhile, PAS1 recruits SUV39H1 to trigger the H3K9 methylation of PH20, resulting in its silencing. Functionally, PAS1 inhibits breast cancer growth and metastasis, at least partially, by suppressing PH20. Combination therapy of decitabine and PAS1-30nt-RNA, which directly binds to SUV39H1, effectively blocked breast cancer growth and metastasis in mice. Taken together, DNMT1, PAS1, and PH20 comprise a regulatory axis to control breast cancer growth and metastasis. These findings reveal that the DNMT1-PAS1-PH20 axis is a potential therapeutic target for breast cancer.
Collapse
|
5
|
Woo HH, Chambers SK. Regulation of closely juxtaposed proto-oncogene c-fms and HMGXB3 gene expression by mRNA 3' end polymorphism in breast cancer cells. RNA (NEW YORK, N.Y.) 2021; 27:1068-1081. [PMID: 34155128 PMCID: PMC8370744 DOI: 10.1261/rna.078749.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Sense-antisense mRNA pairs generated by convergent transcription is a way of gene regulation. c-fms gene is closely juxtaposed to the HMGXB3 gene in the opposite orientation, in chromosome 5. The intergenic region (IR) between c-fms and HMGXB3 genes is 162 bp. We found that a small portion (∼4.18%) of HMGXB3 mRNA is transcribed further downstream, including the end of the c-fms gene generating antisense mRNA against c-fms mRNA. Similarly, a small portion (∼1.1%) of c-fms mRNA is transcribed further downstream, including the end of the HMGXB3 gene generating antisense mRNA against the HMGXB3 mRNA. Insertion of the strong poly(A) signal sequence in the IR results in decreased c-fms and HMGXB3 antisense mRNAs, resulting in up-regulation of both c-fms and HMGXB3 mRNA expression. miR-324-5p targets HMGXB3 mRNA 3' UTR, and as a result, regulates c-fms mRNA expression. HuR stabilizes c-fms mRNA, and as a result, down-regulates HMGXB3 mRNA expression. UALCAN analysis indicates that the expression pattern between c-fms and HMGXB3 proteins are opposite in vivo in breast cancer tissues. Together, our results indicate that the mRNA encoded by the HMGXB3 gene can influence the expression of adjacent c-fms mRNA, or vice versa.
Collapse
MESH Headings
- 3' Untranslated Regions
- CRISPR-Cas Systems
- Cell Line, Tumor
- Chromosomes, Human, Pair 5
- DNA, Intergenic/genetics
- DNA, Intergenic/metabolism
- ELAV-Like Protein 1/genetics
- ELAV-Like Protein 1/metabolism
- Female
- Gene Editing
- Gene Expression Regulation, Neoplastic
- Genes, fms
- High Mobility Group Proteins/genetics
- High Mobility Group Proteins/metabolism
- Humans
- Mammary Glands, Human/metabolism
- Mammary Glands, Human/pathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Polymorphism, Genetic
- Proto-Oncogene Mas
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- Signal Transduction
- Transcription, Genetic
Collapse
Affiliation(s)
- Ho-Hyung Woo
- The University of Arizona Cancer Center, Tucson, Arizona 85724, USA
| | - Setsuko K Chambers
- The University of Arizona Cancer Center, Tucson, Arizona 85724, USA
- Department of Obstetrics and Gynecology, College of Medicine, The University of Arizona, Tucson, Arizona 85724, USA
| |
Collapse
|
6
|
Banday S, Pandita RK, Mushtaq A, Bacolla A, Mir US, Singh DK, Jan S, Bhat KP, Hunt CR, Rao G, Charaka VK, Tainer JA, Pandita TK, Altaf M. Autism-Associated Vigilin Depletion Impairs DNA Damage Repair. Mol Cell Biol 2021; 41:e0008221. [PMID: 33941620 PMCID: PMC8224237 DOI: 10.1128/mcb.00082-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/17/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Vigilin (Vgl1) is essential for heterochromatin formation, chromosome segregation, and mRNA stability and is associated with autism spectrum disorders and cancer: vigilin, for example, can suppress proto-oncogene c-fms expression in breast cancer. Conserved from yeast to humans, vigilin is an RNA-binding protein with 14 tandemly arranged nonidentical hnRNP K-type homology (KH) domains. Here, we report that vigilin depletion increased cell sensitivity to cisplatin- or ionizing radiation (IR)-induced cell death and genomic instability due to defective DNA repair. Vigilin depletion delayed dephosphorylation of IR-induced γ-H2AX and elevated levels of residual 53BP1 and RIF1 foci, while reducing Rad51 and BRCA1 focus formation, DNA end resection, and double-strand break (DSB) repair. We show that vigilin interacts with the DNA damage response (DDR) proteins RAD51 and BRCA1, and vigilin depletion impairs their recruitment to DSB sites. Transient hydroxyurea (HU)-induced replicative stress in vigilin-depleted cells increased replication fork stalling and blocked restart of DNA synthesis. Furthermore, histone acetylation promoted vigilin recruitment to DSBs preferentially in the transcriptionally active genome. These findings uncover a novel vigilin role in DNA damage repair with implications for autism and cancer-related disorders.
