1
|
Hasan MDN, Rahman MDM, Husna AA, Kato D, Nakagawa T, Arif M, Miura N. Hypoxia-related Y RNA fragments as a novel potential biomarker for distinguishing metastatic oral melanoma from non-metastatic oral melanoma in dogs. Vet Q 2024; 44:1-8. [PMID: 38288969 PMCID: PMC10829814 DOI: 10.1080/01652176.2023.2300943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Hypoxia may promote tumor progression, and hypoxically altered noncoding RNA (ncRNA) expression may play a role in metastasis. Canine oral melanoma (COM) frequently metastasizes, and ncRNA expression under hypoxia may be clinically significant. We aimed to elucidate ncRNA fragments whose expression is altered by hypoxia in COM-derived primary KMeC and metastatic LMeC cell lines using next-generation sequencing to validate these results in qRT-PCR, and then compare expression between metastatic and non-metastatic COM. The NGS analysis and subsequent qRT-PCR validation were performed using hypoxic and normoxic KMeC and LMeC cells, and clinical samples [tumor tissue, plasma, and plasma-derived extracellular vesicles] obtained from dogs with metastatic or non-metastatic melanoma were analyzed with qRT-PCR. Y RNA was significantly decreased in metastatic LMeC cells versus primary KMeC cells in hypoxic and normoxic conditions. The expression of Y RNA was decreased in dogs with metastatic melanoma versus those with non-metastatic melanoma for all clinical sample types, reflecting the pattern found with hypoxia. Receiver operating characteristic analysis demonstrated that Y RNA level is a promising biomarker for discriminating metastatic from non-metastatic melanoma in plasma [area under the curve (AUC) = 0.993, p < 0.0001] and plasma-derived extracellular vesicles (AUC = 0.981, p = 0.0002). Overall, Y RNA may be more resistant to hypoxic stress in the metastatic than the non-metastatic state for COM. However, further investigation is required to elucidate the biological functions of Y RNA under hypoxic conditions.
Collapse
Affiliation(s)
- MD Nazmul Hasan
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, Japan
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, Kagoshima, Japan
| | - MD Mahfuzur Rahman
- Department of Human Oncology, University of WI School of Medicine and Public Health, Madison, WI, USA
| | - Al Asmaul Husna
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, Kagoshima, Japan
| | - Daiki Kato
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Mohammad Arif
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Naoki Miura
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, Japan
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, Kagoshima, Japan
| |
Collapse
|
2
|
Ushio N, Hasan MN, Arif M, Miura N. Novel Y RNA-Derived Fragments Can Differentiate Canine Hepatocellular Carcinoma from Hepatocellular Adenoma. Animals (Basel) 2023; 13:3054. [PMID: 37835660 PMCID: PMC10571523 DOI: 10.3390/ani13193054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Hepatocellular carcinomas (HCC) are common tumors, whereas hepatocellular adenomas (HCA) are rare, benign tumors in dogs. The aberrant expression of noncoding RNAs (ncRNAs) plays a pivotal role in HCC tumorigenesis and progression. Among ncRNAs, micro RNAs have been widely researched in human HCC, but much less widely in canine HCC. However, Y RNA-derived fragments have yet to be investigated in canine HCC and HCA. This study targeted canine HCC and HCA patients. We used qRT-PCR to determine Y RNA expression in clinical tissues, plasma, and plasma extracellular vesicles, and two HCC cell lines (95-1044 and AZACH). Y RNA was significantly decreased in tissue, plasma, and plasma extracellular vesicles for canine HCC versus canine HCA and healthy controls. Y RNA was decreased in 95-1044 and AZACH cells versus normal liver tissue and in AZACH versus 95-1044 cells. In plasma samples, Y RNA levels were decreased in HCC versus HCA and Healthy controls and increased in HCA versus Healthy controls. Receiver operating characteristic analysis showed that Y RNA could be a promising biomarker for distinguishing HCC from HCA and healthy controls. Overall, the dysregulated expression of Y RNA can distinguish canine HCC from HCA. However, further research is necessary to elucidate the underlying Y RNA-related molecular mechanisms in hepatocellular neoplastic diseases. To the best of our knowledge, this is the first report on the relative expression of Y RNA in canine HCC and HCA.
Collapse
Affiliation(s)
- Norio Ushio
- United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-0841, Japan;
| | - Md Nazmul Hasan
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (M.N.H.); (M.A.)
| | - Mohammad Arif
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (M.N.H.); (M.A.)
| | - Naoki Miura
- United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-0841, Japan;
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (M.N.H.); (M.A.)
- Clinical Veterinary Division, Faculty of Veterinary Medicine, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia
| |
Collapse
|
3
|
Billmeier M, Green D, Hall AE, Turnbull C, Singh A, Xu P, Moxon S, Dalmay T. Mechanistic insights into non-coding Y RNA processing. RNA Biol 2022; 19:468-480. [PMID: 35354369 PMCID: PMC8973356 DOI: 10.1080/15476286.2022.2057725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Y RNAs (84–112 nt) are non-coding RNAs transcribed by RNA polymerase III and are characterized by a distinctive secondary structure. Human Y RNAs interact with the autoimmune proteins SSB and RO60 that together form a ribonucleoprotein (RNP) complex termed RoRNP and Y RNAs also perform regulatory roles in DNA and RNA replication and stability, which has major implications for diseases including cancer. During cellular stress and apoptosis, Y RNAs are cleaved into 3’ and 5’ end fragments termed Y RNA-derived small RNAs (ysRNAs). Although some ysRNA functions in stress, apoptosis and cancer have been reported, their fundamental biogenesis has not been described. Here we report that 3’ end RNY5 cleavage is structure dependent. In high throughput mutagenesis experiments, cleavage occurred between the 2nd and 3rd nt above a double stranded stem comprising high GC content. We demonstrate that an internal loop above stem S3 is critical for producing 3’ end ysRNAs (31 nt) with mutants resulting in longer or no ysRNAs. We show a UGGGU sequence motif at position 22 of RNY5 is critical for producing 5’ end ysRNAs (22–25 nt). We show that intact RO60 is critical for ysRNA biogenesis. We conclude that ribonuclease L (RNASEL) contributes to Y RNA cleavage in mouse embryonic fibroblasts but is not the only endoribonuclease important in human cells.
Collapse
Affiliation(s)
- Martina Billmeier
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.,Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Darrell Green
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Adam E Hall
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.,Horizon Discovery, Cambridge Research Park, Waterbeach, UK
| | - Carly Turnbull
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Archana Singh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.,Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Ping Xu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.,Shanghai Engineering Research Center of Plant Germplasm Resource, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
4
|
Park S, Sohn J, Kwon S, Kim EJE, Jung Y, Park HEH, Kim SS, Lee SJV. Age-dependent upregulation of Y RNAs in Caenorhabditis elegans. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 34604714 PMCID: PMC8477234 DOI: 10.17912/micropub.biology.000452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/10/2022]
Abstract
Y RNA is a conserved small non-coding RNA whose functions in aging remain unknown. Here, we sought to determine the role of C. elegans Y RNA homologs, CeY RNA (CeY) and stem-bulge RNAs (sbRNAs), in aging. We found that the levels of CeY and sbRNAs generally increased during aging. We showed that CeY was downregulated by oxidative and thermal stresses, whereas several sbRNAs were upregulated by oxidative stress. We did not observe lifespan phenotypes by mutations in CeY-coding yrn-1. Future research under various genetic and environmental conditions is required to further evaluate the role of Y RNA in C. elegans aging.
