1
|
Lee C, Ye Q, Shin E, Ting T, Lee SJ. Acquisition of Streptomycin Resistance by Oxidative Stress Induced by Hydrogen Peroxide in Radiation-Resistant Bacterium Deinococcus geothermalis. Int J Mol Sci 2022; 23:ijms23179764. [PMID: 36077162 PMCID: PMC9456066 DOI: 10.3390/ijms23179764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/24/2022] [Indexed: 12/01/2022] Open
Abstract
Streptomycin is used primarily to treat bacterial infections, including brucellosis, plague, and tuberculosis. Streptomycin resistance easily develops in numerous bacteria through the inhibition of antibiotic transfer, the production of aminoglycoside-modifying enzymes, or mutations in ribosomal components with clinical doses of streptomycin treatment. (1) Background: A transposable insertion sequence is one of the mutation agents in bacterial genomes under oxidative stress. (2) Methods: In the radiation-resistant bacterium Deinococcus geothermalis subjected to chronic oxidative stress induced by 20 mM hydrogen peroxide, active transposition of an insertion sequence element and several point mutations in three streptomycin resistance (SmR)-related genes (rsmG, rpsL, and mthA) were identified. (3) Results: ISDge6 of the IS5 family integrated into the rsmG gene (dgeo_2335), called SrsmG, encodes a ribosomal guanosine methyltransferase resulting in streptomycin resistance. In the case of dgeo_2840-disrupted mutant strains (S1 and S2), growth inhibition under antibiotic-free conditions was recovered with increased growth yields in the presence of 50 µg/mL streptomycin due to a streptomycin-dependent (SmD) mutation. These mutants have a predicted proline-to-leucine substitution at the 91st residue of ribosomal protein S12 in the decoding center. (4) Conclusions: Our findings show that the active transposition of a unique IS element under oxidative stress conditions conferred antibiotic resistance through the disruption of rsmG. Furthermore, chronic oxidative stress induced by hydrogen peroxide also induced streptomycin resistance caused by point and frameshift mutations of streptomycin-interacting residues such as K43, K88, and P91 in RpsL and four genes for streptomycin resistance.
Collapse
|
2
|
Datta M, Singh J, Modak MJ, Pillai M, Varshney U. Systematic evolution of initiation factor 3 and the ribosomal protein uS12 optimizes Escherichia coli growth with an unconventional initiator tRNA. Mol Microbiol 2021; 117:462-479. [PMID: 34889476 DOI: 10.1111/mmi.14861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022]
Abstract
The anticodon stem of initiator tRNA (i-tRNA) possesses the characteristic three consecutive GC base pairs (G29:C41, G30:C40, and G31:C39 abbreviated as GC/GC/GC or 3GC pairs) crucial to commencing translation. To understand the importance of this highly conserved element, we isolated two fast-growing suppressors of Escherichia coli sustained solely on an unconventional i-tRNA (i-tRNAcg/GC/cg ) having cg/GC/cg sequence instead of the conventional GC/GC/GC. Both suppressors have the common mutation of V93A in initiation factor 3 (IF3), and additional mutations of either V32L (Sup-1) or H76L (Sup-2) in small subunit ribosomal protein 12 (uS12). The V93A mutation in IF3 was necessary for relaxed fidelity of i-tRNA selection to sustain on i-tRNAcg/GC/cg though with a retarded growth. Subsequent mutations in uS12 salvaged the retarded growth by enhancing the fidelity of translation. The H76L mutation in uS12 showed better fidelity of i-tRNA selection. However, the V32L mutation compensated for the deficient fidelity of i-tRNA selection by ensuring an efficient fidelity check by ribosome recycling factor (RRF). We reveal unique genetic networks between uS12, IF3 and i-tRNA in initiation and between uS12, elongation factor-G (EF-G), RRF, and Pth (peptidyl-tRNA hydrolase) which, taken together, govern the fidelity of translation in bacteria.