Collapse
Affiliation(s)
- Shahid Banday
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Raj K. Pandita
- Houston Methodist Research Institute, Houston, Texas, USA
- Baylor College of Medicine, Houston, Texas, USA
| | - Arjamand Mushtaq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Ulfat Syed Mir
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | | | - Sadaf Jan
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Krishna P. Bhat
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | - Ganesh Rao
- Baylor College of Medicine, Houston, Texas, USA
| | | | - John A. Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Tej K. Pandita
- Houston Methodist Research Institute, Houston, Texas, USA
- Baylor College of Medicine, Houston, Texas, USA
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
7
|
Willbanks A, Wood S, Cheng JX. RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases. Genes (Basel) 2021; 12:genes12050627. [PMID: 33922187 PMCID: PMC8145807 DOI: 10.3390/genes12050627] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 02/08/2023] Open
Abstract
Chromatin structure plays an essential role in eukaryotic gene expression and cell identity. Traditionally, DNA and histone modifications have been the focus of chromatin regulation; however, recent molecular and imaging studies have revealed an intimate connection between RNA epigenetics and chromatin structure. Accumulating evidence suggests that RNA serves as the interplay between chromatin and the transcription and splicing machineries within the cell. Additionally, epigenetic modifications of nascent RNAs fine-tune these interactions to regulate gene expression at the co- and post-transcriptional levels in normal cell development and human diseases. This review will provide an overview of recent advances in the emerging field of RNA epigenetics, specifically the role of RNA modifications and RNA modifying proteins in chromatin remodeling, transcription activation and RNA processing, as well as translational implications in human diseases.
Collapse
|
8
|
Wei L, Liu Q, Huang Y, Liu Z, Zhao R, Li B, Zhang J, Sun C, Gao B, Ding X, Yu X, He J, Sun A, Qin Y. Knockdown of CTCF reduces the binding of EZH2 and affects the methylation of the SOCS3 promoter in hepatocellular carcinoma. Int J Biochem Cell Biol 2020; 120:105685. [PMID: 31917284 DOI: 10.1016/j.biocel.2020.105685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 02/05/2023]
Abstract
The epigenetic silencing mechanism of suppressor 3 of cytokine signaling (SOCS3) in cancers has not been fully elucidated. Polycomb repressive complexes 2 (PRC2), an important epigenetic regulatory factors, exerts a critical role in repressing the initial phase of gene transcription. Whether PRC2 participates the down- regulation of SOCS3 in Hepatocellular carcinoma (HCC) remains unclear and how does PRC2 be recruited target gene still needs to explore. In this study, Using TCGA HCC dataset, and detecting HCC tissue specimens and cell lines, we found that SOCS3 expression in HCC was inversely related to that of EZH2, and depended on its promoter methylation status. CTCF, vigilin, EZH2 and H3K27me3 were enriched at CTCF and EZH2 binding sites on the methylated SOCS3 gene promoter. The depletion of CTCF did not affect expression of EZH2 and DNMT1, but decrease recruitment of CTCF, vigilin, EZH2 and H3K27me3. Further, knockdown of CTCF led to a loss of methylation of the methylated SOCS3 promoter, which sequentially increased the expression of SOCS3 and decreased the expression of pSTAT3, the downstream effector. These findings suggest that the CTCF dependent recruitment of EZH2 to the SOCS3 gene promoter is likely to participate in the epigenetic silencing of SOCS3 and in regulating its gene expression.
Collapse
Affiliation(s)
- Ling Wei
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Qiuying Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Yuan Huang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Zhongjian Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Rongce Zhao
- Department of Surgery Division of Liver Transplantation, West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu, 610041, Sichuan Province, China
| | - Bo Li
- Department of Surgery Division of Liver Transplantation, West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu, 610041, Sichuan Province, China
| | - Jing Zhang
- West China College of Public Health, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Chengjun Sun
- West China College of Public Health, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Bo Gao
- Analytical & Testing Center, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Xueqin Ding
- Analytical & Testing Center, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Xiaoqin Yu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Jingyang He
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Aimin Sun
- Analytical & Testing Center, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Yang Qin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
9
|
Chen JY, Lim DH, Fu XD. Mechanistic Dissection of RNA-Binding Proteins in Regulated Gene Expression at Chromatin Levels. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:55-66. [PMID: 31900328 PMCID: PMC7332398 DOI: 10.1101/sqb.2019.84.039222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Eukaryotic genomes are known to prevalently transcribe diverse classes of RNAs, virtually all of which, including nascent RNAs from protein-coding genes, are now recognized to have regulatory functions in gene expression, suggesting that RNAs are both the products and the regulators of gene expression. Their functions must enlist specific RNA-binding proteins (RBPs) to execute their regulatory activities, and recent evidence suggests that nearly all biochemically defined chromatin regions in the human genome, whether defined for gene activation or silencing, have the involvement of specific RBPs. Interestingly, the boundary between RNA- and DNA-binding proteins is also melting, as many DNA-binding proteins traditionally studied in the context of transcription are able to bind RNAs, some of which may simultaneously bind both DNA and RNA to facilitate network interactions in three-dimensional (3D) genome. In this review, we focus on RBPs that function at chromatin levels, with particular emphasis on their mechanisms of action in regulated gene expression, which is intended to facilitate future functional and mechanistic dissection of chromatin-associated RBPs.
