1
|
Interaction Networks of Ribosomal Expansion Segments in Kinetoplastids. Subcell Biochem 2021; 96:433-450. [PMID: 33252739 DOI: 10.1007/978-3-030-58971-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Expansion segments (ES) are insertions of a few to hundreds of nucleotides at discrete locations on eukaryotic ribosomal RNA (rRNA) chains. Some cluster around 'hot spots' involved in translation regulation and some may participate in biogenesis. Whether ES play the same roles in different organisms is currently unclear, especially since their size may vary dramatically from one species to another and very little is known about their functions. Most likely, ES variation is linked to adaptation to a particular environment. In this chapter, we compare the interaction networks of ES from four kinetoplastid parasites, which have evolved in diverse insect vectors and mammalian hosts: Trypanosoma cruzi, Trypanosoma brucei, Leishmania donovani and Leishmania major. Here, we comparatively analyze ribosome structures from these representative kinetoplastids and ascertain meaningful structural differences from mammalian ribosomes. We base our analysis on sequence alignments and three-dimensional structures of 80S ribosomes solved by cryo-electron microscopy (cryo-EM). Striking differences in size are observed between ribosomes of different parasites, indicating that not all ES are expanded equally. Larger ES are not always matched by large surrounding ES or proteins extensions in their vicinity, a particularity that may lead to clues about their biological function. ES display different species-specific patterns of conservation, which underscore the density of their interaction network at the surface of the ribosome. Making sense of the conservation patterns of ES is part of a global effort to lay the basis for functional studies aimed at discovering unique kinetoplastid-specific sites suitable for therapeutic applications against these human and often animal pathogens.
Collapse
|
2
|
Abstract
The ribosome and RNase P are cellular ribonucleoprotein complexes that perform peptide bond synthesis and phosphodiester bond cleavage, respectively. Both are ancient biological assemblies that were already present in the last universal common ancestor of all life. The large subunit rRNA in the ribosome and the RNA subunit of RNase P are the ribozyme components required for catalysis. Here, we explore the idea that these two large ribozymes may have begun their evolutionary odyssey as an assemblage of RNA "fragments" smaller than the contemporary full-length versions and that they transitioned through distinct stages along a pathway that may also be relevant for the evolution of other non-coding RNAs.
Collapse
Affiliation(s)
- Michael W Gray
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
3
|
Vicens Q, Kieft JS, Rissland OS. Revisiting the Closed-Loop Model and the Nature of mRNA 5'-3' Communication. Mol Cell 2018; 72:805-812. [PMID: 30526871 PMCID: PMC6294470 DOI: 10.1016/j.molcel.2018.10.047] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/08/2018] [Accepted: 10/30/2018] [Indexed: 12/28/2022]
Abstract
Communication between the 5' and 3' ends of mature eukaryotic mRNAs lies at the heart of gene regulation, likely arising at the same time as the eukaryotic lineage itself. Our view of how and why it occurs has been shaped by elegant experiments that led to nearly universal acceptance of the "closed-loop model." However, new observations suggest that this classic model needs to be reexamined, revised, and expanded. Here, we address fundamental questions about the closed-loop model and discuss how a growing understanding of mRNA structure, dynamics, and intermolecular interactions presents new experimental opportunities. We anticipate that the application of emerging methods will lead to expanded models that include the role of intrinsic mRNA structure and quantitative dynamic descriptions of 5'-3' proximity linked to the functional status of an mRNA and will better reflect the messy realities of the crowded and rapidly changing cellular environment.
Collapse
Affiliation(s)
- Quentin Vicens
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Olivia S Rissland
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
4
|
Dujon BA, Louis EJ. Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina). Genetics 2017; 206:717-750. [PMID: 28592505 PMCID: PMC5499181 DOI: 10.1534/genetics.116.199216] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/03/2017] [Indexed: 12/15/2022] Open
Abstract
Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs. horizontal genetic accidents in the making of populations. The facility with which novel yeast genomes can now be studied, combined with the already numerous available reference genomes, offer privileged perspectives to further examine these fundamental biological questions using yeasts both as eukaryotic models and as fungi of practical importance.
