1
|
Townshend B, Xiang JS, Manzanarez G, Hayden EJ, Smolke CD. A multiplexed, automated evolution pipeline enables scalable discovery and characterization of biosensors. Nat Commun 2021; 12:1437. [PMID: 33664255 PMCID: PMC7933316 DOI: 10.1038/s41467-021-21716-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 02/08/2021] [Indexed: 02/08/2023] Open
Abstract
Biosensors are key components in engineered biological systems, providing a means of measuring and acting upon the large biochemical space in living cells. However, generating small molecule sensing elements and integrating them into in vivo biosensors have been challenging. Here, using aptamer-coupled ribozyme libraries and a ribozyme regeneration method, de novo rapid in vitro evolution of RNA biosensors (DRIVER) enables multiplexed discovery of biosensors. With DRIVER and high-throughput characterization (CleaveSeq) fully automated on liquid-handling systems, we identify and validate biosensors against six small molecules, including five for which no aptamers were previously found. DRIVER-evolved biosensors are applied directly to regulate gene expression in yeast, displaying activation ratios up to 33-fold. DRIVER biosensors are also applied in detecting metabolite production from a multi-enzyme biosynthetic pathway. This work demonstrates DRIVER as a scalable pipeline for engineering de novo biosensors with wide-ranging applications in biomanufacturing, diagnostics, therapeutics, and synthetic biology.
Collapse
Affiliation(s)
- Brent Townshend
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Joy S Xiang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Eric J Hayden
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Biological Science, Boise State University, Boise, ID, USA
| | - Christina D Smolke
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
2
|
Huang X, Zhao Y, Pu Q, Liu G, Peng Y, Wang F, Chen G, Sun M, Du F, Dong J, Cui X, Tang Z, Mo X. Intracellular selection of trans-cleaving hammerhead ribozymes. Nucleic Acids Res 2019; 47:2514-2522. [PMID: 30649474 PMCID: PMC6412130 DOI: 10.1093/nar/gkz018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 02/05/2023] Open
Abstract
Hammerhead ribozyme is the smallest and best characterized catalytic RNA-cleaving ribozyme. It has been reported as potential therapeutic tools to manipulate the expression of target genes. However, most of naturally occurring hammerhead ribozymes process self-cleavage rather than cleave substrate RNA in trans, and its high intracellular activity relies on the tertiary interaction of Loop II and steam I bulge, resulting in decreased performance as applied in gene silencing. We described a direct intracellular selection method to evolve hammerhead variants based on trans-cleavage mode via using a toxin gene as the reporter. And a dual fluorescence proteins system has also been established to quantitatively evaluate the efficiency of selected ribozymes in the cell. Based on this selection strategy, we obtained three mutants with enhanced intracellular cleaving activity compared to wide type hammerhead ribozyme. The best one, TX-2 was revealed to possess better and consistent gene knockdown ability at different positions on diverse targeted mRNA either in prokaryotic or eukaryotic cells than wild-type hammerhead ribozyme. These observations imply the efficiency of the intracellular selection method of the trans-acting ribozyme and the potentials of improved ribozyme variants for research and therapeutic purposes.