Collapse
Affiliation(s)
- Jia-Yu Chen
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Do-Hwan Lim
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
10
|
Farooq Z, Abdullah E, Banday S, Ganai SA, Rashid R, Mushtaq A, Rashid S, Altaf M. Vigilin protein Vgl1 is required for heterochromatin-mediated gene silencing in Schizosaccharomyces pombe. J Biol Chem 2019; 294:18029-18040. [PMID: 31554660 DOI: 10.1074/jbc.ra119.009262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/28/2019] [Indexed: 11/06/2022] Open
Abstract
Heterochromatin is a conserved feature of eukaryotic genomes and regulates various cellular processes, including gene silencing, chromosome segregation, and maintenance of genome stability. In the fission yeast Schizosaccharomyces pombe, heterochromatin formation involves methylation of lysine 9 in histone H3 (H3K9), which recruits Swi6/HP1 proteins to heterochromatic loci. The Swi6/HP1-H3K9me3 chromatin complex lies at the center of heterochromatic macromolecular assemblies and mediates many functions of heterochromatin by recruiting a diverse set of regulators. However, additional factors may be required for proper heterochromatin organization, but they are not fully known. Here, using several molecular and biochemical approaches, we report that Vgl1, a member of a large family of multiple KH-domain proteins, collectively known as vigilins, is indispensable for the heterochromatin-mediated gene silencing in S. pombe ChIP analysis revealed that Vgl1 binds to pericentromeric heterochromatin in an RNA-dependent manner and that Vgl1 deletion leads to loss of H3K9 methylation and Swi6 recruitment to centromeric and telomeric heterochromatic loci. Furthermore, we show that Vgl1 interacts with the H3K9 methyltransferase, Clr4, and that loss of Vgl1 impairs Clr4 recruitment to heterochromatic regions of the genome. These findings uncover a novel role for Vgl1 as a key regulator in heterochromatin-mediated gene silencing in S. pombe.
Collapse
Affiliation(s)
- Zeenat Farooq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Ehsaan Abdullah
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Shahid Banday
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Shabir Ahmad Ganai
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Romana Rashid
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Arjamand Mushtaq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Samia Rashid
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| |
Collapse
|
11
|
Guevara J, Romo J, Hernandez E, Guevara NV. Identification of Receptor Ligands in Apo B100 Reveals Potential Functional Domains. Protein J 2019; 37:548-571. [PMID: 30259240 DOI: 10.1007/s10930-018-9792-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
LDL, VLDL and other members of the low-density lipoparticles (LLPs) enter cells through a large family of receptors. The actual receptor ligand(s) in apolipoprotein B100, one of the main proteins of LLP, remain(s) unknown. The objective of this study was to identify true receptor ligand(s) in apo B100, a molecule of 4563 residues. Apo B100 contains 33 analogues of Cardin-Weintraub arginine/lysine-based receptor ligand motifs and shares key lysine motifs and sequence similarity with the LDL receptor-associated protein, MESD, and heat shock proteins. Eleven FITC-labeled synthetic peptides of 21-42 residues, with at least one ligand, were tested for binding and internalization using HeLa cells. All peptides bind but display different binding capacities and patterns. Peptides B0013, B0582, B2366, and B2932 mediate endocytosis and appear in distinct sites in the cytoplasm. B0708 and B3181 bind and remain on the cell surface as aggregates/clusters. Peptides B3119 (Site A) and B3347 (Site B), the putative ligands, showed low binding and no cell entry capacity. Apo B100 regions in this study share similarities with related proteins of known function including chaperone proteins and Apo BEC stimulating protein, and not directly related proteins, e.g., the DNA-binding domain of interferon regulatory factors, MSX2-interacting protein, and snake venom Zinc metalloproteinase-disintegrin-like proteins.
Collapse
Affiliation(s)
- Juan Guevara
- Biophysics Research Laboratory, Department of Physics and Astronomy, The University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - Jamie Romo
- Biophysics Research Laboratory, Department of Physics and Astronomy, The University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - Ernesto Hernandez
- Biophysics Research Laboratory, Department of Physics and Astronomy, The University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - Natalia Valentinova Guevara
- Biophysics Research Laboratory, Department of Physics and Astronomy, The University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA.
| |
Collapse
|
12
|
Shevchenko G, Morris KV. All I's on the RADAR: role of ADAR in gene regulation. FEBS Lett 2018; 592:2860-2873. [PMID: 29770436 DOI: 10.1002/1873-3468.13093] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/26/2018] [Accepted: 05/05/2018] [Indexed: 12/12/2022]
Abstract
Adenosine to inosine (A-to-I) editing is the most abundant form of RNA modification in mammalian cells, which is catalyzed by adenosine deaminase acting on the double-stranded RNA (ADAR) protein family. A-to-I editing is currently known to be involved in the regulation of the immune system, RNA splicing, protein recoding, microRNA biogenesis, and formation of heterochromatin. Editing occurs within regions of double-stranded RNA, particularly within inverted Alu repeats, and is associated with many diseases including cancer, neurological disorders, and metabolic syndromes. However, the significance of RNA editing in a large portion of the transcriptome remains unknown. Here, we review the current knowledge about the prevalence and function of A-to-I editing by the ADAR protein family, focusing on its role in the regulation of gene expression. Furthermore, RNA editing-independent regulation of cellular processes by ADAR and the putative role(s) of this process in gene regulation will be discussed.