Collapse
Affiliation(s)
- Madhurima Datta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Jitendra Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Mamata Jayant Modak
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Maalavika Pillai
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
3
|
Datta M, Pillai M, Modak MJ, Liiv A, Khaja FT, Hussain T, Remme J, Varshney U. A mutation in the ribosomal protein uS12 reveals novel functions of its universally conserved PNSA loop. Mol Microbiol 2021; 115:1292-1308. [PMID: 33368752 DOI: 10.1111/mmi.14675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 11/28/2022]
Abstract
The ribosomal protein uS12 is conserved across all domains of life. Recently, a heterozygous spontaneous mutation in human uS12 (corresponding to R49K mutation immediately downstream of the universally conserved 44 PNSA47 loop in Escherichia coli uS12) was identified for causing ribosomopathy, highlighting the importance of the PNSA loop. To investigate the effects of a similar mutation in the absence of any wild-type alleles, we mutated the rpsL gene (encoding uS12) in E. coli. Consistent with its pathology (in humans), we were unable to generate the R49K mutation in E. coli in the absence of a support plasmid. However, we were able to generate the L48K mutation in its immediate vicinity. The L48K mutation resulted in a cold sensitive phenotype and ribosome biogenesis defect in the strain. We show that the L48K mutation impacts the steps of initiation and elongation. Furthermore, the genetic interactions of the L48K mutation with RRF and Pth suggest a novel role of the PNSA loop in ribosome recycling. Our studies reveal new functions of the PNSA loop in uS12, which has so far been studied in the context of translation elongation.
Collapse
Affiliation(s)
- Madhurima Datta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Maalavika Pillai
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Mamata Jayant Modak
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Aivar Liiv
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Faisal Tarique Khaja
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Tanweer Hussain
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Jaanus Remme
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
4
|
Elongation factor-Tu can repetitively engage aminoacyl-tRNA within the ribosome during the proofreading stage of tRNA selection. Proc Natl Acad Sci U S A 2020; 117:3610-3620. [PMID: 32024753 PMCID: PMC7035488 DOI: 10.1073/pnas.1904469117] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Elongation factor Tu (EF-Tu) facilitates rapid and accurate selection of aminoacyl-tRNA (aa-tRNA) by the bacterial ribosome during protein synthesis. We show that EF-Tu dissociates from the ribosome as aa-tRNA navigates the accommodation corridor en route to peptide bond formation. We find that EF-Tu’s release from the ribosome during aa-tRNA selection can be reversible. We also demonstrate that new ternary complex formation, accompanied by futile cycles of GTP hydrolysis, can occur on aa-tRNA bound within the ribosome. These findings inform on the decoding mechanism, the contributions of EF-Tu to the fidelity of translation, and the potential consequences of reduced rates of peptide bond formation on cellular physiology. The substrate for ribosomes actively engaged in protein synthesis is a ternary complex of elongation factor Tu (EF-Tu), aminoacyl-tRNA (aa-tRNA), and GTP. EF-Tu plays a critical role in mRNA decoding by increasing the rate and fidelity of aa-tRNA selection at each mRNA codon. Here, using three-color single-molecule fluorescence resonance energy transfer imaging and molecular dynamics simulations, we examine the timing and role of conformational events that mediate the release of aa-tRNA from EF-Tu and EF-Tu from the ribosome after GTP hydrolysis. Our investigations reveal that conformational changes in EF-Tu coordinate the rate-limiting passage of aa-tRNA through the accommodation corridor en route to the peptidyl transferase center of the large ribosomal subunit. Experiments using distinct inhibitors of the accommodation process further show that aa-tRNA must at least partially transit the accommodation corridor for EF-Tu⋅GDP to release. aa-tRNAs failing to undergo peptide bond formation at the end of accommodation corridor passage after EF-Tu release can be reengaged by EF-Tu⋅GTP from solution, coupled to GTP hydrolysis. These observations suggest that additional rounds of ternary complex formation can occur on the ribosome during proofreading, particularly when peptide bond formation is slow, which may serve to increase both the rate and fidelity of protein synthesis at the expense of GTP hydrolysis.
Collapse
|
5
|
Youkharibache P, Veretnik S, Li Q, Stanek KA, Mura C, Bourne PE. The Small β-Barrel Domain: A Survey-Based Structural Analysis. Structure 2018; 27:6-26. [PMID: 30393050 DOI: 10.1016/j.str.2018.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/12/2018] [Accepted: 09/19/2018] [Indexed: 11/27/2022]
Abstract
The small β-barrel (SBB) is an ancient protein structural domain characterized by extremes: it features a broad range of structural varieties, a deeply intricate evolutionary history, and it is associated with a bewildering array of cellular pathways. Here, we present a thorough, survey-based analysis of the structural properties of SBBs. We first consider the defining properties of the SBB, including various systems of nomenclature used to describe it, and we introduce the unifying concept of an "urfold." To begin elucidating how vast functional diversity can be achieved by a relatively simple domain, we explore the anatomy of the SBB and its representative structural variants. Many SBB proteins assemble into cyclic oligomers as the biologically functional units; these oligomers often bind RNA, and typically exhibit great quaternary structural plasticity (homomeric and heteromeric rings, variable subunit stoichiometries, etc.). We conclude with three themes that emerge from the rich structure ↔ function versatility of the SBB.