Collapse
Affiliation(s)
- Bernard A Dujon
- Department Genomes and Genetics, Institut Pasteur, Centre National de la Recherche Scientifique UMR3525, 75724-CEDEX15 Paris, France
- Université Pierre et Marie Curie UFR927, 75005 Paris, France
| | - Edward J Louis
- Centre for Genetic Architecture of Complex Traits, University of Leicester, LE1 7RH, United Kingdom
- Department of Genetics, University of Leicester, LE1 7RH, United Kingdom
| |
Collapse
|
5
|
Martin WJ, Reiter NJ. Structural Roles of Noncoding RNAs in the Heart of Enzymatic Complexes. Biochemistry 2016; 56:3-13. [PMID: 27935277 DOI: 10.1021/acs.biochem.6b01106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Over billions of years of evolution, nature has embraced proteins as the major workhorse molecules of the cell. However, nearly every aspect of metabolism is dependent upon how structured RNAs interact with proteins, ligands, and other nucleic acids. Key processes, including telomere maintenance, RNA processing, and protein synthesis, require large RNAs that assemble into elaborate three-dimensional shapes. These RNAs can (i) act as flexible scaffolds for protein subunits, (ii) participate directly in substrate recognition, and (iii) serve as catalytic components. Here, we juxtapose the near atomic level interactions of three ribonucleoprotein complexes: ribonuclease P (involved in 5' pre-tRNA processing), the spliceosome (responsible for pre-mRNA splicing), and telomerase (an RNA-directed DNA polymerase that extends the ends of chromosomes). The focus of this perspective is profiling the structural and dynamic roles of RNAs at the core of these enzymes, highlighting how large RNAs contribute to molecular recognition and catalysis.
Collapse
Affiliation(s)
- William J Martin
- Department of Biochemistry, Vanderbilt University , Nashville, Tennessee 37232, United States
| | - Nicholas J Reiter
- Department of Biochemistry, Vanderbilt University , Nashville, Tennessee 37232, United States
| |
Collapse
|
6
|
Linde J, Duggan S, Weber M, Horn F, Sieber P, Hellwig D, Riege K, Marz M, Martin R, Guthke R, Kurzai O. Defining the transcriptomic landscape of Candida glabrata by RNA-Seq. Nucleic Acids Res 2015; 43:1392-406. [PMID: 25586221 PMCID: PMC4330350 DOI: 10.1093/nar/gku1357] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Candida glabrata is the second most common pathogenic Candida species and has emerged as a leading cause of nosocomial fungal infections. Its reduced susceptibility to antifungal drugs and its close relationship to Saccharomyces cerevisiae make it an interesting research focus. Although its genome sequence was published in 2004, little is known about its transcriptional dynamics. Here, we provide a detailed RNA-Seq-based analysis of the transcriptomic landscape of C. glabrata in nutrient-rich media, as well as under nitrosative stress and during pH shift. Using RNA-Seq data together with state-of-the-art gene prediction tools, we refined the annotation of the C. glabrata genome and predicted 49 novel protein-coding genes. Of these novel genes, 14 have homologs in S. cerevisiae and six are shared with other Candida species. We experimentally validated four novel protein-coding genes of which two are differentially regulated during pH shift and interaction with human neutrophils, indicating a potential role in host–pathogen interaction. Furthermore, we identified 58 novel non-protein-coding genes, 38 new introns and condition-specific alternative splicing. Finally, our data suggest different patterns of adaptation to pH shift and nitrosative stress in C. glabrata, Candida albicans and S. cerevisiae and thus further underline a distinct evolution of virulence in yeast.