Collapse
Affiliation(s)
- Xin Huang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Yongyun Zhao
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Qinlin Pu
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Getong Liu
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Yan Peng
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Fei Wang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Gangyi Chen
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Meiling Sun
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Feng Du
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Juan Dong
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
3
|
Cella F, Wroblewska L, Weiss R, Siciliano V. Engineering protein-protein devices for multilayered regulation of mRNA translation using orthogonal proteases in mammalian cells. Nat Commun 2018; 9:4392. [PMID: 30349044 PMCID: PMC6197189 DOI: 10.1038/s41467-018-06825-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
The development of RNA-encoded regulatory circuits relying on RNA-binding proteins (RBPs) has enhanced the applicability and prospects of post-transcriptional synthetic network for reprogramming cellular functions. However, the construction of RNA-encoded multilayer networks is still limited by the availability of composable and orthogonal regulatory devices. Here, we report on control of mRNA translation with newly engineered RBPs regulated by viral proteases in mammalian cells. By combining post-transcriptional and post-translational control, we expand the operational landscape of RNA-encoded genetic circuits with a set of regulatory devices including: i) RBP-protease, ii) protease-RBP, iii) protease–protease, iv) protein sensor protease-RBP, and v) miRNA-protease/RBP interactions. The rational design of protease-regulated proteins provides a diverse toolbox for synthetic circuit regulation that enhances multi-input information processing-actuation of cellular responses. Our approach enables design of artificial circuits that can reprogram cellular function with potential benefits as research tools and for future in vivo therapeutics and biotechnological applications. RNA-encoded regulatory circuits are desirable because they do not integrate in the host and are less immunogenic, but the availability of regulatory devices is limited. Here the authors develop viral protease RNA-binding proteins and protease–protease genetic circuits that ultimately regulate mRNA translation.
Collapse
Affiliation(s)
- Federica Cella
- Istituto Italiano di Tecnologia-IIT, Largo Barsanti e Matteucci, 80125, Naples, Italy.,University of Genoa, 16132, Genoa, Italy
| | | | - Ron Weiss
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, 02139, Cambridge, MA, USA
| | - Velia Siciliano
- Istituto Italiano di Tecnologia-IIT, Largo Barsanti e Matteucci, 80125, Naples, Italy.
| |
Collapse
|
4
|
Nomura Y, Chien HC, Yokobayashi Y. Direct screening for ribozyme activity in mammalian cells. Chem Commun (Camb) 2017; 53:12540-12543. [DOI: 10.1039/c7cc07815c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using deep sequencing, 3001 natural and synthetic ribozymes were screened for self-cleaving activity directly in mammalian cells.
Collapse
Affiliation(s)
- Yoko Nomura
- Nucleic Acid Chemistry and Engineering Unit
- Okinawa Institute of Science and Technology Graduate University
- Onna
- Japan
| | - Hsiao-Chiao Chien
- Nucleic Acid Chemistry and Engineering Unit
- Okinawa Institute of Science and Technology Graduate University
- Onna
- Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit
- Okinawa Institute of Science and Technology Graduate University
- Onna
- Japan
| |
Collapse
|
5
|
Bhadra S, Ellington AD. Design and application of cotranscriptional non-enzymatic RNA circuits and signal transducers. Nucleic Acids Res 2014; 42:e58. [PMID: 24493736 PMCID: PMC3985647 DOI: 10.1093/nar/gku074] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nucleic acid circuits are finding increasing real-life applications in diagnostics and synthetic biology. Although DNA has been the main operator in most nucleic acid circuits, transcriptionally produced RNA circuits could provide powerful alternatives for reagent production and their use in cells. Towards these goals, we have implemented a particular nucleic acid circuit, catalytic hairpin assembly, using RNA for both information storage and processing. Our results demonstrated that the design principles developed for DNA circuits could be readily translated to engineering RNA circuits that operated with similar kinetics and sensitivities of detection. Not only could purified RNA hairpins perform amplification reactions but RNA hairpins transcribed in vitro also mediated amplification, even without purification. Moreover, we could read the results of the non-enzymatic amplification reactions using a fluorescent RNA aptamer 'Spinach' that was engineered to undergo sequence-specific conformational changes. These advances were applied to the end-point and real-time detection of the isothermal strand displacement amplification reaction that produces single-stranded DNAs as part of its amplification cycle. We were also able to readily engineer gate structures with RNA similar to those that have previously formed the basis of DNA circuit computations. Taken together, these results validate an entirely new chemistry for the implementation of nucleic acid circuits.