Collapse
Affiliation(s)
- Galina Shevchenko
- Hematological Malignancy and Stem Cell Transplantation Institute, Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA, USA
| | - Kevin V Morris
- Hematological Malignancy and Stem Cell Transplantation Institute, Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA, USA
| |
Collapse
|
13
|
Vigilin interacts with CTCF and is involved in the maintenance of imprinting of IGF2 through a novel RNA-mediated mechanism. Int J Biol Macromol 2017; 108:515-522. [PMID: 29157910 DOI: 10.1016/j.ijbiomac.2017.11.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022]
Abstract
Accumulating evidence has revealed the imprinting of insulin-like growth factor-2 gene (IGF2) is maintained by binding of CCCTC binding factor (CTCF) to the unmethylated imprinting control region (ICR) between IGF2 and H19 genes. We have previously reported that high-density lipoprotein binding protein (HDLBP/vigilin), a multiKH-domain protein, interacts with CTCF and coexists with it at several CTCF-binding sites on the ICR to regulate general gene expression of IGF2. However, the impact of the interaction on imprinting of IGF2 remains unclear. Here, we demonstrate that cooperation of vigilin and CTCF protects IGF2 from losing of imprinting. Pull-down experiments show that KH1-7 domains of vigilin interact with zinc-finger domains of CTCF. We also display that some RNAs participate in the vigilin-CTCF interaction, one of which is H19 long noncoding RNA (lncRNA). Furthermore, we confirm that H19 lncRNA-knockdown alters the imprinting of IGF2. These data suggest that vigilin interacts with CTCF, mediated by H19 lncRNA, to keep the imprinting of IGF2.
Collapse
|
14
|
Cheng MH, Jansen RP. A jack of all trades: the RNA-binding protein vigilin. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28975734 DOI: 10.1002/wrna.1448] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/21/2017] [Accepted: 08/17/2017] [Indexed: 12/25/2022]
Abstract
The vigilin family of proteins is evolutionarily conserved from yeast to humans and characterized by the proteins' 14 or 15 hnRNP K homology (KH) domains, typically associated with RNA-binding. Vigilin is the largest RNA-binding protein (RBP) in the KH domain-containing family and one of the largest RBP known to date. Since its identification 30 years ago, vigilin has been shown to bind over 700 mRNAs and has been associated with cancer progression and cardiovascular disease. We provide a brief historic overview of vigilin research and outline the proteins' different functions, focusing on maintenance of genome ploidy, heterochromatin formation, RNA export, as well as regulation of translation, mRNA transport, and mRNA stability. The multitude of associated functions is reflected by the large number of identified interaction partners, ranging from tRNAs, mRNAs, ribosomes and ribosome-associated proteins, to histone methyltransferases and DNA-dependent protein kinases. Most of these partners bind to vigilin's carboxyterminus, and the two most C-terminal KH domains of the protein, KH13 and KH14, represent the main mRNA-binding interface. Since the nuclear functions of vigilins in particular are not conserved, we outline a model for the basal functions of vigilins, as well as those which were acquired during the transition from unicellular organisms to metazoa. WIREs RNA 2017, 8:e1448. doi: 10.1002/wrna.1448 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Matthew Hk Cheng
- International Max Planck Research School, Tuebingen, Germany.,Interfaculty Institute of Biochemistry, Tuebingen, Germany
| | | |
Collapse
|
15
|
Zabinsky RA, Weum BM, Cui M, Han M. RNA Binding Protein Vigilin Collaborates with miRNAs To Regulate Gene Expression for Caenorhabditis elegans Larval Development. G3 (BETHESDA, MD.) 2017; 7:2511-2518. [PMID: 28576776 PMCID: PMC5555458 DOI: 10.1534/g3.117.043414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/29/2017] [Indexed: 01/16/2023]
Abstract
Extensive studies have suggested that most miRNA functions are executed through complex miRNA-target interaction networks, and such networks function semiredundantly with other regulatory systems to shape gene expression dynamics for proper physiological functions. We found that knocking down vgln-1, which encodes a conserved RNA-binding protein associated with diverse functions, causes severe larval arrest at the early L1 stage in animals with compromised miRISC functions (an ain-2/GW182 mutant). Through an enhancer screen, we identified five specific miRNAs, and miRNA families, that act semiredundantly with VGLN-1 to regulate larval development. By RIP-Seq analysis, we identified mRNAs that are directly bound by VGLN-1, and highly enriched for miRNA binding sites, leading to a hypothesis that VGLN-1 may share common targets with miRNAs to regulate gene expression dynamics for development.