Collapse
Affiliation(s)
- Jörg Linde
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Seána Duggan
- Septomics Research Center, Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Michael Weber
- Septomics Research Center, Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Fabian Horn
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Patricia Sieber
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany Department of Bioinformatics, Faculty of Biology and Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Daniela Hellwig
- Septomics Research Center, Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Konstantin Riege
- Research Group Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Sciences, Friedrich Schiller University, Jena, Germany
| | - Manja Marz
- Research Group Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Sciences, Friedrich Schiller University, Jena, Germany
| | - Ronny Martin
- Septomics Research Center, Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Reinhard Guthke
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Oliver Kurzai
- Septomics Research Center, Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany National Reference Center for Invasive Mycoses, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| |
Collapse
|
7
|
Schwartze VU, Winter S, Shelest E, Marcet-Houben M, Horn F, Wehner S, Linde J, Valiante V, Sammeth M, Riege K, Nowrousian M, Kaerger K, Jacobsen ID, Marz M, Brakhage AA, Gabaldón T, Böcker S, Voigt K. Gene expansion shapes genome architecture in the human pathogen Lichtheimia corymbifera: an evolutionary genomics analysis in the ancient terrestrial mucorales (Mucoromycotina). PLoS Genet 2014; 10:e1004496. [PMID: 25121733 PMCID: PMC4133162 DOI: 10.1371/journal.pgen.1004496] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/24/2014] [Indexed: 01/12/2023] Open
Abstract
Lichtheimia species are the second most important cause of mucormycosis in Europe. To provide broader insights into the molecular basis of the pathogenicity-associated traits of the basal Mucorales, we report the full genome sequence of L. corymbifera and compared it to the genome of Rhizopus oryzae, the most common cause of mucormycosis worldwide. The genome assembly encompasses 33.6 MB and 12,379 protein-coding genes. This study reveals four major differences of the L. corymbifera genome to R. oryzae: (i) the presence of an highly elevated number of gene duplications which are unlike R. oryzae not due to whole genome duplication (WGD), (ii) despite the relatively high incidence of introns, alternative splicing (AS) is not frequently observed for the generation of paralogs and in response to stress, (iii) the content of repetitive elements is strikingly low (<5%), (iv) L. corymbifera is typically haploid. Novel virulence factors were identified which may be involved in the regulation of the adaptation to iron-limitation, e.g. LCor01340.1 encoding a putative siderophore transporter and LCor00410.1 involved in the siderophore metabolism. Genes encoding the transcription factors LCor08192.1 and LCor01236.1, which are similar to GATA type regulators and to calcineurin regulated CRZ1, respectively, indicating an involvement of the calcineurin pathway in the adaption to iron limitation. Genes encoding MADS-box transcription factors are elevated up to 11 copies compared to the 1-4 copies usually found in other fungi. More findings are: (i) lower content of tRNAs, but unique codons in L. corymbifera, (ii) Over 25% of the proteins are apparently specific for L. corymbifera. (iii) L. corymbifera contains only 2/3 of the proteases (known to be essential virulence factors) in comparison to R. oryzae. On the other hand, the number of secreted proteases, however, is roughly twice as high as in R. oryzae.
Collapse
Affiliation(s)
- Volker U. Schwartze
- University of Jena, Institute of Microbiology, Department of Microbiology and Molecular Biology, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Molecular and Applied Microbiology, Hans Knöll Institute, Jena, Germany
| | - Sascha Winter
- University of Jena, Department of Bioinformatics, Jena, Germany
| | - Ekaterina Shelest
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Systems Biology/Bioinformatics, Jena, Germany
| | - Marina Marcet-Houben
- Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Fabian Horn
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Systems Biology/Bioinformatics, Jena, Germany
| | - Stefanie Wehner
- University of Jena, Department of Bioinformatics, Jena, Germany
| | - Jörg Linde
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Systems Biology/Bioinformatics, Jena, Germany
| | - Vito Valiante
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Molecular and Applied Microbiology, Hans Knöll Institute, Jena, Germany
| | - Michael Sammeth
- Centre Nacional d'Anàlisi Genòmica (CNAG), Functional Bioinformatics, Barcelona, Spain
- Laboratório Nacional de Computação Científica (LNCC), Petrópolis, Rio de Janeiro, Brazil
| | | | - Minou Nowrousian
- Ruhr University Bochum, Department of General and Molecular Botany, Bochum, Germany
| | - Kerstin Kaerger