Collapse
Affiliation(s)
- Philippe Youkharibache
- National Center for Biotechnology Information, The National Library of Medicine, The National Institutes of Health, Bethesda, MD 20894, USA
| | - Stella Veretnik
- National Center for Biotechnology Information, The National Library of Medicine, The National Institutes of Health, Bethesda, MD 20894, USA.
| | - Qingliang Li
- National Center for Biotechnology Information, The National Library of Medicine, The National Institutes of Health, Bethesda, MD 20894, USA
| | - Kimberly A Stanek
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Cameron Mura
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | - Philip E Bourne
- National Center for Biotechnology Information, The National Library of Medicine, The National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
6
|
Kürkçüoğlu Ö. Exploring allosteric communication in multiple states of the bacterial ribosome using residue network analysis. Turk J Biol 2018; 42:392-404. [PMID: 30930623 PMCID: PMC6438126 DOI: 10.3906/biy-1802-77] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Antibiotic resistance is one of the most important problems of our era and hence the discovery of new effective therapeutics is urgent. At this point, studying the allosteric communication pathways in the bacterial ribosome and revealing allosteric sites/residues is critical for designing new inhibitors or repurposing readily approved drugs for this enormous machine. To shed light onto molecular details of the allosteric mechanisms, here we construct residue networks of the bacterial ribosomal complex at four different states of translation by using an effective description of the intermolecular interactions. Centrality analysis of these networks highlights the functional roles of structural components and critical residues on the ribosomal complex. High betweenness scores reveal pathways of residues connecting numerous sites on the structure. Interestingly, these pathways assemble highly conserved residues, drug binding sites, and known allosterically linked regions on the same structure. This study proposes a new residue-level model to test how distant sites on the molecular machine may be linked through hub residues that are critically located on the contact topology to inherently form communication pathways. Findings also indicate intersubunit bridges B1b, B3, B5, B7, and B8 as critical targets to design novel antibiotics.
Collapse
Affiliation(s)
- Özge Kürkçüoğlu
- Department of Chemical Engineering, Faculty of Chemical-Metallurgical Engineering, İstanbul Technical University , İstanbul , Turkey
| |
Collapse
|
7
|
Polikanov YS, Aleksashin NA, Beckert B, Wilson DN. The Mechanisms of Action of Ribosome-Targeting Peptide Antibiotics. Front Mol Biosci 2018; 5:48. [PMID: 29868608 PMCID: PMC5960728 DOI: 10.3389/fmolb.2018.00048] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022] Open
Abstract
The ribosome is one of the major targets in the cell for clinically used antibiotics. However, the increase in multidrug resistant bacteria is rapidly reducing the effectiveness of our current arsenal of ribosome-targeting antibiotics, highlighting the need for the discovery of compounds with new scaffolds that bind to novel sites on the ribosome. One possible avenue for the development of new antimicrobial agents is by characterization and optimization of ribosome-targeting peptide antibiotics. Biochemical and structural data on ribosome-targeting peptide antibiotics illustrates the large diversity of scaffolds, binding interactions with the ribosome as well as mechanism of action to inhibit translation. The availability of high-resolution structures of ribosomes in complex with peptide antibiotics opens the way to structure-based design of these compounds as novel antimicrobial agents.
Collapse
Affiliation(s)
- Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States.,Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, United States
| | - Nikolay A Aleksashin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Bertrand Beckert
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
8
|
Phenotypic Suppression of Streptomycin Resistance by Mutations in Multiple Components of the Translation Apparatus. J Bacteriol 2015; 197:2981-8. [PMID: 26148717 DOI: 10.1128/jb.00219-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The bacterial ribosome and its associated translation factors are frequent targets of antibiotics, and antibiotic resistance mutations have been found in a number of these components. Such mutations can potentially interact with one another in unpredictable ways, including the phenotypic suppression of one mutation by another. These phenotypic interactions can provide evidence of long-range functional interactions throughout the ribosome and its functional complexes and potentially give insights into antibiotic resistance mechanisms. In this study, we used genetics and experimental evolution of the thermophilic bacterium Thermus thermophilus to examine the ability of mutations in various components of the protein synthesis apparatus to suppress the streptomycin resistance phenotypes of mutations in ribosomal protein S12, specifically those located distant from the streptomycin binding site. With genetic selections and strain constructions, we identified suppressor mutations in EF-Tu or in ribosomal protein L11. Using experimental evolution, we identified amino acid substitutions in EF-Tu or in ribosomal proteins S4, S5, L14, or L19, some of which were found to also relieve streptomycin resistance. The wide dispersal of these mutations is consistent with long-range functional interactions among components of the translational machinery and indicates that streptomycin resistance can result from the modulation of long-range conformational signals. IMPORTANCE The thermophilic bacterium Thermus thermophilus has become a model system for high-resolution structural studies of macromolecular complexes, such as the ribosome, while its natural competence for transformation facilitates genetic approaches. Genetic studies of T. thermophilus ribosomes can take advantage of existing high-resolution crystallographic information to allow a structural interpretation of phenotypic interactions among mutations. Using a combination of genetic selections, strain constructions, and experimental evolution, we find that certain mutations in the translation apparatus can suppress the phenotype of certain antibiotic resistance mutations. Suppression of resistance can occur by mutations located distant in the ribosome or in a translation factor. These observations suggest the existence of long-range conformational signals in the translating ribosome, particularly during the decoding of mRNA.