Collapse
Affiliation(s)
- Rebecca A Zabinsky
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80309
| | - Brett M Weum
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80309
| | - Mingxue Cui
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80309
| | - Min Han
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80309
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309
| |
Collapse
|
16
|
Berhani O, Nachmani D, Yamin R, Schmiedel D, Bar-On Y, Mandelboim O. Vigilin Regulates the Expression of the Stress-Induced Ligand MICB by Interacting with Its 5' Untranslated Region. THE JOURNAL OF IMMUNOLOGY 2017; 198:3662-3670. [PMID: 28356383 DOI: 10.4049/jimmunol.1601589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/28/2017] [Indexed: 01/20/2023]
Abstract
NK cells are part of the innate immune system, and are able to identify and kill hazardous cells. The discrimination between normal and hazardous cells is possible due to an array of inhibitory and activating receptors. NKG2D is one of the prominent activating receptors expressed by all human NK cells. This receptor binds stress-induced ligands, including human MICA, MICB, and UL16-binding proteins 1-6. The interaction between NKG2D and its ligands facilitates the elimination of cells under cellular stress, such as tumor transformation. However, the mechanisms regulating the expression of these ligands are still not well understood. Under normal conditions, the NKG2D ligands were shown to be posttranscriptionally regulated by cellular microRNAs and RNA-binding proteins (RBPs). Thus far, only the 3' untranslated regions (UTRs) of MICA, MICB, and UL16-binding protein 2 were shown to be regulated by RBPs and microRNAs, usually resulting in their downregulation. In this study we investigated whether MICB expression is controlled by RBPs through its 5'UTR. We used an RNA pull-down assay followed by mass spectrometry and identified vigilin, a ubiquitously expressed multifunctional RNA-binding protein. We demonstrated that vigilin binds and negatively regulates MICB expression through its 5'UTR. Additionally, vigilin downregulation in target cells led to a significant increase in NK cell activation against said target cells. Taken together, we have discovered a novel mode of MICB regulation.
Collapse
Affiliation(s)
- Orit Berhani
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| | - Daphna Nachmani
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| | - Rachel Yamin
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| | - Dominik Schmiedel
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| | - Yotam Bar-On
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| |
Collapse
|
17
|
Thomas JM, Beal PA. How do ADARs bind RNA? New protein-RNA structures illuminate substrate recognition by the RNA editing ADARs. Bioessays 2017; 39. [PMID: 28217931 DOI: 10.1002/bies.201600187] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Deamination of adenosine in RNA to form inosine has wide ranging consequences on RNA function including amino acid substitution to give proteins not encoded in the genome. What determines which adenosines in an mRNA are subject to this modification reaction? The answer lies in an understanding of the mechanism and substrate recognition properties of adenosine deaminases that act on RNA (ADARs). Our recent publication of X-ray crystal structures of the human ADAR2 deaminase domain bound to RNA editing substrates shed considerable light on how the catalytic domains of these enzymes bind RNA and promote adenosine deamination. Here we review in detail the deaminase domain-RNA contact surfaces and present models of how full length ADARs, bearing double stranded RNA-binding domains (dsRBDs) and deaminase domains, could process naturally occurring substrate RNAs.
Collapse
Affiliation(s)
- Justin M Thomas
- Department of Chemistry, University of California, Davis, CA, USA
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, CA, USA
| |
Collapse
|
18
|
Saldi T, Cortazar MA, Sheridan RM, Bentley DL. Coupling of RNA Polymerase II Transcription Elongation with Pre-mRNA Splicing. J Mol Biol 2016; 428:2623-2635. [PMID: 27107644 DOI: 10.1016/j.jmb.2016.04.017] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/27/2016] [Accepted: 04/12/2016] [Indexed: 01/07/2023]
Abstract
Pre-mRNA maturation frequently occurs at the same time and place as transcription by RNA polymerase II. The co-transcriptionality of mRNA processing has permitted the evolution of mechanisms that functionally couple transcription elongation with diverse events that occur on the nascent RNA. This review summarizes the current understanding of the relationship between transcriptional elongation through a chromatin template and co-transcriptional splicing including alternative splicing decisions that affect the expression of most human genes.
Collapse
Affiliation(s)
- Tassa Saldi
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, P.O. Box 6511, Aurora, CO 80045, USA
| | - Michael A Cortazar
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, P.O. Box 6511, Aurora, CO 80045, USA
| | - Ryan M Sheridan
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, P.O. Box 6511, Aurora, CO 80045, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, P.O. Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
19
|
Abstract
Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA. This A-to-I editing occurs not only in protein-coding regions of mRNAs, but also frequently in non-coding regions that contain inverted Alu repeats. Editing of coding sequences can result in the expression of functionally altered proteins that are not encoded in the genome, whereas the significance of Alu editing remains largely unknown. Certain microRNA (miRNA) precursors are also edited, leading to reduced expression or altered function of mature miRNAs. Conversely, recent studies indicate that ADAR1 forms a complex with Dicer to promote miRNA processing, revealing a new function of ADAR1 in the regulation of RNA interference.
Collapse
|
20
|
Wei L, Xie X, Li J, Li R, Shen W, Duan S, Zhao R, Yang W, Liu Q, Fu Q, Qin Y. Disruption of human vigilin impairs chromosome condensation and segregation. Cell Biol Int 2015; 39:1234-41. [PMID: 26032007 DOI: 10.1002/cbin.10496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/23/2015] [Indexed: 11/08/2022]
Abstract
Appropriate packaging and condensation are critical for eukaryotic chromatin's accommodation and separation during cell division. Human vigilin, a multi-KH-domain nucleic acid-binding protein, is associated with alpha satellites of centromeres. DDP1, a vigilin's homolog, is implicated with chromatin condensation and segregation. The expression of vigilin was previously reported to elevate in highly proliferating tissues and increased in a subset of hepatocellular carcinoma patients. Other studies showed that vigilin interacts with CTCF, contributes to regulation of imprinted genes Igf2/H19, and colocalizes with HP1α on heterochromatic satellite 2 and β-satellite repeats. These studies indicate that human vigilin might be involved in chromatin remodeling and regular cell growth. To investigate the potential role of human vigilin in cell cycle, the correlations between vigilin and chromosomal condensation and segregation were studied. Depletion of human vigilin by RNA interference in HepG2 cells resulted in chromosome undercondensation and various chromosomal defects during mitotic phase, including chromosome misalignments, lagging chromosomes, and chromosome bridges. Aberrant polyploid nucleus in telophase was also observed. Unlike the abnormal staining pattern of chromosomes, the shape of spindle was normal. Furthermore, the chromatin showed a greater sensitivity to MNase digestion. Collectively, our findings show that human vigilin apparently participates in chromatin condensation and segregation.