- University of Jena, Institute of Microbiology, Department of Microbiology and Molecular Biology, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Molecular and Applied Microbiology, Hans Knöll Institute, Jena, Germany
| | - Ilse D. Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Department of Microbial Immunology, Jena, Germany
| | - Manja Marz
- University of Jena, Department of Bioinformatics, Jena, Germany
| | - Axel A. Brakhage
- University of Jena, Institute of Microbiology, Department of Microbiology and Molecular Biology, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Molecular and Applied Microbiology, Hans Knöll Institute, Jena, Germany
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Kerstin Voigt
- University of Jena, Institute of Microbiology, Department of Microbiology and Molecular Biology, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Molecular and Applied Microbiology, Hans Knöll Institute, Jena, Germany
| |
Collapse
|
8
|
Ahmad KM, Kokošar J, Guo X, Gu Z, Ishchuk OP, Piškur J. Genome structure and dynamics of the yeast pathogen Candida glabrata. FEMS Yeast Res 2014; 14:529-35. [PMID: 24528571 PMCID: PMC4320752 DOI: 10.1111/1567-1364.12145] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/07/2014] [Accepted: 02/08/2014] [Indexed: 01/09/2023] Open
Abstract
The yeast pathogen Candida glabrata is the second most frequent cause of Candida infections. However, from the phylogenetic point of view, C. glabrata is much closer to Saccharomyces cerevisiae than to Candida albicans. Apparently, this yeast has relatively recently changed its life style and become a successful opportunistic pathogen. Recently, several C. glabrata sister species, among them clinical and environmental isolates, have had their genomes characterized. Also, hundreds of C. glabrata clinical isolates have been characterized for their genomes. These isolates display enormous genomic plasticity. The number and size of chromosomes vary drastically, as well as intra- and interchromosomal segmental duplications occur frequently. The observed genome alterations could affect phenotypic properties and thus help to adapt to the highly variable and harsh habitats this yeast finds in different human patients and their tissues. Further genome sequencing of pathogenic isolates will provide a valuable tool to understand the mechanisms behind genome dynamics and help to elucidate the genes contributing to the virulence potential.
Collapse
|
9
|
Gabaldón T, Martin T, Marcet-Houben M, Durrens P, Bolotin-Fukuhara M, Lespinet O, Arnaise S, Boisnard S, Aguileta G, Atanasova R, Bouchier C, Couloux A, Creno S, Almeida Cruz J, Devillers H, Enache-Angoulvant A, Guitard J, Jaouen L, Ma L, Marck C, Neuvéglise C, Pelletier E, Pinard A, Poulain J, Recoquillay J, Westhof E, Wincker P, Dujon B, Hennequin C, Fairhead C. Comparative genomics of emerging pathogens in the Candida glabrata clade. BMC Genomics 2013; 14:623. [PMID: 24034898 PMCID: PMC3847288 DOI: 10.1186/1471-2164-14-623] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/31/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Candida glabrata follows C. albicans as the second or third most prevalent cause of candidemia worldwide. These two pathogenic yeasts are distantly related, C. glabrata being part of the Nakaseomyces, a group more closely related to Saccharomyces cerevisiae. Although C. glabrata was thought to be the only pathogenic Nakaseomyces, two new pathogens have recently been described within this group: C. nivariensis and C. bracarensis. To gain insight into the genomic changes underlying the emergence of virulence, we sequenced the genomes of these two, and three other non-pathogenic Nakaseomyces, and compared them to other sequenced yeasts. RESULTS Our results indicate that the two new pathogens are more closely related to the non-pathogenic N. delphensis than to C. glabrata. We uncover duplications and accelerated evolution that specifically affected genes in the lineage preceding the group containing N. delphensis and the three pathogens, which may provide clues to the higher propensity of this group to infect humans. Finally, the number of Epa-like adhesins is specifically enriched in the pathogens, particularly in C. glabrata. CONCLUSIONS Remarkably, some features thought to be the result of adaptation of C. glabrata to a pathogenic lifestyle, are present throughout the Nakaseomyces, indicating these are rather ancient adaptations to other environments. Phylogeny suggests that human pathogenesis evolved several times, independently within the clade. The expansion of the EPA gene family in pathogens establishes an evolutionary link between adhesion and virulence phenotypes. Our analyses thus shed light onto the relationships between virulence and the recent genomic changes that occurred within the Nakaseomyces. SEQUENCE ACCESSION NUMBERS Nakaseomyces delphensis: CAPT01000001 to CAPT01000179Candida bracarensis: CAPU01000001 to CAPU01000251Candida nivariensis: CAPV01000001 to CAPV01000123Candida castellii: CAPW01000001 to CAPW01000101Nakaseomyces bacillisporus: CAPX01000001 to CAPX01000186.