Collapse
|
9
|
Wada M, Ito K. A genetic approach for analyzing the co-operative function of the tRNA mimicry complex, eRF1/eRF3, in translation termination on the ribosome. Nucleic Acids Res 2014; 42:7851-66. [PMID: 24914055 PMCID: PMC4081094 DOI: 10.1093/nar/gku493] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During termination of translation in eukaryotes, a GTP-binding protein, eRF3, functions within a complex with the tRNA-mimicking protein, eRF1, to decode stop codons. It remains unclear how the tRNA-mimicking protein co-operates with the GTPase and with the functional sites on the ribosome. In order to elucidate the molecular characteristics of tRNA-mimicking proteins involved in stop codon decoding, we have devised a heterologous genetic system in Saccharomyces cerevisiae. We found that eRF3 from Pneumocystis carinii (Pc-eRF3) did not complement depletion of S. cerevisiae eRF3. The strength of Pc-eRF3 binding to Sc-eRF1 depends on the GTP-binding domain, suggesting that defects of the GTPase switch in the heterologous complex causes the observed lethality. We isolated mutants of Pc-eRF3 and Sc-eRF1 that restore cell growth in the presence of Pc-eRF3 as the sole source of eRF3. Mapping of these mutations onto the latest 3D-complex structure revealed that they were located in the binding-interface region between eRF1 and eRF3, as well as in the ribosomal functional sites. Intriguingly, a novel functional site was revealed adjacent to the decoding site of eRF1, on the tip domain that mimics the tRNA anticodon loop. This novel domain likely participates in codon recognition, coupled with the GTPase function.
Collapse
Affiliation(s)
- Miki Wada
- Technical office, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba, 277-8562, Japan
| | - Koichi Ito
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba, 277-8562, Japan
| |
Collapse
|
10
|
Agarwal D, O’Connor M. Diverse effects of residues 74–78 in ribosomal protein S12 on decoding and antibiotic sensitivity. Biochem Biophys Res Commun 2014; 445:475-9. [DOI: 10.1016/j.bbrc.2014.02.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/06/2014] [Indexed: 11/28/2022]
|
11
|
Bulkley D, Brandi L, Polikanov YS, Fabbretti A, O'Connor M, Gualerzi CO, Steitz TA. The antibiotics dityromycin and GE82832 bind protein S12 and block EF-G-catalyzed translocation. Cell Rep 2014; 6:357-65. [PMID: 24412368 PMCID: PMC5331365 DOI: 10.1016/j.celrep.2013.12.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/23/2013] [Accepted: 12/13/2013] [Indexed: 01/23/2023] Open
Abstract
The translocation of mRNA and tRNA through the ribosome is catalyzed by elongation factor G (EF-G), a universally conserved guanosine triphosphate hydrolase (GTPase). The mechanism by which the closely related decapeptide antibiotics dityromycin and GE82832 inhibit EF-G-catalyzed translocation is elucidated in this study. Using crystallographic and biochemical experiments, we demonstrate that these antibiotics bind to ribosomal protein S12 in solution alone as well as within the small ribosomal subunit, inducing long-range effects on the ribosomal head. The crystal structure of the antibiotic in complex with the 70S ribosome reveals that the binding involves conserved amino acid residues of S12 whose mutations result in in vitro and in vivo antibiotic resistance and loss of antibiotic binding. The data also suggest that GE82832/dityromycin inhibits EF-G-catalyzed translocation by disrupting a critical contact between EF-G and S12 that is required to stabilize the posttranslocational conformation of EF-G, thereby preventing the ribosome-EF-G complex from entering a conformation productive for translocation.