Collapse
Affiliation(s)
- Ling Wei
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoyan Xie
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Junhong Li
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ran Li
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenyan Shen
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shuwang Duan
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Rongce Zhao
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenli Yang
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qiuying Liu
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qiang Fu
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Qin
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.,Sichuan University "985 Project-Science and Technology Innovation Platform for Novel Drug Development", Chengdu, 610041, Sichuan, China
| |
Collapse
|
21
|
Molyneux SD, Waterhouse PD, Shelton D, Shao YW, Watling CM, Tang QL, Harris IS, Dickson BC, Tharmapalan P, Sandve GK, Zhang X, Bailey SD, Berman H, Wunder JS, Izsvák Z, Lupien M, Mak TW, Khokha R. Human somatic cell mutagenesis creates genetically tractable sarcomas. Nat Genet 2014; 46:964-72. [DOI: 10.1038/ng.3065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 07/23/2014] [Indexed: 01/15/2023]
|
22
|
Liu Q, Yang B, Xie X, Wei L, Liu W, Yang W, Ge Y, Zhu Q, Zhang J, Jiang L, Yu X, Shen W, Li R, Shi X, Li B, Qin Y. Vigilin interacts with CCCTC-binding factor (CTCF) and is involved in CTCF-dependent regulation of the imprinted genes Igf2 and H19. FEBS J 2014; 281:2713-25. [PMID: 24725430 DOI: 10.1111/febs.12816] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 11/26/2022]
Abstract
CCCTC-binding factor (CTCF), a highly conserved zinc finger protein, is a master organizer of genome spatial organization and has multiple functions in gene regulation. Mounting evidence indicates that CTCF regulates the imprinted genes Igf2 and H19 by organizing chromatin at the Igf2/H19 locus, although the mechanism by which CTCF carries out this function is not fully understood. By yeast two-hybrid screening, we identified vigilin, a multi-KH-domain protein, as a new partner of CTCF. Subsequent coimmunoprecipitation and glutathione S-transferase pulldown experiments confirmed that vigilin interacts with CTCF. Moreover, vigilin is present at several known CTCF target sites, such as the promoter regions of c-myc and BRCA1, the locus control region of β-globin, and several regions within the Igf2/H19 locus. In vivo depletion of vigilin did not affect CTCF binding; however, knockdown of CTCF reduced vigilin binding to the H19 imprinting control region. Furthermore, ectopic expression of vigilin significantly downregulated Igf2 and upregulated H19, whereas depletion of vigilin upregulated Igf2 and downregulated H19, in HepG2, CNE1 and HeLa cells. These results reveal the functional relevance of vigilin and CTCF, and show that the CTCF-vigilin complex contributes to regulation of Igf2/H19.
Collapse
Affiliation(s)
- Qiuying Liu
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yang WL, Wei L, Huang WQ, Li R, Shen WY, Liu JY, Xu JM, Li B, Qin Y. Vigilin is overexpressed in hepatocellular carcinoma and is required for HCC cell proliferation and tumor growth. Oncol Rep 2014; 31:2328-34. [PMID: 24676454 DOI: 10.3892/or.2014.3111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/05/2014] [Indexed: 02/05/2023] Open
Abstract
Vigilin contains multiple KH domains and is an evolutionarily conserved RNA-binding protein from yeast to the human. Its reported roles in human carcinogenesis are controversial in different types of human cancers. To obtain the specific expression profiles of vigilin in human hepatocellular carcinomas (HCCs), we examined vigilin protein levels in normal human liver, liver cirrhosis, adjacent non-tumor liver and HCC tumor tissues as well as in several HCC cell lines. We discovered that vigilin expression increased progressively from the liver cirrhosis tissue to adjacent non-tumor liver tissue and then to HCC tumor cells. Vigilin protein was also overexpressed in all three HCC cell lines examined, HepG2, BEL7402 and SMMC7721, when compared with the vigilin expression level in the L-02 human embryonic hepatocyte cell line. We further investigated the impact of vigilin knockdown on HCC cell proliferation, survival, motility, tumor growth and sensitivity to chemotherapy. We found that knockdown of vigilin in the BEL7402 HCC cells significantly inhibited their proliferation, colony formation and migration, but largely enhanced the cisplatin treatment-induced growth inhibition of these cells in culture. We also found that vigilin knockdown effectively inhibited the growth of BEL7402 cell-derived xenograft tumors in nude mice by decreasing the proliferation and increasing the apoptosis of the BEL7402 HCC cells. Taken together, these results suggest that progressively upregulated vigilin may serve as a molecular risk marker for HCC development, and targeting vigilin may help to inhibit HCC cell growth, survival and migration.