Collapse
Affiliation(s)
- Sangsoon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jooyeon Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Sujeong Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Eun Ji E Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Yoonji Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Hae-Eun H Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Sieun S Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Seung-Jae V Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| |
Collapse
|
5
|
Flynn RA, Pedram K, Malaker SA, Batista PJ, Smith BAH, Johnson AG, George BM, Majzoub K, Villalta PW, Carette JE, Bertozzi CR. Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell 2021; 184:3109-3124.e22. [PMID: 34004145 DOI: 10.1016/j.cell.2021.04.023] [Citation(s) in RCA: 256] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Accepted: 04/14/2021] [Indexed: 12/20/2022]
Abstract
Glycans modify lipids and proteins to mediate inter- and intramolecular interactions across all domains of life. RNA is not thought to be a major target of glycosylation. Here, we challenge this view with evidence that mammals use RNA as a third scaffold for glycosylation. Using a battery of chemical and biochemical approaches, we found that conserved small noncoding RNAs bear sialylated glycans. These "glycoRNAs" were present in multiple cell types and mammalian species, in cultured cells, and in vivo. GlycoRNA assembly depends on canonical N-glycan biosynthetic machinery and results in structures enriched in sialic acid and fucose. Analysis of living cells revealed that the majority of glycoRNAs were present on the cell surface and can interact with anti-dsRNA antibodies and members of the Siglec receptor family. Collectively, these findings suggest the existence of a direct interface between RNA biology and glycobiology, and an expanded role for RNA in extracellular biology.
Collapse
Affiliation(s)
- Ryan A Flynn
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Kayvon Pedram
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Stacy A Malaker
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Pedro J Batista
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin A H Smith
- Department of Chemical and Systems Biology and ChEM-H, Stanford University, Stanford, CA, USA
| | - Alex G Johnson
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Benson M George
- Department of Cancer Biology, Stanford University, Stanford, CA, USA
| | - Karim Majzoub
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA; IGMM, CNRS, University of Montpellier, Montpellier, France
| | - Peter W Villalta
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Leng Y, Sim S, Magidson V, Wolin SL. Noncoding Y RNAs regulate the levels, subcellular distribution and protein interactions of their Ro60 autoantigen partner. Nucleic Acids Res 2020; 48:6919-6930. [PMID: 32469055 DOI: 10.1093/nar/gkaa414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/31/2022] Open
Abstract
Noncoding Y RNAs are abundant in animal cells and present in many bacteria. These RNAs are bound and stabilized by Ro60, a ring-shaped protein that is a target of autoantibodies in patients with systemic lupus erythematosus. Studies in bacteria revealed that Y RNA tethers Ro60 to a ring-shaped exoribonuclease, forming a double-ringed RNP machine specialized for structured RNA degradation. In addition to functioning as a tether, the bacterial RNA gates access of substrates to the Ro60 cavity. To identify roles for Y RNAs in mammals, we used CRISPR to generate mouse embryonic stem cells lacking one or both of the two murine Y RNAs. Despite reports that animal cell Y RNAs are essential for DNA replication, cells lacking these RNAs divide normally. However, Ro60 levels are reduced, revealing that Y RNA binding is required for Ro60 to accumulate to wild-type levels. Y RNAs regulate the subcellular location of Ro60, since Ro60 is reduced in the cytoplasm and increased in nucleoli when Y RNAs are absent. Last, we show that Y RNAs tether Ro60 to diverse effector proteins to generate specialized RNPs. Together, our data demonstrate that the roles of Y RNAs are intimately connected to that of their Ro60 partner.
Collapse
Affiliation(s)
- Yuanyuan Leng
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Soyeong Sim
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Valentin Magidson
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Sandra L Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
7
|
Driedonks TA, Mol S, de Bruin S, Peters AL, Zhang X, Lindenbergh MF, Beuger BM, van Stalborch AMD, Spaan T, de Jong EC, van der Vries E, Margadant C, van Bruggen R, Vlaar AP, Groot Kormelink T, Nolte-‘T Hoen EN. Y-RNA subtype ratios in plasma extracellular vesicles are cell type- specific and are candidate biomarkers for inflammatory diseases. J Extracell Vesicles 2020; 9:1764213. [PMID: 32944168 PMCID: PMC7448942 DOI: 10.1080/20013078.2020.1764213] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/20/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Major efforts are made to characterize the presence of microRNA (miRNA) and messenger RNA in blood plasma to discover novel disease-associated biomarkers. MiRNAs in plasma are associated to several types of macromolecular structures, including extracellular vesicles (EV), lipoprotein particles (LPP) and ribonucleoprotein particles (RNP). RNAs in these complexes are recovered at variable efficiency by commonly used EV- and RNA isolation methods, which causes biases and inconsistencies in miRNA quantitation. Besides miRNAs, various other non-coding RNA species are contained in EV and present within the pool of plasma extracellular RNA. Members of the Y-RNA family have been detected in EV from various cell types and are among the most abundant non-coding RNA types in plasma. We previously showed that shuttling of full-length Y-RNA into EV released by immune cells is modulated by microbial stimulation. This indicated that Y-RNAs could contribute to the functional properties of EV in immune cell communication and that EV-associated Y-RNAs could have biomarker potential in immune-related diseases. Here, we investigated which macromolecular structures in plasma contain full length Y-RNA and whether the levels of three Y-RNA subtypes in plasma (Y1, Y3 and Y4) change during systemic inflammation. Our data indicate that the majority of full length Y-RNA in plasma is stably associated to EV. Moreover, we discovered that EV from different blood-related cell types contain cell-type-specific Y-RNA subtype ratios. Using a human model for systemic inflammation, we show that the neutrophil-specific Y4/Y3 ratios and PBMC-specific Y3/Y1 ratios were significantly altered after induction of inflammation. The plasma Y-RNA ratios strongly correlated with the number and type of immune cells during systemic inflammation. Cell-type-specific "Y-RNA signatures" in plasma EV can be determined without prior enrichment for EV, and may be further explored as simple and fast test for diagnosis of inflammatory responses or other immune-related diseases.
Collapse
Affiliation(s)
- Tom A.P. Driedonks
- Department Of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sanne Mol
- Department Of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department Of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Sanne de Bruin
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Anna-Linda Peters
- Department Of Anesthesiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Xiaogang Zhang
- Department Of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marthe F.S. Lindenbergh
- Department Of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Boukje M. Beuger
- Department Of Blood Cell Research, Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Anne-Marieke D. van Stalborch
- Molecular Cell Biology Laboratory, Department Of Molecular and Cellular Hemostasis, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Thom Spaan
- Department Of Infectious Diseases & Immunity, Division of Virology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Esther C. de Jong
- Department Of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Erhard van der Vries
- Department Of Infectious Diseases & Immunity, Division of Virology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Coert Margadant
- Molecular Cell Biology Laboratory, Department Of Molecular and Cellular Hemostasis, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Robin van Bruggen
- Department Of Blood Cell Research, Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Alexander P.J. Vlaar
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Tom Groot Kormelink
- Department Of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther N.M. Nolte-‘T Hoen
- Department Of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Y RNA: An Overview of Their Role as Potential Biomarkers and Molecular Targets in Human Cancers. Cancers (Basel) 2020; 12:cancers12051238. [PMID: 32423154 PMCID: PMC7281143 DOI: 10.3390/cancers12051238] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Y RNA are a class of small non-coding RNA that are largely conserved. Although their discovery was almost 40 years ago, their function is still under investigation. This is evident in cancer biology, where their role was first studied just a dozen years ago. Since then, only a few contributions were published, mostly scattered across different tumor types and, in some cases, also suffering from methodological limitations. Nonetheless, these sparse data may be used to make some estimations and suggest routes to better understand the role of Y RNA in cancer formation and characterization. Here we summarize the current knowledge about Y RNA in multiple types of cancer, also including a paragraph about tumors that might be included in this list in the future, if more evidence becomes available. The picture arising indicates that Y RNA might be useful in tumor characterization, also relying on non-invasive methods, such as the analysis of the content of extracellular vesicles (EV) that are retrieved from blood plasma and other bodily fluids. Due to the established role of Y RNA in DNA replication, it is possible to hypothesize their therapeutic targeting to inhibit cell proliferation in oncological patients.