Collapse
Affiliation(s)
- David Bulkley
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Letizia Brandi
- Laboratory of Genetics, Department of Biosciences and Biotechnology, University of Camerino, 62032 Camerino, Italy
| | - Yury S Polikanov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, New Haven, CT 06511, USA
| | - Attilio Fabbretti
- Laboratory of Genetics, Department of Biosciences and Biotechnology, University of Camerino, 62032 Camerino, Italy
| | - Michael O'Connor
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Claudio O Gualerzi
- Laboratory of Genetics, Department of Biosciences and Biotechnology, University of Camerino, 62032 Camerino, Italy.
| | - Thomas A Steitz
- Department of Chemistry, Yale University, New Haven, CT 06511, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, New Haven, CT 06511, USA.
| |
Collapse
|
12
|
Demirci H, Wang L, Murphy FV, Murphy EL, Carr JF, Blanchard SC, Jogl G, Dahlberg AE, Gregory ST. The central role of protein S12 in organizing the structure of the decoding site of the ribosome. RNA (NEW YORK, N.Y.) 2013; 19:1791-801. [PMID: 24152548 PMCID: PMC3884664 DOI: 10.1261/rna.040030.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/18/2013] [Indexed: 05/18/2023]
Abstract
The ribosome decodes mRNA by monitoring the geometry of codon-anticodon base-pairing using a set of universally conserved 16S rRNA nucleotides within the conformationally dynamic decoding site. By applying single-molecule FRET and X-ray crystallography, we have determined that conditional-lethal, streptomycin-dependence mutations in ribosomal protein S12 interfere with tRNA selection by allowing conformational distortions of the decoding site that impair GTPase activation of EF-Tu during the tRNA selection process. Distortions in the decoding site are reversed by streptomycin or by a second-site suppressor mutation in 16S rRNA. These observations encourage a refinement of the current model for decoding, wherein ribosomal protein S12 and the decoding site collaborate to optimize codon recognition and substrate discrimination during the early stages of the tRNA selection process.
Collapse
Affiliation(s)
- Hasan Demirci
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Leyi Wang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York 10021, USA
| | | | - Eileen L. Murphy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Jennifer F. Carr
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Scott C. Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York 10021, USA
| | - Gerwald Jogl
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Albert E. Dahlberg
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Steven T. Gregory
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
- Corresponding authorE-mail
| |
Collapse
|
13
|
Functional role of methylation of G518 of the 16S rRNA 530 loop by GidB in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2013; 57:6311-8. [PMID: 24100503 DOI: 10.1128/aac.00905-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Posttranscriptional modifications of bacterial rRNA serve a variety of purposes, from stabilizing ribosome structure to preserving its functional integrity. Here, we investigated the functional role of one rRNA modification in particular-the methylation of guanosine at position 518 (G518) of the 16S rRNA in Mycobacterium tuberculosis. Based on previously reported evidence that G518 is located 5 Å; from proline 44 of ribosomal protein S12, which interacts directly with the mRNA wobble position of the codon:anticodon helix at the A site during translation, we speculated that methylation of G518 affects protein translation. We transformed reporter constructs designed to probe the effect of functional lesions at one of the three codon positions on translational fidelity into the wild-type strain, H37Rv, and into a ΔgidB mutant, which lacks the methyltransferase (GidB) that methylates G518. We show that mistranslation occurs less in the ΔgidB mutant only in the construct bearing a lesion in the wobble position compared to H37Rv. Thus, the methylation of G518 allows mistranslation to occur at some level in order for translation to proceed smoothly and efficiently. We also explored the role of methylation at G518 in altering the susceptibility of M. tuberculosis to streptomycin (SM). Using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), we confirmed that G518 is not methylated in the ΔgidB mutant. Furthermore, isothermal titration calorimetry experiments performed on 70S ribosomes purified from wild-type and ΔgidB mutant strains showed that methylation significantly enhances SM binding. These results provide a mechanistic explanation for the low-level, SM-resistant phenotype observed in M. tuberculosis strains that contain a gidB mutation.