Collapse
Affiliation(s)
- Wen Li Yang
- Department of Biochemistry and Molecular Biology, School of Preclinical and Forensic Medicine, West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ling Wei
- Department of Biochemistry and Molecular Biology, School of Preclinical and Forensic Medicine, West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wen Qing Huang
- Department of Biochemistry and Molecular Biology, School of Preclinical and Forensic Medicine, West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ran Li
- Department of Biochemistry and Molecular Biology, School of Preclinical and Forensic Medicine, West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wen Yan Shen
- Department of Biochemistry and Molecular Biology, School of Preclinical and Forensic Medicine, West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jian Yu Liu
- Department of Biochemistry and Molecular Biology, School of Preclinical and Forensic Medicine, West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jian Ming Xu
- Institute for Cancer Medicine, Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - Bo Li
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yang Qin
- Department of Biochemistry and Molecular Biology, School of Preclinical and Forensic Medicine, West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
24
|
Shen WY, Liu QY, Wei L, Yu XQ, Li R, Yang WL, Xie XY, Liu WQ, Huang Y, Qin Y. CTCF-mediated reduction of vigilin binding affects the binding of HP1α to the satellite 2 locus. FEBS Lett 2014; 588:1549-55. [DOI: 10.1016/j.febslet.2014.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 11/28/2022]
|
25
|
Singh M. Dysregulated A to I RNA editing and non-coding RNAs in neurodegeneration. Front Genet 2013; 3:326. [PMID: 23346095 PMCID: PMC3551214 DOI: 10.3389/fgene.2012.00326] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 12/28/2012] [Indexed: 12/14/2022] Open
Abstract
RNA editing is an alteration in the primary nucleotide sequences resulting from a chemical change in the base. RNA editing is observed in eukaryotic mRNA, transfer RNA, ribosomal RNA, and non-coding RNAs (ncRNA). The most common RNA editing in the mammalian central nervous system is a base modification, where the adenosine residue is base-modified to inosine (A to I). Studies from ADAR (adenosine deaminase that act on RNA) mutants in Caenorhabditis elegans, Drosophila, and mice clearly show that the RNA editing process is an absolute requirement for nervous system homeostasis and normal physiology of the animal. Understanding the mechanisms of editing and findings of edited substrates has provided a better knowledge of the phenotype due to defective and hyperactive RNA editing. A to I RNA editing is catalyzed by a family of enzymes knows as ADARs. ADARs modify duplex RNAs and editing of duplex RNAs formed by ncRNAs can impact RNA functions, leading to an altered regulatory gene network. Such altered functions by A to I editing is observed in mRNAs, microRNAs (miRNA) but other editing of small and long ncRNAs (lncRNAs) has yet to be identified. Thus, ncRNA and RNA editing may provide key links between neural development, nervous system function, and neurological diseases. This review includes a summary of seminal findings regarding the impact of ncRNAs on biological and pathological processes, which may be further modified by RNA editing. NcRNAs are non-translated RNAs classified by size and function. Known ncRNAs like miRNAs, smallRNAs (smRNAs), PIWI-interacting RNAs (piRNAs), and lncRNAs play important roles in splicing, DNA methylation, imprinting, and RNA interference. Of note, miRNAs are involved in development and function of the nervous system that is heavily dependent on both RNA editing and the intricate spatiotemporal expression of ncRNAs. This review focuses on the impact of dysregulated A to I editing and ncRNAs in neurodegeneration.
Collapse
Affiliation(s)
- Minati Singh
- Department of Internal Medicine, University of Iowa Iowa City, IA, USA
| |
Collapse
|
26
|
Lupo J, Conti A, Sueur C, Coly PA, Couté Y, Hunziker W, Burmeister WP, Germi R, Manet E, Gruffat H, Morand P, Boyer V. Identification of new interacting partners of the shuttling protein ubinuclein (Ubn-1). Exp Cell Res 2012; 318:509-20. [PMID: 22245583 DOI: 10.1016/j.yexcr.2011.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 12/21/2011] [Accepted: 12/24/2011] [Indexed: 10/14/2022]
Abstract
We have previously characterized ubinuclein (Ubn-1) as a NACos (Nuclear and Adherent junction Complex components) protein which interacts with viral or cellular transcription factors and the tight junction (TJ) protein ZO-1. The purpose of the present study was to get more insights on the binding partners of Ubn-1, notably those present in the epithelial junctions. Using an in vivo assay of fluorescent protein-complementation assay (PCA), we demonstrated that the N-terminal domains of the Ubn-1 and ZO-1 proteins triggered a functional interaction inside the cell. Indeed, expression of both complementary fragments of venus fused to the N-terminal parts of Ubn-1 and ZO-1 was able to reconstitute a fluorescent venus protein. Furthermore, nuclear expression of the chimeric Ubn-1 triggered nuclear localization of the chimeric ZO-1. We could localize this interaction to the PDZ2 domain of ZO-1 using an in vitro pull-down assay. More precisely, a 184-amino acid region (from amino acids 39 to 223) at the N-terminal region of Ubn-1 was responsible for the interaction with the PDZ2 domain of ZO-1. Co-imunoprecipitation and confocal microscopy experiments also revealed the tight junction protein cingulin as a new interacting partner of Ubn-1. A proteomic approach based on mass spectrometry analysis (MS) was then undertaken to identify further binding partners of GST-Ubn-1 fusion protein in different subcellular fractions of human epithelial HT29 cells. LYRIC (Lysine-rich CEACAM1-associated protein) and RACK-1 (receptor for activated C-kinase) proteins were validated as bona fide interacting partners of Ubn-1. Altogether, these results suggest that Ubn-1 is a scaffold protein influencing protein subcellular localization and is involved in several processes such as cell-cell contact signalling or modulation of gene activity.