Collapse
|
9
|
Valkov N, Das S. Y RNAs: Biogenesis, Function and Implications for the Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:327-342. [PMID: 32285422 DOI: 10.1007/978-981-15-1671-9_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, progress in the field of high-throughput sequencing technology and its application to a wide variety of biological specimens has greatly advanced the discovery and cataloging of a diverse set of non-coding RNAs (ncRNAs) that have been found to have unexpected biological functions. Y RNAs are an emerging class of highly conserved, small ncRNAs. There is a growing number of reports in the literature demonstrating that Y RNAs and their fragments are not just random degradation products but are themselves bioactive molecules. This review will outline what is currently known about Y RNA including biogenesis, structure and functional roles. In addition, we will provide an overview of studies reporting the presence and functions attributed to Y RNAs in the cardiovascular system.
Collapse
Affiliation(s)
- Nedyalka Valkov
- Cardiovascular Research Center of Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Saumya Das
- Cardiovascular Research Center of Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Duarte Junior FF, Bueno PSA, Pedersen SL, Rando FDS, Pattaro Júnior JR, Caligari D, Ramos AC, Polizelli LG, Lima AFDS, de Lima Neto QA, Krude T, Seixas FAV, Fernandez MA. Identification and characterization of stem-bulge RNAs in Drosophila melanogaster. RNA Biol 2019; 16:330-339. [PMID: 30666901 DOI: 10.1080/15476286.2019.1572439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Non-coding Y RNAs and stem-bulge RNAs are homologous small RNAs in vertebrates and nematodes, respectively. They share a conserved function in the replication of chromosomal DNA in these two groups of organisms. However, functional homologues have not been found in insects, despite their common early evolutionary history. Here, we describe the identification and functional characterization of two sbRNAs in Drosophila melanogaster, termed Dm1 and Dm2. The genes coding for these two RNAs were identified by a computational search in the genome of D. melanogaster for conserved sequence motifs present in nematode sbRNAs. The predicted secondary structures of Dm1 and Dm2 partially resemble nematode sbRNAs and show stability in molecular dynamics simulations. Both RNAs are phylogenetically closer related to nematode sbRNAs than to vertebrate Y RNAs. Dm1, but not Dm2 sbRNA is abundantly expressed in D. melanogaster S2 cells and adult flies. Only Dm1, but not Dm2 sbRNA can functionally replace Y RNAs in a human cell-free DNA replication initiation system. Therefore, Dm1 is the first functional sbRNA described in insects, allowing future investigations into the physiological roles of sbRNAs in the genetically tractable model organism D. melanogaster.
Collapse
Affiliation(s)
| | - Paulo Sérgio Alves Bueno
- b Departamento de Tecnologia , Universidade Estadual de Maringá, campus Umuarama , Umuarama , Paraná , Brazil
| | - Sofia L Pedersen
- c Department of Zoology , University of Cambridge , Cambridge , UK
| | - Fabiana Dos Santos Rando
- d Center for Molecular, Structural and Functional Biology - CBM/COMCAP , Universidade Estadual de Maringá , Maringá , Paraná , Brazil
| | - José Renato Pattaro Júnior
- b Departamento de Tecnologia , Universidade Estadual de Maringá, campus Umuarama , Umuarama , Paraná , Brazil
| | - Daniel Caligari
- a Departamento de Biotecnologia, Genética e Biologia Celular , Universidade Estadual de Maringá , Maringá , Paraná , Brazil
| | - Anelise Cardoso Ramos
- a Departamento de Biotecnologia, Genética e Biologia Celular , Universidade Estadual de Maringá , Maringá , Paraná , Brazil
| | - Lorena Gomes Polizelli
- a Departamento de Biotecnologia, Genética e Biologia Celular , Universidade Estadual de Maringá , Maringá , Paraná , Brazil
| | | | - Quirino Alves de Lima Neto
- a Departamento de Biotecnologia, Genética e Biologia Celular , Universidade Estadual de Maringá , Maringá , Paraná , Brazil
| | - Torsten Krude
- c Department of Zoology , University of Cambridge , Cambridge , UK
| | | | - Maria Aparecida Fernandez
- a Departamento de Biotecnologia, Genética e Biologia Celular , Universidade Estadual de Maringá , Maringá , Paraná , Brazil
| |
Collapse
|
11
|
Driedonks TAP, Nolte-'t Hoen ENM. Circulating Y-RNAs in Extracellular Vesicles and Ribonucleoprotein Complexes; Implications for the Immune System. Front Immunol 2019; 9:3164. [PMID: 30697216 PMCID: PMC6340977 DOI: 10.3389/fimmu.2018.03164] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/21/2018] [Indexed: 12/25/2022] Open
Abstract
The exchange of extracellular vesicles (EV) between immune cells plays a role in various immune regulatory processes. EV are nano-sized lipid bilayer-enclosed structures that contain a multitude of proteins and small non-coding RNA molecules. Of the various RNA classes present in EV, miRNAs have been most intensively studied because of their known gene-regulatory functions. These miRNAs constitute only a minor part of all EV-enclosed RNA, whereas other 20–200 nt sized non-coding RNAs were shown to be abundantly present in EV. Several of these mid-sized RNAs perform basic functions in cells, but their function in EV remains elusive. One prominent class of mid-sized extracellular RNAs associated with EV are the Y-RNAs. This family of highly conserved non-coding RNAs was initially discovered as RNA component of circulating ribonucleoprotein autoantigens in serum from Systemic Lupus Erythematosus and Sjögren's Syndrome patients. Y-RNA has been implicated in cellular processes such as DNA replication and RNA quality control. In recent years, Y-RNA has been abundantly detected in EV from multiple different cell lines and biofluids, and also in murine and human retroviruses. Accumulating evidence suggests that EV-associated Y-RNA may be involved in a range of immune-related processes, including inflammation, immune suppression, and establishment of the tumor microenvironment. Moreover, changes in plasma levels of extracellular Y-RNA have been associated with various diseases. Recent studies have aimed to address the mechanisms underlying their release and function. We for example showed that the levels of EV-associated Y-RNA released by immune cells can be regulated by Toll-like receptor (TLR) signaling. Combined, these data have triggered increased interest in extracellular Y-RNAs. In this review, we provide an overview of studies reporting the occurrence of extracellular Y-RNAs, as well as signaling properties and immune-related functions attributed to these RNAs. We list RNA-binding proteins currently known to interact with Y-RNAs and evaluate their occurrence in EV. In parallel, we discuss technical challenges in assessing whether extracellular Y-RNAs are contained in ribonucleoprotein complexes or EV. By integrating the current knowledge on extracellular Y-RNA we further reflect on the biomarker potential of Y-RNA and their role in immune cell communication and immunopathology.
Collapse
Affiliation(s)
- Tom A P Driedonks
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Esther N M Nolte-'t Hoen
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
12
|
Abstract
Noncoding RNAs have essential biochemical functions in different areas of cellular metabolism, including protein synthesis, RNA splicing, protein secretion, and DNA replication. We have successfully used Morpholino antisense oligonucleotides for the functional inactivation of small noncoding RNAs required for DNA replication (Y RNAs in vertebrates and stem-bulge RNAs in nematodes). Here we discuss specific issues of targeting functional noncoding RNAs for inactivation by Morpholino antisense oligonucleotides. We present protocols for the design, preparation, and efficacy controls of Morpholino antisense oligonucleotides, as well as brief descriptions for their delivery into vertebrate and nematode embryos.