Collapse
|
14
|
Affiliation(s)
| | - V. Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; ,
| |
Collapse
|
15
|
Strader MB, Hervey WJ, Costantino N, Fujigaki S, Chen CY, Akal-Strader A, Ihunnah CA, Makusky AJ, Court DL, Markey SP, Kowalak JA. A coordinated proteomic approach for identifying proteins that interact with the E. coli ribosomal protein S12. J Proteome Res 2013; 12:1289-99. [PMID: 23305560 DOI: 10.1021/pr3009435] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bacterial ribosomal protein S12 contains a universally conserved D88 residue on a loop region thought to be critically involved in translation due to its proximal location to the A site of the 30S subunit. While D88 mutants are lethal this residue has been found to be post-translationally modified to β-methylthioaspartic acid, a post-translational modification (PTM) identified in S12 orthologs from several phylogenetically distinct bacteria. In a previous report focused on characterizing this PTM, our results provided evidence that this conserved loop region might be involved in forming multiple proteins-protein interactions ( Strader , M. B. ; Costantino , N. ; Elkins , C. A. ; Chen , C. Y. ; Patel , I. ; Makusky , A. J. ; Choy , J. S. ; Court , D. L. ; Markey , S. P. ; Kowalak , J. A. A proteomic and transcriptomic approach reveals new insight into betamethylthiolation of Escherichia coli ribosomal protein S12. Mol. Cell. Proteomics 2011 , 10 , M110 005199 ). To follow-up on this study, the D88 containing loop was probed to identify candidate binders employing a two-step complementary affinity purification strategy. The first involved an endogenously expressed S12 protein containing a C-terminal tag for capturing S12 binding partners. The second strategy utilized a synthetic biotinylated peptide representing the D88 conserved loop region for capturing S12 loop interaction partners. Captured proteins from both approaches were detected by utilizing SDS-PAGE and one-dimensional liquid chromatography-tandem mass spectrometry. The results presented in this report revealed proteins that form direct interactions with the 30S subunit and elucidated which are likely to interact with S12. In addition, we provide evidence that two proteins involved in regulating ribosome and/or mRNA transcript levels under stress conditions, RNase R and Hfq, form direct interactions with the S12 conserved loop, suggesting that it is likely part of a protein binding interface.
Collapse
Affiliation(s)
- Michael Brad Strader
- Laboratory of Neurotoxicology, National Institute of Mental Health , Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Harish A, Caetano-Anollés G. Ribosomal history reveals origins of modern protein synthesis. PLoS One 2012; 7:e32776. [PMID: 22427882 PMCID: PMC3299690 DOI: 10.1371/journal.pone.0032776] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 01/30/2012] [Indexed: 02/06/2023] Open
Abstract
The origin and evolution of the ribosome is central to our understanding of the cellular world. Most hypotheses posit that the ribosome originated in the peptidyl transferase center of the large ribosomal subunit. However, these proposals do not link protein synthesis to RNA recognition and do not use a phylogenetic comparative framework to study ribosomal evolution. Here we infer evolution of the structural components of the ribosome. Phylogenetic methods widely used in morphometrics are applied directly to RNA structures of thousands of molecules and to a census of protein structures in hundreds of genomes. We find that components of the small subunit involved in ribosomal processivity evolved earlier than the catalytic peptidyl transferase center responsible for protein synthesis. Remarkably, subunit RNA and proteins coevolved, starting with interactions between the oldest proteins (S12 and S17) and the oldest substructure (the ribosomal ratchet) in the small subunit and ending with the rise of a modern multi-subunit ribosome. Ancestral ribonucleoprotein components show similarities to in vitro evolved RNA replicase ribozymes and protein structures in extant replication machinery. Our study therefore provides important clues about the chicken-or-egg dilemma associated with the central dogma of molecular biology by showing that ribosomal history is driven by the gradual structural accretion of protein and RNA structures. Most importantly, results suggest that functionally important and conserved regions of the ribosome were recruited and could be relics of an ancient ribonucleoprotein world.
Collapse
Affiliation(s)
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana-Champaign, Illinois, United States of America
| |
Collapse
|
17
|
The phylogenomic roots of modern biochemistry: origins of proteins, cofactors and protein biosynthesis. J Mol Evol 2012; 74:1-34. [PMID: 22210458 DOI: 10.1007/s00239-011-9480-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 12/12/2011] [Indexed: 12/20/2022]
Abstract
The complexity of modern biochemistry developed gradually on early Earth as new molecules and structures populated the emerging cellular systems. Here, we generate a historical account of the gradual discovery of primordial proteins, cofactors, and molecular functions using phylogenomic information in the sequence of 420 genomes. We focus on structural and functional annotations of the 54 most ancient protein domains. We show how primordial functions are linked to folded structures and how their interaction with cofactors expanded the functional repertoire. We also reveal protocell membranes played a crucial role in early protein evolution and show translation started with RNA and thioester cofactor-mediated aminoacylation. Our findings allow elaboration of an evolutionary model of early biochemistry that is firmly grounded in phylogenomic information and biochemical, biophysical, and structural knowledge. The model describes how primordial α-helical bundles stabilized membranes, how these were decorated by layered arrangements of β-sheets and α-helices, and how these arrangements became globular. Ancient forms of aminoacyl-tRNA synthetase (aaRS) catalytic domains and ancient non-ribosomal protein synthetase (NRPS) modules gave rise to primordial protein synthesis and the ability to generate a code for specificity in their active sites. These structures diversified producing cofactor-binding molecular switches and barrel structures. Accretion of domains and molecules gave rise to modern aaRSs, NRPS, and ribosomal ensembles, first organized around novel emerging cofactors (tRNA and carrier proteins) and then more complex cofactor structures (rRNA). The model explains how the generation of protein structures acted as scaffold for nucleic acids and resulted in crystallization of modern translation.