Collapse
Affiliation(s)
- Julien Lupo
- Unit of Virus Host Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 6 rue Jules Horowitz, BP 181, F-38042 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rafiq K, Cheers MS, Ettensohn CA. The genomic regulatory control of skeletal morphogenesis in the sea urchin. Development 2011; 139:579-90. [PMID: 22190640 DOI: 10.1242/dev.073049] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A central challenge of developmental and evolutionary biology is to understand how anatomy is encoded in the genome. Elucidating the genetic mechanisms that control the development of specific anatomical features will require the analysis of model morphogenetic processes and an integration of biological information at genomic, cellular and tissue levels. The formation of the endoskeleton of the sea urchin embryo is a powerful experimental system for developing such an integrated view of the genomic regulatory control of morphogenesis. The dynamic cellular behaviors that underlie skeletogenesis are well understood and a complex transcriptional gene regulatory network (GRN) that underlies the specification of embryonic skeletogenic cells (primary mesenchyme cells, PMCs) has recently been elucidated. Here, we link the PMC specification GRN to genes that directly control skeletal morphogenesis. We identify new gene products that play a proximate role in skeletal morphogenesis and uncover transcriptional regulatory inputs into many of these genes. Our work extends the importance of the PMC GRN as a model developmental GRN and establishes a unique picture of the genomic regulatory control of a major morphogenetic process. Furthermore, because echinoderms exhibit diverse programs of skeletal development, the newly expanded sea urchin skeletogenic GRN will provide a foundation for comparative studies that explore the relationship between GRN evolution and morphological evolution.
Collapse
Affiliation(s)
- Kiran Rafiq
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
28
|
Batlle M, Marsellach FX, Huertas D, Azorín F. Drosophila vigilin, DDP1, localises to the cytoplasm and associates to the rough endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:46-55. [DOI: 10.1016/j.bbagrm.2010.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/06/2010] [Accepted: 10/19/2010] [Indexed: 01/22/2023]
|
29
|
Kraut-Cohen J, Gerst JE. Addressing mRNAs to the ER: cis sequences act up! Trends Biochem Sci 2010; 35:459-69. [DOI: 10.1016/j.tibs.2010.02.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/15/2010] [Accepted: 02/18/2010] [Indexed: 12/26/2022]
|
30
|
Abstract
One type of RNA editing converts adenosines to inosines (A-->I editing) in double-stranded RNA (dsRNA) substrates. A-->I RNA editing is mediated by adenosine deaminase acting on RNA (ADAR) enzymes. A-->I RNA editing of protein-coding sequences of a limited number of mammalian genes results in recoding and subsequent alterations of their functions. However, A-->I RNA editing most frequently targets repetitive RNA sequences located within introns and 5' and 3' untranslated regions (UTRs). Although the biological significance of noncoding RNA editing remains largely unknown, several possibilities, including its role in the control of endogenous short interfering RNAs (esiRNAs), have been proposed. Furthermore, recent studies have revealed that the biogenesis and functions of certain microRNAs (miRNAs) are regulated by the editing of their precursors. Here, I review the recent findings that indicate new functions for A-->I editing in the regulation of noncoding RNAs and for interactions between RNA editing and RNA interference mechanisms.
Collapse
Affiliation(s)
- Kazuko Nishikura
- Department of Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania 19104-4268, USA.
| |
Collapse
|
31
|
Boeke J, Regnard C, Cai W, Johansen J, Johansen KM, Becker PB, Imhof A. Phosphorylation of SU(VAR)3-9 by the chromosomal kinase JIL-1. PLoS One 2010; 5:e10042. [PMID: 20386606 PMCID: PMC2850320 DOI: 10.1371/journal.pone.0010042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 03/17/2010] [Indexed: 11/23/2022] Open
Abstract
The histone methyltransferase SU(VAR)3–9 plays an important role in the formation of heterochromatin within the eukaryotic nucleus. Several studies have shown that the formation of condensed chromatin is highly regulated during development, suggesting that SU(VAR)3–9's activity is regulated as well. However, no mechanism by which this may be achieved has been reported so far. As we and others had shown previously that the N-terminus of SU(VAR)3–9 plays an important role for its activity, we purified interaction partners from Drosophila embryo nuclear extract using as bait a GST fusion protein containing the SU(VAR)3–9 N-terminus. Among several other proteins known to bind Su(VAR)3–9 we isolated the chromosomal kinase JIL-1 as a strong interactor. We show that SU(VAR)3–9 is a substrate for JIL-1 in vitro as well as in vivo and map the site of phosphorylation. These findings may provide a molecular explanation for the observed genetic interaction between SU(VAR)3–9 and JIL-1.
Collapse
Affiliation(s)
- Joern Boeke
- Adolf-Butenandt Institute and Munich Center of Integrated Protein Science (CIPS), Ludwig Maximilians University of Munich, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|