Collapse
|
13
|
Liu D, Qian W, Li D, Kong L. Ro60/SSA levels are increased and promote the progression of pancreatic ductal adenocarcinoma. Biochem Biophys Res Commun 2017; 495:2519-2524. [PMID: 29274781 DOI: 10.1016/j.bbrc.2017.12.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022]
Abstract
Ro60/SSA is a vital auto antigen that is targeted in Sjogren's syndrome and systemic lupus erythematosus (SLE). However, its role in solid cancers has rarely been reported. The present study investigated the expression and function of Ro60/SSA in the development of pancreatic ductal adenocarcinoma (PDAC) both in vitro and in vivo. Immunohistochemistry was used to examine the expression of Ro60/SSA in PDAC and normal pancreatic tissues by using tissue microarray chips. The results showed that Ro60/SSA expression was increased in PDAC tissues compared with normal pancreatic tissues. Knockdown of Ro60/SSA by siRNA transfection significantly decreased cell proliferation and invasion in vitro. Furthermore, knockdown of Ro60/SSA inhibited the growth of subcutaneous tumors in vivo. Taken together, the current study provides evidence of new function of Ro60/SSA in the development of cancer. It facilitates pancreatic cancer proliferation, migration and invasion. Therefore, it may represent a novel molecular target for the management of pancreatic cancer.
Collapse
Affiliation(s)
- Dan Liu
- Department of Gastroenteology and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Wenbiao Qian
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Deliang Li
- Department of Gastroenteology and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Lingjian Kong
- Department of Gastroenteology and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
14
|
Cambier L, de Couto G, Ibrahim A, Echavez AK, Valle J, Liu W, Kreke M, Smith RR, Marbán L, Marbán E. Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion. EMBO Mol Med 2017; 9:337-352. [PMID: 28167565 PMCID: PMC5331234 DOI: 10.15252/emmm.201606924] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cardiosphere‐derived cells (CDCs) reduce myocardial infarct size via secreted extracellular vesicles (CDC‐EVs), including exosomes, which alter macrophage polarization. We questioned whether short non‐coding RNA species of unknown function within CDC‐EVs contribute to cardioprotection. The most abundant RNA species in CDC‐EVs is a Y RNA fragment (EV‐YF1); its relative abundance in CDC‐EVs correlates with CDC potency in vivo. Fluorescently labeled EV‐YF1 is actively transferred from CDCs to target macrophages via CDC‐EVs. Direct transfection of macrophages with EV‐YF1 induced transcription and secretion of IL‐10. When cocultured with rat cardiomyocytes, EV‐YF1‐primed macrophages were potently cytoprotective toward oxidatively stressed cardiomyocytes through induction of IL‐10. In vivo, intracoronary injection of EV‐YF1 following ischemia/reperfusion reduced infarct size. A fragment of Y RNA, highly enriched in CDC‐EVs, alters Il10 gene expression and enhances IL‐10 protein secretion. The demonstration that EV‐YF1 confers cardioprotection highlights the potential importance of diverse exosomal contents of unknown function, above and beyond the usual suspects (e.g., microRNAs and proteins).
Collapse
Affiliation(s)
- Linda Cambier
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Geoffrey de Couto
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Antonio K Echavez
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jackelyn Valle
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Weixin Liu
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | | | - Eduardo Marbán
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
15
|
PARN Modulates Y RNA Stability and Its 3'-End Formation. Mol Cell Biol 2017; 37:MCB.00264-17. [PMID: 28760775 DOI: 10.1128/mcb.00264-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/24/2017] [Indexed: 11/20/2022] Open
Abstract
Loss-of-function mutations in 3'-to-5' exoribonucleases have been implicated in hereditary human diseases. For example, PARN mutations cause a severe form of dyskeratosis congenita (DC), wherein PARN deficiency leads to human telomerase RNA instability. Since the DC phenotype in PARN patients is even more severe than that of loss-of-function alleles in telomerase components, we hypothesized that PARN would also be required for the stability of other RNAs. Here, we show that PARN depletion reduces the levels of abundant human Y RNAs, which might contribute to the severe phenotype of DC observed in patients. Depletion of PAPD5 or the cytoplasmic exonuclease DIS3L rescues the effect of PARN depletion on Y RNA levels, suggesting that PARN stabilizes Y RNAs by removing oligoadenylated tails added by PAPD5, which would otherwise recruit DIS3L for Y RNA degradation. Through deep sequencing of 3' ends, we provide evidence that PARN can also deadenylate the U6 and RMRP RNAs without affecting their levels. Moreover, we observed widespread posttranscriptional oligoadenylation, uridylation, and guanylation of U6 and Y RNA 3' ends, suggesting that in mammalian cells, the formation of a 3' end for noncoding RNAs can be a complex process governed by the activities of various 3'-end polymerases and exonucleases.
Collapse
|
16
|
Kheir E, Krude T. Non-coding Y RNAs associate with early replicating euchromatin in concordance with the origin recognition complex. J Cell Sci 2017; 130:1239-1250. [PMID: 28235841 DOI: 10.1242/jcs.197566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/13/2017] [Indexed: 12/18/2022] Open
Abstract
Non-coding Y RNAs are essential for the initiation of chromosomal DNA replication in vertebrates, yet their association with chromatin during the cell cycle is not characterised. Here, we quantify human Y RNA levels in soluble and chromatin-associated intracellular fractions and investigate, topographically, their dynamic association with chromatin during the cell cycle. We find that, on average, about a million Y RNA molecules are present in the soluble fraction of a proliferating cell, and 5-10-fold less are in association with chromatin. These levels decrease substantially during quiescence. No significant differences are apparent between cancer and non-cancer cell lines. Y RNAs associate with euchromatin throughout the cell cycle. Their levels are 2-4-fold higher in S phase than in G1 phase or mitosis. Y RNAs are not detectable at active DNA replication foci, and re-associate with replicated euchromatin during mid and late S phase. The dynamics and sites of Y1 RNA association with chromatin are in concordance with those of the origin recognition complex (ORC). Our data therefore suggest a functional role of Y RNAs in a common pathway with ORC.
Collapse
Affiliation(s)
- Eyemen Kheir
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Torsten Krude
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
17
|
de Lima Neto QA, Duarte Junior FF, Bueno PSA, Seixas FAV, Kowalski MP, Kheir E, Krude T, Fernandez MA. Structural and functional analysis of four non-coding Y RNAs from Chinese hamster cells: identification, molecular dynamics simulations and DNA replication initiation assays. BMC Mol Biol 2016; 17:1. [PMID: 26733090 PMCID: PMC4702372 DOI: 10.1186/s12867-015-0053-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/21/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The genes coding for Y RNAs are evolutionarily conserved in vertebrates. These non-coding RNAs are essential for the initiation of chromosomal DNA replication in vertebrate cells. However thus far, no information is available about Y RNAs in Chinese hamster cells, which have already been used to detect replication origins and alternative DNA structures around these sites. Here, we report the gene sequences and predicted structural characteristics of the Chinese hamster Y RNAs, and analyze their ability to support the initiation of chromosomal DNA replication in vitro. RESULTS We identified DNA sequences in the Chinese hamster genome of four Y RNAs (chY1, chY3, chY4 and chY5) with upstream promoter sequences, which are homologous to the four main types of vertebrate Y RNAs. The chY1, chY3 and chY5 genes were highly conserved with their vertebrate counterparts, whilst the chY4 gene showed a relatively high degree of diversification from the other vertebrate Y4 genes. Molecular dynamics simulations suggest that chY4 RNA is structurally stable despite its evolutionarily divergent predicted stem structure. Of the four Y RNA genes present in the hamster genome, we found that only the chY1 and chY3 RNA were strongly expressed in the Chinese hamster GMA32 cell line, while expression of the chY4 and chY5 RNA genes was five orders of magnitude lower, suggesting that they may in fact not be expressed. We synthesized all four chY RNAs and showed that any of these four could support the initiation of DNA replication in an established human cell-free system. CONCLUSIONS These data therefore establish that non-coding chY RNAs are stable structures and can substitute for human Y RNAs in a reconstituted cell-free DNA replication initiation system. The pattern of Y RNA expression and functionality is consistent with Y RNAs of other rodents, including mouse and rat.