Collapse
Affiliation(s)
- Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, Barcelona, 08003, Spain
- Comparative Genomics Group, CRG-Centre for Genomic Regulation, Doctor Aiguader, 88, Barcelona, 08003, Spain
| | - Tiphaine Martin
- Université de Bordeaux 1, LaBRI, INRIA Bordeaux Sud-Ouest (MAGNOME), Talence, F-33405, France
| | - Marina Marcet-Houben
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, Barcelona, 08003, Spain
| | - Pascal Durrens
- Université de Bordeaux 1, LaBRI, INRIA Bordeaux Sud-Ouest (MAGNOME), Talence, F-33405, France
| | - Monique Bolotin-Fukuhara
- Institut de Génétique et Microbiologie, UMR8621 CNRS-Université Paris Sud, Bât 400, UFR des Sciences, Orsay Cedex, F 91405, France
| | - Olivier Lespinet
- Institut de Génétique et Microbiologie, UMR8621 CNRS-Université Paris Sud, Bât 400, UFR des Sciences, Orsay Cedex, F 91405, France
| | - Sylvie Arnaise
- Institut de Génétique et Microbiologie, UMR8621 CNRS-Université Paris Sud, Bât 400, UFR des Sciences, Orsay Cedex, F 91405, France
| | - Stéphanie Boisnard
- Institut de Génétique et Microbiologie, UMR8621 CNRS-Université Paris Sud, Bât 400, UFR des Sciences, Orsay Cedex, F 91405, France
| | - Gabriela Aguileta
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, Barcelona, 08003, Spain
| | - Ralitsa Atanasova
- APHP, Hôpital St Antoine, Service de Parasitologie-Mycologie, and UMR S945, Inserm, Université P. M. Curie, Paris, France
| | - Christiane Bouchier
- Département Génomes et Génétique, Institut Pasteur, Plate-forme Génomique, rue du Dr. Roux, Paris, F-75015, France
| | - Arnaud Couloux
- CEA, IG, DSV, Genoscope, 2 rue Gaston Crémieux, Evry Cedex, 91057, France
| | - Sophie Creno
- Département Génomes et Génétique, Institut Pasteur, Plate-forme Génomique, rue du Dr. Roux, Paris, F-75015, France
| | - Jose Almeida Cruz
- Architecture et Réactivité de l‘ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, Strasbourg Cedex, F-67084, France
- Present adress: Champalimaud Foundation, Av. Brasília, Lisboa, 1400-038, Portugal
| | - Hugo Devillers
- Institut de Génétique et Microbiologie, UMR8621 CNRS-Université Paris Sud, Bât 400, UFR des Sciences, Orsay Cedex, F 91405, France
| | - Adela Enache-Angoulvant
- Institut de Génétique et Microbiologie, UMR8621 CNRS-Université Paris Sud, Bât 400, UFR des Sciences, Orsay Cedex, F 91405, France
- APHP, Hôpital Bicêtre, Service de Microbiologie, Paris, France
| | - Juliette Guitard
- APHP, Hôpital St Antoine, Service de Parasitologie-Mycologie, and UMR S945, Inserm, Université P. M. Curie, Paris, France
| | - Laure Jaouen
- Institut de Génétique et Microbiologie, UMR8621 CNRS-Université Paris Sud, Bât 400, UFR des Sciences, Orsay Cedex, F 91405, France
| | - Laurence Ma
- Département Génomes et Génétique, Institut Pasteur, Plate-forme Génomique, rue du Dr. Roux, Paris, F-75015, France
| | - Christian Marck
- Institut de biologie et technologies de Saclay (iBiTec-S), Gif-sur-Yvette cedex, 91191, France
| | | | - Eric Pelletier
- CEA, IG, DSV, Genoscope, 2 rue Gaston Crémieux, Evry Cedex, 91057, France
| | - Amélie Pinard