Collapse
Affiliation(s)
- Sanchita Bhadra
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
6
|
Wyszko E, Mueller F, Gabryelska M, Bondzio A, Popenda M, Barciszewski J, Erdmann VA. Spiegelzymes® mirror-image hammerhead ribozymes and mirror-image DNAzymes, an alternative to siRNAs and microRNAs to cleave mRNAs in vivo? PLoS One 2014; 9:e86673. [PMID: 24489764 PMCID: PMC3906056 DOI: 10.1371/journal.pone.0086673] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/12/2013] [Indexed: 02/02/2023] Open
Abstract
With the discovery of small non-coding RNA (ncRNA) molecules as regulators for cellular processes, it became intriguing to develop technologies by which these regulators can be applied in molecular biology and molecular medicine. The application of ncRNAs has significantly increased our knowledge about the regulation and functions of a number of proteins in the cell. It is surprising that similar successes in applying these small ncRNAs in biotechnology and molecular medicine have so far been very limited. The reasons for these observations may lie in the high complexity in which these RNA regulators function in the cells and problems with their delivery, stability and specificity. Recently, we have described mirror-image hammerhead ribozymes and DNAzymes (Spiegelzymes®) which can sequence-specifically hydrolyse mirror-image nucleic acids, such as our mirror-image aptamers (Spiegelmers) discovered earlier. In this paper, we show for the first time that Spiegelzymes are capable of recognising complementary enantiomeric substrates (D-nucleic acids), and that they efficiently hydrolyse them at submillimolar magnesium concentrations and at physiologically relevant conditions. The Spiegelzymes are very stable in human sera, and do not require any protein factors for their function. They have the additional advantages of being non-toxic and non-immunogenic. The Spiegelzymes can be used for RNA silencing and also as therapeutic and diagnostic tools in medicine. We performed extensive three-dimensional molecular modelling experiments with mirror-image hammerhead ribozymes and DNAzymes interacting with D-RNA targets. We propose a model in which L/D-double helix structures can be formed by natural Watson-Crick base pairs, but where the nucleosides of one of the two strands will occur in an anticlinal conformation. Interestingly enough, the duplexes (L-RNA/D-RNA and L-DNA/D-RNA) in these models can show either right- or left-handedness. This is a very new observation, suggesting that molecular symmetry of enantiomeric nucleic acids is broken down.
Collapse
Affiliation(s)
- Eliza Wyszko
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Poznan, Poland
| | | | - Marta Gabryelska
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Poznan, Poland
| | - Angelika Bondzio
- Institute for Biochemistry, Veterinary Medicine, Free University of Berlin, Berlin, Germany
| | - Mariusz Popenda
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Poznan, Poland
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Poznan, Poland
| | - Volker A. Erdmann
- Institute for Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
- Erdmann Technologies GmbH, Berlin, Germany
| |
Collapse
|
7
|
Olson KE, Dolan GF, Müller UF. In vivo evolution of a catalytic RNA couples trans-splicing to translation. PLoS One 2014; 9:e86473. [PMID: 24466112 PMCID: PMC3900562 DOI: 10.1371/journal.pone.0086473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/09/2013] [Indexed: 12/17/2022] Open
Abstract
How does a non-coding RNA evolve in cells? To address this question experimentally we evolved a trans-splicing variant of the group I intron ribozyme from Tetrahymena over 21 cycles of evolution in E.coli cells. Sequence variation was introduced during the evolution by mutagenic and recombinative PCR, and increasingly active ribozymes were selected by their repair of an mRNA mediating antibiotic resistance. The most efficient ribozyme contained four clustered mutations that were necessary and sufficient for maximum activity in cells. Surprisingly, these mutations did not increase the trans-splicing activity of the ribozyme. Instead, they appear to have recruited a cellular protein, the transcription termination factor Rho, and facilitated more efficient translation of the ribozyme’s trans-splicing product. In addition, these mutations affected the expression of several other, unrelated genes. These results suggest that during RNA evolution in cells, four mutations can be sufficient to evolve new protein interactions, and four mutations in an RNA molecule can generate a large effect on gene regulation in the cell.