Collapse
Affiliation(s)
- Quirino Alves de Lima Neto
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná, 87020-900, Brazil.
| | - Francisco Ferreira Duarte Junior
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná, 87020-900, Brazil.
| | | | | | | | - Eyemen Kheir
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Torsten Krude
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Maria Aparecida Fernandez
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná, 87020-900, Brazil.
| |
Collapse
|
18
|
Chakrabortty SK, Prakash A, Nechooshtan G, Hearn S, Gingeras TR. Extracellular vesicle-mediated transfer of processed and functional RNY5 RNA. RNA (NEW YORK, N.Y.) 2015; 21:1966-79. [PMID: 26392588 PMCID: PMC4604435 DOI: 10.1261/rna.053629.115] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 05/22/2023]
Abstract
Extracellular vesicles (EVs) have been proposed as a means to promote intercellular communication. We show that when human primary cells are exposed to cancer cell EVs, rapid cell death of the primary cells is observed, while cancer cells treated with primary or cancer cell EVs do not display this response. The active agents that trigger cell death are 29- to 31-nucleotide (nt) or 22- to 23-nt processed fragments of an 83-nt primary transcript of the human RNY5 gene that are highly likely to be formed within the EVs. Primary cells treated with either cancer cell EVs, deproteinized total RNA from either primary or cancer cell EVs, or synthetic versions of 31- and 23-nt fragments trigger rapid cell death in a dose-dependent manner. The transfer of processed RNY5 fragments through EVs may reflect a novel strategy used by cancer cells toward the establishment of a favorable microenvironment for their proliferation and invasion.
Collapse
Affiliation(s)
| | - Ashwin Prakash
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Gal Nechooshtan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Stephen Hearn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Thomas R Gingeras
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
19
|
Kowalski MP, Krude T. Functional roles of non-coding Y RNAs. Int J Biochem Cell Biol 2015; 66:20-9. [PMID: 26159929 PMCID: PMC4726728 DOI: 10.1016/j.biocel.2015.07.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/03/2015] [Accepted: 07/04/2015] [Indexed: 12/20/2022]
Abstract
Non-coding RNAs are involved in a multitude of cellular processes but the biochemical function of many small non-coding RNAs remains unclear. The family of small non-coding Y RNAs is conserved in vertebrates and related RNAs are present in some prokaryotic species. Y RNAs are also homologous to the newly identified family of non-coding stem-bulge RNAs (sbRNAs) in nematodes, for which potential physiological functions are only now emerging. Y RNAs are essential for the initiation of chromosomal DNA replication in vertebrates and, when bound to the Ro60 protein, they are involved in RNA stability and cellular responses to stress in several eukaryotic and prokaryotic species. Additionally, short fragments of Y RNAs have recently been identified as abundant components in the blood and tissues of humans and other mammals, with potential diagnostic value. While the number of functional roles of Y RNAs is growing, it is becoming increasingly clear that the conserved structural domains of Y RNAs are essential for distinct cellular functions. Here, we review the biochemical functions associated with these structural RNA domains, as well as the functional conservation of Y RNAs in different species. The existing biochemical and structural evidence supports a domain model for these small non-coding RNAs that has direct implications for the modular evolution of functional non-coding RNAs.
Collapse
Affiliation(s)
- Madzia P Kowalski
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | - Torsten Krude
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom.
| |
Collapse
|
20
|
Kowalski MP, Baylis HA, Krude T. Non-coding stem-bulge RNAs are required for cell proliferation and embryonic development in C. elegans. J Cell Sci 2015; 128:2118-29. [PMID: 25908866 PMCID: PMC4450293 DOI: 10.1242/jcs.166744] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/06/2015] [Indexed: 12/21/2022] Open
Abstract
Stem bulge RNAs (sbRNAs) are a family of small non-coding stem-loop RNAs present in Caenorhabditis elegans and other nematodes, the function of which is unknown. Here, we report the first functional characterisation of nematode sbRNAs. We demonstrate that sbRNAs from a range of nematode species are able to reconstitute the initiation of chromosomal DNA replication in the presence of replication proteins in vitro, and that conserved nucleotide sequence motifs are essential for this function. By functionally inactivating sbRNAs with antisense morpholino oligonucleotides, we show that sbRNAs are required for S phase progression, early embryonic development and the viability of C. elegans in vivo. Thus, we demonstrate a new and essential role for sbRNAs during the early development of C. elegans. sbRNAs show limited nucleotide sequence similarity to vertebrate Y RNAs, which are also essential for the initiation of DNA replication. Our results therefore establish that the essential function of small non-coding stem-loop RNAs during DNA replication extends beyond vertebrates.
Collapse
Affiliation(s)
- Madzia P Kowalski
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Howard A Baylis
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Torsten Krude
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
21
|
Duarte Junior FF, de Lima Neto QA, Rando FDS, de Freitas DVB, Pattaro Júnior JR, Polizelli LG, Munhoz REF, Seixas FAV, Fernandez MA. Identification and molecular structure analysis of a new noncoding RNA, a sbRNA homolog, in the silkworm Bombyx mori genome. MOLECULAR BIOSYSTEMS 2014; 11:801-8. [PMID: 25521575 DOI: 10.1039/c4mb00595c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The small noncoding group of RNAs called stem-bulge RNAs (sbRNAs), first reported in Caenorhabditis elegans, is described as molecules homologous to the Y RNAs, a specific class of noncoding RNAs that is present in vertebrates. This homology indicates the possibility of the existence of sbRNAs in other invertebrate organisms. In this work, we used bioinformatic tools and conserved sequences of sbRNAs from C. Elegans and Y RNAs to search for homologous sbRNA sequences in the Bombyx mori genome. This analysis led to the discovery of one noncoding gene, which was translated into RNA segments and comparatively analysed with segments from human and hamster Y RNAs and C. elegans sbRNAs in molecular dynamic simulations. This gene represents the first evidence for a new sbRNA-like noncoding RNA, the BmsbRNA gene, in this Lepidoptera genome.
Collapse
Affiliation(s)
- Francisco Ferreira Duarte Junior
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900, Maringá, Paraná, Brasil.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Beatty M, Guduric-Fuchs J, Brown E, Bridgett S, Chakravarthy U, Hogg RE, Simpson DA. Small RNAs from plants, bacteria and fungi within the order Hypocreales are ubiquitous in human plasma. BMC Genomics 2014; 15:933. [PMID: 25344700 PMCID: PMC4230795 DOI: 10.1186/1471-2164-15-933] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 10/16/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The human microbiome plays a significant role in maintaining normal physiology. Changes in its composition have been associated with bowel disease, metabolic disorders and atherosclerosis. Sequences of microbial origin have been observed within small RNA sequencing data obtained from blood samples. The aim of this study was to characterise the microbiome from which these sequences are derived. RESULTS Abundant non-human small RNA sequences were identified in plasma and plasma exosomal samples. Assembly of these short sequences into longer contigs was the pivotal novel step in ascertaining their origin by BLAST searches. Most reads mapped to rRNA sequences. The taxonomic profiles of the microbes detected were very consistent between individuals but distinct from microbiomes reported at other sites. The majority of bacterial reads were from the phylum Proteobacteria, whilst for 5 of 6 individuals over 90% of the more abundant fungal reads were from the phylum Ascomycota; of these over 90% were from the order Hypocreales. Many contigs were from plants, presumably of dietary origin. In addition, extremely abundant small RNAs derived from human Y RNAs were detected. CONCLUSIONS A characteristic profile of a subset of the human microbiome can be obtained by sequencing small RNAs present in the blood. The source and functions of these molecules remain to be determined, but the specific profiles are likely to reflect health status. The potential to provide biomarkers of diet and for the diagnosis and prognosis of human disease is immense.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David Arthur Simpson
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
23
|
Wang I, Kowalski MP, Langley AR, Rodriguez R, Balasubramanian S, Hsu STD, Krude T. Nucleotide contributions to the structural integrity and DNA replication initiation activity of noncoding y RNA. Biochemistry 2014; 53:5848-63. [PMID: 25151917 DOI: 10.1021/bi500470b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Noncoding Y RNAs are small stem-loop RNAs that are involved in different cellular processes, including the regulation of DNA replication. An evolutionarily conserved small domain in the upper stem of vertebrate Y RNAs has an essential function for the initiation of chromosomal DNA replication. Here we provide a structure-function analysis of this essential RNA domain under physiological conditions. Solution state nuclear magnetic resonance and far-ultraviolet circular dichroism spectroscopy show that the upper stem domain of human Y1 RNA adopts a locally destabilized A-form helical structure involving eight Watson-Crick base pairs. Within this helix, two G:C base pairs are highly stable even at elevated temperatures and therefore may serve as clamps to maintain the local structure of the helix. These two stable G:C base pairs frame three unstable base pairs, which are located centrally between them. Systematic substitution mutagenesis results in a disruption of the ordered A-form helical structure and in the loss of DNA replication initiation activity, establishing a positive correlation between folding stability and function. Our data thus provide a structural basis for the evolutionary conservation of key nucleotides in this RNA domain that are essential for the functionality of noncoding Y RNAs during the initiation of DNA replication.