Collapse
|
18
|
Agarwal D, Gregory ST, O'Connor M. Error-Prone and Error-Restrictive Mutations Affecting Ribosomal Protein S12. J Mol Biol 2011; 410:1-9. [DOI: 10.1016/j.jmb.2011.04.068] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/19/2011] [Accepted: 04/27/2011] [Indexed: 12/24/2022]
|
19
|
Strader MB, Costantino N, Elkins CA, Chen CY, Patel I, Makusky AJ, Choy JS, Court DL, Markey SP, Kowalak JA. A proteomic and transcriptomic approach reveals new insight into beta-methylthiolation of Escherichia coli ribosomal protein S12. Mol Cell Proteomics 2010; 10:M110.005199. [PMID: 21169565 DOI: 10.1074/mcp.m110.005199] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
β-methylthiolation is a novel post-translational modification mapping to a universally conserved Asp 88 of the bacterial ribosomal protein S12. This S12 specific modification has been identified on orthologs from multiple bacterial species. The origin and functional significance was investigated with both a proteomic strategy to identify candidate S12 interactors and expression microarrays to search for phenotypes that result from targeted gene knockouts of select candidates. Utilizing an endogenous recombinant E. coli S12 protein with an affinity tag as bait, mass spectrometric analysis identified candidate S12 binding partners including RimO (previously shown to be required for this post-translational modification) and YcaO, a conserved protein of unknown function. Transcriptomic analysis of bacterial strains with deleted genes for RimO and YcaO identified an overlapping transcriptional phenotype suggesting that YcaO and RimO likely share a common function. As a follow up, quantitative mass spectrometry additionally indicated that both proteins dramatically impacted the modification status of S12. Collectively, these results indicate that the YcaO protein is involved in β-methylthiolation of S12 and its absence impairs the ability of RimO to modify S12. Additionally, the proteomic data from this study provides direct evidence that the E. coli specific β-methylthiolation likely occurs when S12 is assembled as part of a ribosomal subunit.
Collapse
Affiliation(s)
- Michael Brad Strader
- Laboratory of Neurotoxicology, National Institute of Mental Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schmeing TM, Voorhees RM, Kelley AC, Gao YG, Murphy FV, Weir JR, Ramakrishnan V. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 2009; 326:688-694. [PMID: 19833920 PMCID: PMC3763470 DOI: 10.1126/science.1179700] [Citation(s) in RCA: 385] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The ribosome selects a correct transfer RNA (tRNA) for each amino acid added to the polypeptide chain, as directed by messenger RNA. Aminoacyl-tRNA is delivered to the ribosome by elongation factor Tu (EF-Tu), which hydrolyzes guanosine triphosphate (GTP) and releases tRNA in response to codon recognition. The signaling pathway that leads to GTP hydrolysis upon codon recognition is critical to accurate decoding. Here we present the crystal structure of the ribosome complexed with EF-Tu and aminoacyl-tRNA, refined to 3.6 angstrom resolution. The structure reveals details of the tRNA distortion that allows aminoacyl-tRNA to interact simultaneously with the decoding center of the 30S subunit and EF-Tu at the factor binding site. A series of conformational changes in EF-Tu and aminoacyl-tRNA suggests a communication pathway between the decoding center and the guanosine triphosphatase center of EF-Tu.