Collapse
Affiliation(s)
- Karen E. Olson
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Gregory F. Dolan
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Ulrich F. Müller
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Amini ZN, Müller UF. Low selection pressure aids the evolution of cooperative ribozyme mutations in cells. J Biol Chem 2013; 288:33096-106. [PMID: 24089519 DOI: 10.1074/jbc.m113.511469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding the evolution of functional RNA molecules is important for our molecular understanding of biology. Here we tested experimentally how two evolutionary parameters, selection pressure and recombination, influenced the evolution of an evolving RNA population. This was done using four parallel evolution experiments that employed low or gradually increasing selection pressure, and recombination events either at the end or dispersed throughout the evolution. As model system, a trans-splicing group I intron ribozyme was evolved in Escherichia coli cells over 12 rounds of selection and amplification, including mutagenesis and recombination. The low selection pressure resulted in higher efficiency of the evolved ribozyme populations, whereas differences in recombination did not have a strong effect. Five mutations were responsible for the highest efficiency. The first mutation swept quickly through all four evolving populations, whereas the remaining four mutations accumulated later and more efficiently under low selection pressure. To determine why low selection pressure aided this evolution, all evolutionary intermediates between the wild type and the 5-mutation variant were constructed, and their activities at three different selection pressures were determined. The resulting fitness profiles showed a high cooperativity among the four late mutations, which can explain why high selection pressure led to inefficient evolution. These results show experimentally how low selection pressure can benefit the evolution of cooperative mutations in functional RNAs.
Collapse
Affiliation(s)
- Zhaleh N Amini
- From the Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093
| | | |
Collapse
|
9
|
Enhanced group II intron retrohoming in magnesium-deficient Escherichia coli via selection of mutations in the ribozyme core. Proc Natl Acad Sci U S A 2013; 110:E3800-9. [PMID: 24043808 DOI: 10.1073/pnas.1315742110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mobile group II introns are bacterial retrotransposons thought to be evolutionary ancestors of spliceosomal introns and retroelements in eukaryotes. They consist of a catalytically active intron RNA ("ribozyme") and an intron-encoded reverse transcriptase, which function together to promote RNA splicing and intron mobility via reverse splicing of the intron RNA into new DNA sites ("retrohoming"). Although group II introns are active in bacteria, their natural hosts, they function inefficiently in eukaryotes, where lower free Mg(2+) concentrations decrease their ribozyme activity and constitute a natural barrier to group II intron proliferation within nuclear genomes. Here, we show that retrohoming of the Ll.LtrB group II intron is strongly inhibited in an Escherichia coli mutant lacking the Mg(2+) transporter MgtA, and we use this system to select mutations in catalytic core domain V (DV) that partially rescue retrohoming at low Mg(2+) concentrations. We thus identified mutations in the distal stem of DV that increase retrohoming efficiency in the MgtA mutant up to 22-fold. Biochemical assays of splicing and reverse splicing indicate that the mutations increase the fraction of intron RNA that folds into an active conformation at low Mg(2+) concentrations, and terbium-cleavage assays suggest that this increase is due to enhanced Mg(2+) binding to the distal stem of DV. Our findings indicate that DV is involved in a critical Mg(2+)-dependent RNA folding step in group II introns and demonstrate the feasibility of selecting intron variants that function more efficiently at low Mg(2+) concentrations, with implications for evolution and potential applications in gene targeting.
Collapse
|
10
|
Prediction of hammerhead ribozyme intracellular activity with the catalytic core fingerprint. Biochem J 2013; 451:439-51. [DOI: 10.1042/bj20121761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hammerhead ribozyme is a versatile tool for down-regulation of gene expression in vivo. Owing to its small size and high activity, it is used as a model for RNA structure–function relationship studies. In the present paper we describe a new extended hammerhead ribozyme HH-2 with a tertiary stabilizing motif constructed on the basis of the tetraloop receptor sequence. This ribozyme is very active in living cells, but shows low activity in vitro. To understand it, we analysed tertiary structure models of substrate–ribozyme complexes. We calculated six unique catalytic core geometry parameters as distances and angles between particular atoms that we call the ribozyme fingerprint. A flanking sequence and tertiary motif change the geometry of the general base, general acid, nucleophile and leaving group. We found almost complete correlation between these parameters and the decrease of target gene expression in the cells. The tertiary structure model calculations allow us to predict ribozyme intracellular activity. Our approach could be widely adapted to characterize catalytic properties of other RNAs.