Collapse
Affiliation(s)
- Iren Wang
- Institute of Biological Chemistry, Academia Sinica , 128, Section 2, Academia Road, Taipei 11529, Taiwan
| | | | | | | | | | | | | |
Collapse
|
24
|
Dhahbi JM. Circulating small noncoding RNAs as biomarkers of aging. Ageing Res Rev 2014; 17:86-98. [PMID: 24607831 DOI: 10.1016/j.arr.2014.02.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 12/31/2022]
Abstract
Small noncoding RNAs (sncRNAs) mediate a variety of cellular functions in animals and plants. Deep sequencing has made it possible to obtain highly detailed information on the types and abundance of sncRNAs in biological specimens, leading to the discovery that sncRNAs circulate in the blood of humans and mammals. The most abundant types of circulating sncRNAs are microRNAs (miRNAs), 5' transfer RNA (tRNA) halves, and YRNA fragments, with minute amounts of other types that may nevertheless be significant. Of the more abundant circulating sncRNAs only miRNAs have well described functions, but characteristics of the others suggest specific processing and secretion as complexes that protect the RNA from degradation. The properties of circulating sncRNAs are consistent with their serving as signaling molecules, and investigations of circulating miRNAs support the view that they can enter cells and regulate cellular functions. The serum levels of specific sncRNAs change markedly with age, and these changes can be mitigated by calorie restriction (CR), indicating that levels are under physiologic control. The ability of circulating sncRNAs to transmit functions between cells and to regulate a broad spectrum of cellular functions, and the changes in their levels with age, implicate them in the manifestations of aging. Our understanding of the functions of circulating sncRNA, particularly in relation to aging, is currently at a very early stage; results to date suggest that more extensive investigation will yield important insights into mechanisms of aging.
Collapse
Affiliation(s)
- Joseph M Dhahbi
- Department of Biochemistry, University of California at Riverside, Riverside, CA 92521, USA; Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA.
| |
Collapse
|
25
|
Vojtech L, Woo S, Hughes S, Levy C, Ballweber L, Sauteraud RP, Strobl J, Westerberg K, Gottardo R, Tewari M, Hladik F. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res 2014; 42:7290-304. [PMID: 24838567 PMCID: PMC4066774 DOI: 10.1093/nar/gku347] [Citation(s) in RCA: 413] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/01/2014] [Accepted: 04/11/2014] [Indexed: 12/21/2022] Open
Abstract
Semen contains relatively ill-defined regulatory components that likely aid fertilization, but which could also interfere with defense against infection. Each ejaculate contains trillions of exosomes, membrane-enclosed subcellular microvesicles, which have immunosuppressive effects on cells important in the genital mucosa. Exosomes in general are believed to mediate inter-cellular communication, possibly by transferring small RNA molecules. We found that seminal exosome (SE) preparations contain a substantial amount of RNA from 20 to 100 nucleotides (nts) in length. We sequenced 20-40 and 40-100 nt fractions of SE RNA separately from six semen donors. We found various classes of small non-coding RNA, including microRNA (21.7% of the RNA in the 20-40 nt fraction) as well as abundant Y RNAs and tRNAs present in both fractions. Specific RNAs were consistently present in all donors. For example, 10 (of ∼2600 known) microRNAs constituted over 40% of mature microRNA in SE. Additionally, tRNA fragments were strongly enriched for 5'-ends of 18-19 or 30-34 nts in length; such tRNA fragments repress translation. Thus, SE could potentially deliver regulatory signals to the recipient mucosa via transfer of small RNA molecules.
Collapse
Affiliation(s)
- Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA
| | - Sangsoon Woo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Sean Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA
| | - Claire Levy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Lamar Ballweber
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Renan P Sauteraud
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Johanna Strobl
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Katharine Westerberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA Department of Medicine, University of Washington, Seattle, USA
| | - Muneesh Tewari
- Department of Medicine, University of Washington, Seattle, USA Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA Department of Medicine, University of Washington, Seattle, USA
| |
Collapse
|
26
|
Wolin SL, Belair C, Boccitto M, Chen X, Sim S, Taylor DW, Wang HW. Non-coding Y RNAs as tethers and gates: Insights from bacteria. RNA Biol 2013; 10:1602-8. [PMID: 24036917 DOI: 10.4161/rna.26166] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Non-coding RNAs (ncRNAs) called Y RNAs are abundant components of both animal cells and a variety of bacteria. In all species examined, these ~100 nt RNAs are bound to the Ro 60 kDa (Ro60) autoantigen, a ring-shaped protein that also binds misfolded ncRNAs in some vertebrate nuclei. Although the function of Ro60 RNPs has been mysterious, we recently reported that a bacterial Y RNA tethers Ro60 to the 3' to 5' exoribonuclease polynucleotide phosphorylase (PNPase) to form RYPER (Ro60/Y RNA/PNPase Exoribonuclease RNP), a new RNA degradation machine. PNPase is a homotrimeric ring that degrades single-stranded RNA, and Y RNA-mediated tethering of Ro60 increases the effectiveness of PNPase in degrading structured RNAs. Single particle electron microscopy of RYPER suggests that RNA threads through the Ro60 ring into the PNPase cavity. Further studies indicate that Y RNAs may also act as gates to regulate entry of RNA substrates into the Ro60 channel. These findings reveal novel functions for Y RNAs and raise questions about how the bacterial findings relate to the roles of these ncRNAs in animal cells. Here we review the literature on Y RNAs, highlighting their close relationship with Ro60 proteins and the hypothesis that these ncRNAs function generally to tether Ro60 rings to diverse RNA-binding proteins.