Collapse
MESH Headings
- Crystallography, X-Ray
- Enzyme Activation
- GTP Phosphohydrolases/metabolism
- Genetic Code
- Models, Molecular
- Nucleic Acid Conformation
- Peptide Elongation Factor Tu/chemistry
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- RNA, Bacterial/chemistry
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Thr/chemistry
- Ribosomes/chemistry
- Thermus thermophilus
Collapse
Affiliation(s)
| | | | - Ann C. Kelley
- MRC Laboratory of Molecular Biology, Cambridge, UK, CB2 0QH
| | - Yong-Gui Gao
- MRC Laboratory of Molecular Biology, Cambridge, UK, CB2 0QH
| | | | | | | |
Collapse
|
21
|
What recent ribosome structures have revealed about the mechanism of translation. Nature 2009; 461:1234-42. [DOI: 10.1038/nature08403] [Citation(s) in RCA: 533] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 10/01/2009] [Indexed: 11/08/2022]
|
22
|
Gregory ST, Demirci H, Belardinelli R, Monshupanee T, Gualerzi C, Dahlberg AE, Jogl G. Structural and functional studies of the Thermus thermophilus 16S rRNA methyltransferase RsmG. RNA (NEW YORK, N.Y.) 2009; 15:1693-1704. [PMID: 19622680 PMCID: PMC2743062 DOI: 10.1261/rna.1652709] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 06/17/2009] [Indexed: 05/28/2023]
Abstract
The RsmG methyltransferase is responsible for N(7) methylation of G527 of 16S rRNA in bacteria. Here, we report the identification of the Thermus thermophilus rsmG gene, the isolation of rsmG mutants, and the solution of RsmG X-ray crystal structures at up to 1.5 A resolution. Like their counterparts in other species, T. thermophilus rsmG mutants are weakly resistant to the aminoglycoside antibiotic streptomycin. Growth competition experiments indicate a physiological cost to loss of RsmG activity, consistent with the conservation of the modification site in the decoding region of the ribosome. In contrast to Escherichia coli RsmG, which has been reported to recognize only intact 30S subunits, T. thermophilus RsmG shows no in vitro methylation activity against native 30S subunits, only low activity with 30S subunits at low magnesium concentration, and maximum activity with deproteinized 16S rRNA. Cofactor-bound crystal structures of RsmG reveal a positively charged surface area remote from the active site that binds an adenosine monophosphate molecule. We conclude that an early assembly intermediate is the most likely candidate for the biological substrate of RsmG.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Catalytic Domain
- Crystallography, X-Ray
- Drug Resistance, Bacterial/genetics
- Models, Molecular
- Molecular Sequence Data
- Mutant Proteins/genetics
- Mutant Proteins/isolation & purification
- Nucleic Acid Conformation
- Organisms, Genetically Modified
- Phenotype
- RNA, Ribosomal, 16S/metabolism
- Ribosome Subunits, Small, Bacterial/genetics
- Ribosome Subunits, Small, Bacterial/metabolism
- Sequence Homology, Amino Acid
- Streptomycin/metabolism
- Thermus thermophilus/enzymology
- Thermus thermophilus/genetics
- Thermus thermophilus/isolation & purification
- tRNA Methyltransferases/chemistry
- tRNA Methyltransferases/genetics
- tRNA Methyltransferases/metabolism
- tRNA Methyltransferases/physiology
Collapse
Affiliation(s)
- Steven T Gregory
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Schuette JC, Murphy FV, Kelley AC, Weir JR, Giesebrecht J, Connell SR, Loerke J, Mielke T, Zhang W, Penczek PA, Ramakrishnan V, Spahn CMT. GTPase activation of elongation factor EF-Tu by the ribosome during decoding. EMBO J 2009; 28:755-65. [PMID: 19229291 PMCID: PMC2666022 DOI: 10.1038/emboj.2009.26] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 01/14/2009] [Indexed: 11/09/2022] Open
Abstract
We have used single-particle reconstruction in cryo-electron microscopy to determine a structure of the Thermus thermophilus ribosome in which the ternary complex of elongation factor Tu (EF-Tu), tRNA and guanine nucleotide has been trapped on the ribosome using the antibiotic kirromycin. This represents the state in the decoding process just after codon recognition by tRNA and the resulting GTP hydrolysis by EF-Tu, but before the release of EF-Tu from the ribosome. Progress in sample purification and image processing made it possible to reach a resolution of 6.4 A. Secondary structure elements in tRNA, EF-Tu and the ribosome, and even GDP and kirromycin, could all be visualized directly. The structure reveals a complex conformational rearrangement of the tRNA in the A/T state and the interactions with the functionally important switch regions of EF-Tu crucial to GTP hydrolysis. Thus, the structure provides insights into the molecular mechanism of signalling codon recognition from the decoding centre of the 30S subunit to the GTPase centre of EF-Tu.
Collapse
Affiliation(s)
- Jan-Christian Schuette
- Institut für Medizinische Physik und Biophysik, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Frank V Murphy
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ann C Kelley
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - John R Weir
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jan Giesebrecht
- Institut für Medizinische Physik und Biophysik, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Sean R Connell
- Institut für Medizinische Physik und Biophysik, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Justus Loerke
- UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Thorsten Mielke
- UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas—Houston Medical School, Houston, TX, USA
| | - Pawel A Penczek
- Department of Biochemistry and Molecular Biology, The University of Texas—Houston Medical School, Houston, TX, USA
| | - V Ramakrishnan
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charite-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|