Collapse
|
11
|
Scott WG, Horan LH, Martick M. The hammerhead ribozyme: structure, catalysis, and gene regulation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 120:1-23. [PMID: 24156940 DOI: 10.1016/b978-0-12-381286-5.00001-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The hammerhead ribozyme has long been considered a prototype for understanding RNA catalysis, but discrepancies between the earlier crystal structures of a minimal hammerhead self-cleaving motif and various biochemical investigations frustrated attempt to understand hammerhead ribozyme catalysis in terms of structure. With the discovery that a tertiary contact distal from the ribozyme's active site greatly enhances its catalytic prowess, and the emergence of new corresponding crystal structures of full-length hammerhead ribozymes, a unified understanding of catalysis in terms of the structure is now possible. A mechanism in which the invariant residue G12 functions as a general base, and the 2'-OH moiety of the invariant G8, itself forming a tertiary base pair with the invariant C3, is the general acid, appears consistent with both the crystal structure and biochemical experimental results. Originally discovered in the context of plant satellite RNA viruses, the hammerhead more recently has been found embedded in the 3'-untranslated region of mature mammalian mRNAs, suggesting additional biological roles in genetic regulation.
Collapse
Affiliation(s)
- William G Scott
- The Center for the Molecular Biology of RNA, Sinsheimer Laboratories, University of California at Santa Cruz, Santa Cruz, California, USA
| | | | | |
Collapse
|
12
|
Liang JC, Chang AL, Kennedy AB, Smolke CD. A high-throughput, quantitative cell-based screen for efficient tailoring of RNA device activity. Nucleic Acids Res 2012; 40:e154. [PMID: 22810204 PMCID: PMC3488204 DOI: 10.1093/nar/gks636] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent advances have demonstrated the use of RNA-based control devices to program sophisticated cellular functions; however, the efficiency with which these devices can be quantitatively tailored has limited their broader implementation in cellular networks. Here, we developed a high-efficiency, high-throughput and quantitative two-color fluorescence-activated cell sorting-based screening strategy to support the rapid generation of ribozyme-based control devices with user-specified regulatory activities. The high-efficiency of this screening strategy enabled the isolation of a single functional sequence from a library of over 106 variants within two sorting cycles. We demonstrated the versatility of our approach by screening large libraries generated from randomizing individual components within the ribozyme device platform to efficiently isolate new device sequences that exhibit increased in vitro cleavage rates up to 10.5-fold and increased in vivo activation ratios up to 2-fold. We also identified a titratable window within which in vitro cleavage rates and in vivo gene-regulatory activities are correlated, supporting the importance of optimizing RNA device activity directly in the cellular environment. Our two-color fluorescence-activated cell sorting-based screen provides a generalizable strategy for quantitatively tailoring genetic control elements for broader integration within biological networks.