Collapse
Affiliation(s)
- Sandra L Wolin
- Department of Cell Biology; Yale School of Medicine; New Haven, CT USA; Department of Molecular Biophysics and Biochemistry; Yale School of Medicine; New Haven, CT USA
| | - Cedric Belair
- Department of Cell Biology; Yale School of Medicine; New Haven, CT USA
| | - Marco Boccitto
- Department of Cell Biology; Yale School of Medicine; New Haven, CT USA
| | - Xinguo Chen
- Department of Cell Biology; Yale School of Medicine; New Haven, CT USA
| | - Soyeong Sim
- Department of Cell Biology; Yale School of Medicine; New Haven, CT USA
| | - David W Taylor
- Department of Molecular Biophysics and Biochemistry; Yale School of Medicine; New Haven, CT USA
| | - Hong-Wei Wang
- Department of Molecular Biophysics and Biochemistry; Yale School of Medicine; New Haven, CT USA; Tsinghua-Peking Center for Life Sciences; School of Life Sciences; Tsinghua University; Beijing, P.R. China
| |
Collapse
|
27
|
Köhn M, Pazaitis N, Hüttelmaier S. Why YRNAs? About Versatile RNAs and Their Functions. Biomolecules 2013; 3:143-56. [PMID: 24970161 PMCID: PMC4030889 DOI: 10.3390/biom3010143] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 01/27/2013] [Accepted: 01/31/2013] [Indexed: 11/20/2022] Open
Abstract
Y RNAs constitute a family of highly conserved small noncoding RNAs (in humans: 83-112 nt; Y1, Y3, Y4 and Y5). They are transcribed from individual genes by RNA-polymerase III and fold into conserved stem-loop-structures. Although discovered 30 years ago, insights into the cellular and physiological role of Y RNAs remains incomplete. In this review, we will discuss knowledge on the structural properties, associated proteins and discuss proposed functions of Y RNAs. We suggest Y RNAs to be an integral part of ribonucleoprotein networks within cells and could therefore have substantial influence on many different cellular processes. Putative functions of Y RNAs include small RNA quality control, DNA replication, regulation of the cellular stress response and proliferation. This suggests Y RNAs as essential regulators of cell fate and indicates future avenues of research, which will provide novel insights into the role of small noncoding RNAs in gene expression.
Collapse
Affiliation(s)
- Marcel Köhn
- Martin-Luther-University Halle-Wittenberg, Institute of Molecular Medicine, Section Molecular Cell Biology, ZAMED, Heinrich-Damerow-Str.1, D-6120 Halle, Germany.
| | - Nikolaos Pazaitis
- Martin-Luther-University Halle-Wittenberg, Institute of Molecular Medicine, Section Molecular Cell Biology, ZAMED, Heinrich-Damerow-Str.1, D-6120 Halle, Germany.
| | - Stefan Hüttelmaier
- Martin-Luther-University Halle-Wittenberg, Institute of Molecular Medicine, Section Molecular Cell Biology, ZAMED, Heinrich-Damerow-Str.1, D-6120 Halle, Germany.
| |
Collapse
|
28
|
Shen Z, Prasanth SG. Emerging players in the initiation of eukaryotic DNA replication. Cell Div 2012; 7:22. [PMID: 23075259 PMCID: PMC3520825 DOI: 10.1186/1747-1028-7-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 10/12/2012] [Indexed: 12/23/2022] Open
Abstract
Faithful duplication of the genome in eukaryotes requires ordered assembly of a multi-protein complex called the pre-replicative complex (pre-RC) prior to S phase; transition to the pre-initiation complex (pre-IC) at the beginning of DNA replication; coordinated progression of the replisome during S phase; and well-controlled regulation of replication licensing to prevent re-replication. These events are achieved by the formation of distinct protein complexes that form in a cell cycle-dependent manner. Several components of the pre-RC and pre-IC are highly conserved across all examined eukaryotic species. Many of these proteins, in addition to their bona fide roles in DNA replication are also required for other cell cycle events including heterochromatin organization, chromosome segregation and centrosome biology. As the complexity of the genome increases dramatically from yeast to human, additional proteins have been identified in higher eukaryotes that dictate replication initiation, progression and licensing. In this review, we discuss the newly discovered components and their roles in cell cycle progression.
Collapse
Affiliation(s)
- Zhen Shen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S, Goodwin Avenue, Urbana, IL 61801, USA.
| | | |
Collapse
|
29
|
St Laurent G, Shtokalo D, Heydarian M, Palyanov A, Babiy D, Zhou J, Kumar A, Urcuqui-Inchima S. Insights from the HuR-interacting transcriptome: ncRNAs, ubiquitin pathways, and patterns of secondary structure dependent RNA interactions. Mol Genet Genomics 2012; 287:867-79. [PMID: 23052832 DOI: 10.1007/s00438-012-0722-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/17/2012] [Indexed: 12/22/2022]
Abstract
The HuR protein regulates the expression of thousands of cellular transcripts by modulating mRNA splicing, trafficking, translation, and stability. Although it serves as a model of RNA-protein interactions, many features of HuR's interactions with RNAs remain unknown. In this report, we deployed the cryogenic RNA immunoprecipitation technique to analyze HuR-interacting RNAs with the Affymetrix all-exon microarray platform. We revealed several thousand novel HuR-interacting RNAs, including hundreds of non-coding RNAs such as natural antisense transcripts from stress responsive loci. To gain insight into the mechanisms of specificity and sensitivity of HuR's interaction with its target RNAs, we searched HuR-interacting RNAs for composite patterns of primary sequence and secondary structure. We provide evidence that secondary structures of 66-75 nucleotides enhance HuR's recognition of its specific RNA targets composed of short primary sequence patterns. We validated thousands of these RNAs by analysis of overlap with recently published findings, including HuR's interaction with RNAs in the pathways of RNA splicing and stability. Finally, we observed a striking enrichment for members of ubiquitin ligase pathways among the HuR-interacting mRNAs, suggesting a new role for HuR in the regulation of protein degradation to mirror its known function in protein translation.
Collapse
Affiliation(s)
- Georges St Laurent
- Grupo de Inmunovirologia, Universidad de Antioquia, Calle 67 Número 53-108, Medellin, Antioquia, Colombia.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Selvakumar T, Gjidoda A, Hovde SL, Henry RW. Regulation of human RNA polymerase III transcription by DNMT1 and DNMT3a DNA methyltransferases. J Biol Chem 2012; 287:7039-50. [PMID: 22219193 DOI: 10.1074/jbc.m111.285601] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human small nuclear RNA (snRNA) and small cytoplasmic RNA (scRNA) gene families encode diverse non-coding RNAs that influence cellular growth and division. Many snRNA and scRNA genes are related via their compact and yet powerful promoters that support RNA polymerase III transcription. We have utilized the human U6 snRNA gene family to examine the mechanism for regulated transcription of these potent transcription units. Analysis of nine U6 family members showed enriched CpG density within the promoters of actively transcribed loci relative to inert genes, implying a relationship between gene potency and DNA methylation. Indeed, both pharmacological inhibition of DNA methyltransferase (DNMT) activity and the forced diminution of DNMT-1, DNMT-3a, and DNMT-3b by siRNA targeting resulted in increased U6 levels in asynchronously growing MCF7 adenocarcinoma cells. In vitro transcription assays further showed that template methylation impedes U6 transcription by RNA polymerase III. Both DNMT-1 and DNMT-3a were detected at the U6-1 locus by chromatin immunoprecipitation directly linking these factors to RNA polymerase III regulation. Despite this association, the endogenous U6-1 locus was not substantially methylated in actively growing cells. However, both DNMT occupancy and low frequency methylation were correlated with increased Retinoblastoma tumor suppressor (RB) expression, suggesting that the RB status can influence specific epigenetic marks.
Collapse
Affiliation(s)
- Tharakeswari Selvakumar
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
31
|
The midblastula transition defines the onset of Y RNA-dependent DNA replication in Xenopus laevis. Mol Cell Biol 2011; 31:3857-70. [PMID: 21791613 DOI: 10.1128/mcb.05411-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Noncoding Y RNAs are essential for the initiation of chromosomal DNA replication in mammalian cell extracts, but their role in this process during early vertebrate development is unknown. Here, we use antisense morpholino nucleotides (MOs) to investigate Y RNA function in Xenopus laevis and zebrafish embryos. We show that embryos in which Y RNA function is inhibited by MOs develop normally until the midblastula transition (MBT) but then fail to replicate their DNA and die before gastrulation. Consistent with this observation, Y RNA function is not required for DNA replication in Xenopus egg extracts but is required for replication in a post-MBT cell line. Y RNAs do not bind chromatin in karyomeres before MBT, but they associate with interphase nuclei after MBT in an origin recognition complex (ORC)-dependent manner. Y RNA-specific MOs inhibit the association of Y RNAs with ORC, Cdt1, and HMGA1a proteins, suggesting that these molecular associations are essential for Y RNA function in DNA replication. The MBT is thus a transition point between Y RNA-independent and Y RNA-dependent control of vertebrate DNA replication. Our data suggest that in vertebrates Y RNAs function as a developmentally regulated layer of control over the evolutionarily conserved eukaryotic DNA replication machinery.