- Institut de Génétique et Microbiologie, UMR8621 CNRS-Université Paris Sud, Bât 400, UFR des Sciences, Orsay Cedex, F 91405, France
| | - Julie Poulain
- CEA, IG, DSV, Genoscope, 2 rue Gaston Crémieux, Evry Cedex, 91057, France
| | - Julien Recoquillay
- Institut de Génétique et Microbiologie, UMR8621 CNRS-Université Paris Sud, Bât 400, UFR des Sciences, Orsay Cedex, F 91405, France
| | - Eric Westhof
- Architecture et Réactivité de l‘ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, Strasbourg Cedex, F-67084, France
| | - Patrick Wincker
- CEA, IG, DSV, Genoscope, 2 rue Gaston Crémieux, Evry Cedex, 91057, France
| | - Bernard Dujon
- Institut Pasteur, Unité de Génétique moléculaires des levures, UMR3525 CNRS, UFR927, Université P. M. Curie, 25 rue du Docteur Roux, Paris Cedex15, F75724, France
| | - Christophe Hennequin
- APHP, Hôpital St Antoine, Service de Parasitologie-Mycologie, and UMR S945, Inserm, Université P. M. Curie, Paris, France
| | - Cécile Fairhead
- Institut de Génétique et Microbiologie, UMR8621 CNRS-Université Paris Sud, Bât 400, UFR des Sciences, Orsay Cedex, F 91405, France
| |
Collapse
|
10
|
Abstract
Lipoic acid [(R)-5-(1,2-dithiolan-3-yl)pentanoic acid] is an enzyme cofactor required for intermediate metabolism in free-living cells. Lipoic acid was discovered nearly 60 years ago and was shown to be covalently attached to proteins in several multicomponent dehydrogenases. Cells can acquire lipoate (the deprotonated charge form of lipoic acid that dominates at physiological pH) through either scavenging or de novo synthesis. Microbial pathogens implement these basic lipoylation strategies with a surprising variety of adaptations which can affect pathogenesis and virulence. Similarly, lipoylated proteins are responsible for effects beyond their classical roles in catalysis. These include roles in oxidative defense, bacterial sporulation, and gene expression. This review surveys the role of lipoate metabolism in bacterial, fungal, and protozoan pathogens and how these organisms have employed this metabolism to adapt to niche environments.
Collapse
|
11
|
Jarrous N, Gopalan V. Archaeal/eukaryal RNase P: subunits, functions and RNA diversification. Nucleic Acids Res 2010; 38:7885-94. [PMID: 20716516 PMCID: PMC3001073 DOI: 10.1093/nar/gkq701] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNase P, a catalytic ribonucleoprotein (RNP), is best known for its role in precursor tRNA processing. Recent discoveries have revealed that eukaryal RNase P is also required for transcription and processing of select non-coding RNAs, thus enmeshing RNase P in an intricate network of machineries required for gene expression. Moreover, the RNase P RNA seems to have been subject to gene duplication, selection and divergence to generate two new catalytic RNPs, RNase MRP and MRP-TERT, which perform novel functions encompassing cell cycle control and stem cell biology. We present new evidence and perspectives on the functional diversification of the RNase P RNA to highlight it as a paradigm for the evolutionary plasticity that underlies the extant broad repertoire of catalytic and unexpected regulatory roles played by RNA-driven RNPs.