Collapse
Affiliation(s)
- Joe C. Liang
- Division of Chemistry and Chemical Engineering, 1200 E. California Blvd., MC 210-41, California Institute of Technology, Pasadena, CA 91125, Department of Chemistry, Stanford University and Department of Bioengineering, 473 Via Ortega, MC 4201, Stanford University, Stanford, CA 94305, USA
| | - Andrew L. Chang
- Division of Chemistry and Chemical Engineering, 1200 E. California Blvd., MC 210-41, California Institute of Technology, Pasadena, CA 91125, Department of Chemistry, Stanford University and Department of Bioengineering, 473 Via Ortega, MC 4201, Stanford University, Stanford, CA 94305, USA
| | - Andrew B. Kennedy
- Division of Chemistry and Chemical Engineering, 1200 E. California Blvd., MC 210-41, California Institute of Technology, Pasadena, CA 91125, Department of Chemistry, Stanford University and Department of Bioengineering, 473 Via Ortega, MC 4201, Stanford University, Stanford, CA 94305, USA
| | - Christina D. Smolke
- Division of Chemistry and Chemical Engineering, 1200 E. California Blvd., MC 210-41, California Institute of Technology, Pasadena, CA 91125, Department of Chemistry, Stanford University and Department of Bioengineering, 473 Via Ortega, MC 4201, Stanford University, Stanford, CA 94305, USA
- *To whom correspondence should be addressed. Tel: +1 650 721 6371; Fax: +1 650 721 6602;
| |
Collapse
|
13
|
Wittmann A, Suess B. Engineered riboswitches: Expanding researchers' toolbox with synthetic RNA regulators. FEBS Lett 2012; 586:2076-83. [PMID: 22710175 DOI: 10.1016/j.febslet.2012.02.038] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 12/22/2022]
Abstract
Riboswitches are natural RNA-based genetic switches that sense small-molecule metabolites and regulate in response the expression of the corresponding metabolic genes. Within the last years, several engineered riboswitches have been developed that act on various stages of gene expression. These switches can be engineered to respond to any ligand of choice and are therefore of great interest for synthetic biology. In this review, we present an overview of engineered riboswitches and discuss their application in conditional gene expression systems. We will provide structural and mechanistic insights and point out problems and recent trends in the development of engineered riboswitches.
Collapse
Affiliation(s)
- Alexander Wittmann
- Institute of Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | | |
Collapse
|
14
|
Engineering biological systems with synthetic RNA molecules. Mol Cell 2011; 43:915-26. [PMID: 21925380 DOI: 10.1016/j.molcel.2011.08.023] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/16/2011] [Accepted: 08/21/2011] [Indexed: 01/08/2023]
Abstract
RNA molecules play diverse functional roles in natural biological systems. There has been growing interest in designing synthetic RNA counterparts for programming biological function. The design of synthetic RNA molecules that exhibit diverse activities, including sensing, regulatory, information processing, and scaffolding activities, has highlighted the advantages of RNA as a programmable design substrate. Recent advances in implementing these engineered RNA molecules as key control elements in synthetic genetic networks are highlighting the functional relevance of this class of synthetic elements in programming cellular behaviors.
Collapse
|
15
|
Pastor T, Dal Mas A, Talotti G, Bussani E, Pagani F. Intron cleavage affects processing of alternatively spliced transcripts. RNA (NEW YORK, N.Y.) 2011; 17:1604-13. [PMID: 21673105 PMCID: PMC3153982 DOI: 10.1261/rna.2514811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 05/02/2011] [Indexed: 05/26/2023]
Abstract
We previously showed that the insertion of a hammerhead ribozyme (Rz) in a critical intronic position between the EDA exon and a downstream regulatory element affects alternative splicing. Here we evaluate the effect of other intronic cotranscriptional cleavage events on alternative pre-mRNA processing using different ribozymes (Rz) and Microprocessor target sequences (MTSs). In the context of the fibronectin EDA minigene, intronic MTSs were cleaved very inefficiently and did not affect alternative splicing or the level of mature transcripts. On the contrary, all hammerhead Rz derivatives and hepatitis δ Rz were completely cleaved before a splicing decision and able to affect alternative splicing. Despite the very efficient Rz-mediated cleavage, the levels of mature mRNA were only reduced to ∼40%. We show that this effect on mature transcripts occurs regardless of the type and intronic position of Rzs, or changes in alternative splicing and exon definition. Thus, we suggest that intron integrity is not strictly required for splicing but is necessary for efficient pre-mRNA biosynthesis.