Collapse
|
32
|
Verhagen APM, Pruijn GJM. Are the Ro RNP-associated Y RNAs concealing microRNAs? Y RNA-derived miRNAs may be involved in autoimmunity. Bioessays 2011; 33:674-82. [PMID: 21735459 DOI: 10.1002/bies.201100048] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 06/06/2011] [Accepted: 06/09/2011] [Indexed: 12/21/2022]
Abstract
Here we discuss the hypothesis that the RNA components of the Ro ribonucleoproteins (RNPs), the Y RNAs, can be processed into microRNAs (miRNAs). Although Ro RNPs, whose main protein components Ro60 and La are targeted by the immune system in several autoimmune diseases, were discovered many years ago, their function is still poorly understood. Indeed, recent data show that miRNA-sized small RNAs can be generated from Y RNAs. This hypothesis leads also to a model in which Ro60 acts as a modulator in the Y RNA-derived miRNA biogenesis pathway. The implications of these Y RNA-derived miRNAs, which may be specifically produced under pathological circumstances such as in autoimmunity or during viral infections, for the enigmatic function of Ro RNPs are discussed.
Collapse
Affiliation(s)
- Anja P M Verhagen
- Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | |
Collapse
|
33
|
Zhang AT, Langley AR, Christov CP, Kheir E, Shafee T, Gardiner TJ, Krude T. Dynamic interaction of Y RNAs with chromatin and initiation proteins during human DNA replication. J Cell Sci 2011; 124:2058-69. [PMID: 21610089 DOI: 10.1242/jcs.086561] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Non-coding Y RNAs are required for the initiation of chromosomal DNA replication in mammalian cells. It is unknown how they perform this function or if they associate with a nuclear structure during DNA replication. Here, we investigate the association of Y RNAs with chromatin and their interaction with replication proteins during DNA replication in a human cell-free system. Our results show that fluorescently labelled Y RNAs associate with unreplicated euchromatin in late G1 phase cell nuclei before the initiation of DNA replication. Following initiation, Y RNAs are displaced locally from nascent and replicated DNA present in replication foci. In intact human cells, a substantial fraction of endogenous Y RNAs are associated with G1 phase nuclei, but not with G2 phase nuclei. Y RNAs interact and colocalise with the origin recognition complex (ORC), the pre-replication complex (pre-RC) protein Cdt1, and other proteins implicated in the initiation of DNA replication. These data support a molecular 'catch and release' mechanism for Y RNA function during the initiation of chromosomal DNA replication, which is consistent with Y RNAs acting as replication licensing factors.
Collapse
Affiliation(s)
- Alice Tianbu Zhang
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB23EJ, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Langley AR, Chambers H, Christov CP, Krude T. Ribonucleoprotein particles containing non-coding Y RNAs, Ro60, La and nucleolin are not required for Y RNA function in DNA replication. PLoS One 2010; 5:e13673. [PMID: 21060685 PMCID: PMC2965120 DOI: 10.1371/journal.pone.0013673] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 10/06/2010] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Ro ribonucleoprotein particles (Ro RNPs) consist of a non-coding Y RNA bound by Ro60, La and possibly other proteins. The physiological function of Ro RNPs is controversial as divergent functions have been reported for its different constituents. We have recently shown that Y RNAs are essential for the initiation of mammalian chromosomal DNA replication, whereas Ro RNPs are implicated in RNA stability and RNA quality control. Therefore, we investigate here the functional consequences of RNP formation between Ro60, La and nucleolin proteins with hY RNAs for human chromosomal DNA replication. METHODOLOGY/PRINCIPAL FINDINGS We first immunoprecipitated Ro60, La and nucleolin together with associated hY RNAs from HeLa cytosolic cell extract, and analysed the protein and RNA compositions of these precipitated RNPs by Western blotting and quantitative RT-PCR. We found that Y RNAs exist in several RNP complexes. One RNP comprises Ro60, La and hY RNA, and a different RNP comprises nucleolin and hY RNA. In addition about 50% of the Y RNAs in the extract are present outside of these two RNPs. Next, we immunodepleted these RNP complexes from the cytosolic extract and tested the ability of the depleted extracts to reconstitute DNA replication in a human cell-free system. We found that depletion of these RNP complexes from the cytosolic extract does not inhibit DNA replication in vitro. Finally, we tested if an excess of recombinant pure Ro or La protein inhibits Y RNA-dependent DNA replication in this cell-free system. We found that Ro60 and La proteins do not inhibit DNA replication in vitro. CONCLUSIONS/SIGNIFICANCE We conclude that RNPs containing hY RNAs and Ro60, La or nucleolin are not required for the function of hY RNAs in chromosomal DNA replication in a human cell-free system, which can be mediated by Y RNAs outside of these RNPs. These data suggest that Y RNAs can support different cellular functions depending on associated proteins.
Collapse
Affiliation(s)
| | - Helen Chambers
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | | | - Torsten Krude
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
35
|
Boria I, Gruber AR, Tanzer A, Bernhart SH, Lorenz R, Mueller MM, Hofacker IL, Stadler PF. Nematode sbRNAs: Homologs of Vertebrate Y RNAs. J Mol Evol 2010; 70:346-58. [DOI: 10.1007/s00239-010-9332-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 03/01/2010] [Indexed: 01/20/2023]
|
36
|
Abstract
The machinery required for the replication of eukaryotic chromosomal DNA is made up of proteins whose function, structure and main interaction partners are evolutionarily conserved. Several new cases have been reported recently, however, in which non-coding RNAs play additional and specialised roles in the initiation of eukaryotic DNA replication in different classes of organisms. These non-coding RNAs include Y RNAs in vertebrate somatic cells, 26T RNA in somatic macronuclei of the ciliate Tetrahymena, and G-rich RNA in the Epstein-Barr DNA tumour virus and its human host cells. Here, I will give an overview of the experimental evidence in favour of roles for these non-coding RNAs in the regulation of eukaryotic DNA replication, and compare and contrast their biosynthesis and mechanisms of action.
Collapse
|
37
|
Krude T, Christov CP, Hyrien O, Marheineke K. Y RNA functions at the initiation step of mammalian chromosomal DNA replication. J Cell Sci 2009; 122:2836-45. [PMID: 19657016 DOI: 10.1242/jcs.047563] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Non-coding Y RNAs have recently been identified as essential novel factors for chromosomal DNA replication in mammalian cell nuclei, but mechanistic details of their function have not been defined. Here, we identify the execution point for Y RNA function during chromosomal DNA replication in a mammalian cell-free system. We determined the effect of degradation of Y3 RNA on replication origin activation and on fork progression rates at single-molecule resolution by DNA combing and nascent-strand analysis. Degradation of Y3 RNA inhibits the establishment of new DNA replication forks at the G1- to S-phase transition and during S phase. This inhibition is negated by addition of exogenous Y1 RNA. By contrast, progression rates of DNA replication forks are not affected by degradation of Y3 RNA or supplementation with exogenous Y1 RNA. These data indicate that Y RNAs are required for the establishment, but not for the elongation, of chromosomal DNA replication forks in mammalian cell nuclei. We conclude that the execution point for non-coding Y RNA function is the activation of chromosomal DNA replication origins.
Collapse
Affiliation(s)
- Torsten Krude
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK.
| | | | | | | |
Collapse
|