Collapse
Affiliation(s)
- Nayef Jarrous
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | |
Collapse
|
12
|
Sellam A, Hogues H, Askew C, Tebbji F, van Het Hoog M, Lavoie H, Kumamoto CA, Whiteway M, Nantel A. Experimental annotation of the human pathogen Candida albicans coding and noncoding transcribed regions using high-resolution tiling arrays. Genome Biol 2010; 11:R71. [PMID: 20618945 PMCID: PMC2926782 DOI: 10.1186/gb-2010-11-7-r71] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/07/2010] [Accepted: 07/09/2010] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Compared to other model organisms and despite the clinical relevance of the pathogenic yeast Candida albicans, no comprehensive analysis has been done to provide experimental support of its in silico-based genome annotation. RESULTS We have undertaken a genome-wide experimental annotation to accurately uncover the transcriptional landscape of the pathogenic yeast C. albicans using strand-specific high-density tiling arrays. RNAs were purified from cells growing under conditions relevant to C. albicans pathogenicity, including biofilm, lab-grown yeast and serum-induced hyphae, as well as cells isolated from the mouse caecum. This work provides a genome-wide experimental validation for a large number of predicted ORFs for which transcription had not been detected by other approaches. Additionally, we identified more than 2,000 novel transcriptional segments, including new ORFs and exons, non-coding RNAs (ncRNAs) as well as convincing cases of antisense gene transcription. We also characterized the 5' and 3' UTRs of expressed ORFs, and established that genes with long 5' UTRs are significantly enriched in regulatory functions controlling filamentous growth. Furthermore, we found that genomic regions adjacent to telomeres harbor a cluster of expressed ncRNAs. To validate and confirm new ncRNA candidates, we adapted an iterative strategy combining both genome-wide occupancy of the different subunits of RNA polymerases I, II and III and expression data. This comprehensive approach allowed the identification of different families of ncRNAs. CONCLUSIONS In summary, we provide a comprehensive expression atlas that covers relevant C. albicans pathogenic developmental stages in addition to the discovery of new ORF and non-coding genetic elements.
Collapse
Affiliation(s)
- Adnane Sellam
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount, Montréal, Québec, H4P 2R2, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Menzel P, Gorodkin J, Stadler PF. The tedious task of finding homologous noncoding RNA genes. RNA (NEW YORK, N.Y.) 2009; 15:2075-82. [PMID: 19861422 PMCID: PMC2779685 DOI: 10.1261/rna.1556009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
User-driven in silico RNA homology search is still a nontrivial task. In part, this is the consequence of a limited precision of the computational tools in spite of recent exciting progress in this area, and to a certain extent, computational costs are still problematic in practice. An important, and as we argue here, dominating issue is the dependence on good curated (secondary) structural alignments of the RNAs. These are often hard to obtain, not so much because of an inherent limitation in the available data, but because they require substantial manual curation, an effort that is rarely acknowledged. Here, we qualitatively describe a realistic scenario for what a "regular user" (i.e., a nonexpert in a particular RNA family) can do in practice, and what kind of results are likely to be achieved. Despite the indisputable advances in computational RNA biology, the conclusion is discouraging: BLAST still works better or equally good as other methods unless extensive expert knowledge on the RNA family is included. However, when good curated data are available the recent development yields further improvements in finding remote homologs. Homology search beyond the reach of BLAST hence is not at all a routine task.
Collapse
Affiliation(s)
- Peter Menzel
- Section for Genetics and Bioinformatics, IBHV, and Center for Applied Bioinformatics, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | | | | |
Collapse
|
14
|
Large telomerase RNA, telomere length heterogeneity and escape from senescence in Candida glabrata. FEBS Lett 2009; 583:3605-10. [PMID: 19840797 DOI: 10.1016/j.febslet.2009.10.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/10/2009] [Accepted: 10/13/2009] [Indexed: 11/23/2022]
Abstract
Telomerase, the key enzyme essential for the maintenance of eukaryotic chromosome ends, contains a reverse transcriptase and an RNA that provides the template for the synthesis of telomeric repeats. Here, we characterize the telomerase subunits in the hemiascomycete yeast Candida glabrata. We propose a secondary structure model for the telomerase RNA that is the largest described to date. Telomerase deletion mutants show a progressive shortening of telomeres and a modest loss of viability. Frequent post-senescence survivors emerge that possess long telomeric repeat tracts. We suggest that the high telomere length heterogeneity accounts for this distinct senescence phenotype.