Collapse
Affiliation(s)
- Tibor Pastor
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Andrea Dal Mas
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Gabriele Talotti
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Erica Bussani
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Franco Pagani
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| |
Collapse
|
16
|
Abstract
Aptamers are useful for allosteric regulation because they are nucleic acid-based structures in which ligand binding induces conformational changes that may alter the function of a connected oligonucleotide at a distant site. Through this approach, a specific input is efficiently converted into an altered output. This property makes these biomolecules ideally suited to function as sensors or switches in biochemical assays or inside living cells. The ability to select oligonucleotide-based recognition elements in vitro in combination with the availability of nucleic acids with enzymatic activity has led to the development of a wide range of engineered allosteric aptasensors and aptazymes. Here, we discuss recent progress in the screening, design and diversity of these conformational switching oligonucleotides. We cover their application in vitro and for regulating gene expression in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Jan L Vinkenborg
- Life & Medical Sciences Institute, Chemical Biology & Medicinal Chemistry Unit, Laboratory of Chemical Biology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | | |
Collapse
|
17
|
Marton S, Reyes-Darias JA, Sánchez-Luque FJ, Romero-López C, Berzal-Herranz A. In vitro and ex vivo selection procedures for identifying potentially therapeutic DNA and RNA molecules. Molecules 2010; 15:4610-38. [PMID: 20657381 PMCID: PMC6257598 DOI: 10.3390/molecules15074610] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 06/17/2010] [Accepted: 06/24/2010] [Indexed: 02/05/2023] Open
Abstract
It was only relatively recently discovered that nucleic acids participate in a variety of biological functions, besides the storage and transmission of genetic information. Quite apart from the nucleotide sequence, it is now clear that the structure of a nucleic acid plays an essential role in its functionality, enabling catalysis and specific binding reactions. In vitro selection and evolution strategies have been extremely useful in the analysis of functional RNA and DNA molecules, helping to expand our knowledge of their functional repertoire and to identify and optimize DNA and RNA molecules with potential therapeutic and diagnostic applications. The great progress made in this field has prompted the development of ex vivo methods for selecting functional nucleic acids in the cellular environment. This review summarizes the most important and most recent applications of in vitro and ex vivo selection strategies aimed at exploring the therapeutic potential of nucleic acids.
Collapse
Affiliation(s)
- Soledad Marton
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, P.T. Ciencias de la Salud, Av. del Conocimiento s/n, Armilla, 18100 Granada, Spain.
| | | | | | | | | |
Collapse
|
18
|
Ausländer S, Ketzer P, Hartig JS. A ligand-dependent hammerhead ribozyme switch for controlling mammalian gene expression. MOLECULAR BIOSYSTEMS 2010; 6:807-14. [PMID: 20567766 DOI: 10.1039/b923076a] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The possibility to externally control gene expression is of fundamental importance in both basic and applied life sciences. Although there are some techniques available to regulate expression in mammalian cells, they rely on the presence of ligand-sensing transcription factors, making it necessary to generate cell lines or organisms that stably express these regulatory factors. In recent years, mechanisms relying on direct RNA-ligand interactions for controlling gene expression have been both discovered in nature and engineered artificially. Among the latter, RNA switches relying on catalytically active RNA have been described. In principle, ligand-dependent triggering of mRNA self-cleavage should be a universal mechanism in order to control gene expression in a variety of organisms. Nevertheless, no examples of such aptazymes acting as RNA-based switches have been reported so far in mammalian cells. Here we present the theophylline-induced activation of an mRNA-based hammerhead ribozyme, resulting in an off-switch of gene expression. Starting from an artificial aptazyme switch reported to function in bacteria, we identified and optimized important parameters such as artificial start codons and the communicating sequence connecting ribozyme and aptamer, resulting in an RNA switch that allows for controlling transgenic expression in mammalian cells without the need to express a corresponding ligand-sensing transcription factor.
Collapse
Affiliation(s)
- Simon Ausländer
- Department of Chemistry and Graduate School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78467 Konstanz, Germany
| | | | | |
Collapse
|