Collapse
|
15
|
Zappulla DC, Cech TR. RNA as a flexible scaffold for proteins: yeast telomerase and beyond. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:217-24. [PMID: 17381300 DOI: 10.1101/sqb.2006.71.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Yeast telomerase, the enzyme that adds a repeated DNA sequence to the ends of the chromosomes, consists of a 1157- nucleotide RNA (TLC1) plus several protein subunits: the telomerase reverse transcriptase Est2p, the regulatory subunit Est1p, the nonhomologous end-joining heterodimer Ku, and the seven Sm proteins involved in ribonucleoprotein (RNP) maturation. The RNA subunit provides the template for telomeric DNA synthesis. In addition, we have reported evidence that it serves as a flexible scaffold to tether the proteins into the complex. More generally, we consider the possibility that RNPs may be considered in three structural categories: (1) those that have specific structures determined in large part by the RNA, including RNase P, other ribozyme-protein complexes, and the ribosome; (2) those that have specific structures determined in large part by proteins, including many small nuclear RNPs (snRNPs) and small nucleolar RNPs (snoRNPs); and (3) flexible scaffolds, with no specific structure of the RNP as a whole, as exemplified by yeast telomerase. Other candidates for flexible scaffold structures are other telomerases, viral IRES (internal ribosome entry site) elements, tmRNA (transfer-messenger RNA), the SRP (signal recognition particle), and Xist and roX1 RNAs that alter chromatin structure to achieve dosage compensation.
Collapse
Affiliation(s)
- D C Zappulla
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | | |
Collapse
|
16
|
Innings A, Ullberg M, Johansson A, Rubin CJ, Noreus N, Isaksson M, Herrmann B. Multiplex real-time PCR targeting the RNase P RNA gene for detection and identification of Candida species in blood. J Clin Microbiol 2007; 45:874-80. [PMID: 17215340 PMCID: PMC1829127 DOI: 10.1128/jcm.01556-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 09/11/2006] [Accepted: 12/26/2006] [Indexed: 12/26/2022] Open
Abstract
We have developed a single-tube multiplex real-time PCR method for the detection of the eight most common Candida species causing septicemia: Candida albicans, C. dubliniensis, C. famata, C. glabrata, C. guilliermondii, C. krusei, C. parapsilosis, and C. tropicalis. The method developed targets the RNase P RNA gene RPR1. Sequences of this gene were determined for seven of the Candida species and showed surprisingly large sequence variation. C. glabrata was found to have a gene that was five times longer gene than those of the other species, and the nucleotide sequence similarity between C. krusei and C. albicans was as low as 55%. The multiplex PCR contained three probes that enabled the specific detection of C. albicans, C. glabrata, and C. krusei and a fourth probe that allowed the general detection of the remaining species. The method was able to detect 1 to 10 genome copies when the detection limit was tested repeatedly for the four species C. albicans, C. glabrata, C. krusei, and C. guilliermondii. No significant difference in the detection limit was seen when the multiplex format was compared with single-species PCR, i.e., two primers and one probe. The method detected eight clinically relevant Candida species and did not react with other tested non-Candida species or human DNA. The assay was applied to 20 blood samples from nine patients and showed a sensitivity similar to that of culture.
Collapse
Affiliation(s)
- Asa Innings
- Department of Clinical Microbiology, Uppsala University Hospital, SE-751 85 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhu Y, Stribinskis V, Ramos KS, Li Y. Sequence analysis of RNase MRP RNA reveals its origination from eukaryotic RNase P RNA. RNA (NEW YORK, N.Y.) 2006; 12:699-706. [PMID: 16540690 PMCID: PMC1440897 DOI: 10.1261/rna.2284906] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
RNase MRP is a eukaryote-specific endoribonuclease that generates RNA primers for mitochondrial DNA replication and processes precursor rRNA. RNase P is a ubiquitous endoribonuclease that cleaves precursor tRNA transcripts to produce their mature 5' termini. We found extensive sequence homology of catalytic domains and specificity domains between their RNA subunits in many organisms. In Candida glabrata, the internal loop of helix P3 is 100% conserved between MRP and P RNAs. The helix P8 of MRP RNA from microsporidia Encephalitozoon cuniculi is identical to that of P RNA. Sequence homology can be widely spread over the whole molecule of MRP RNA and P RNA, such as those from Dictyostelium discoideum. These conserved nucleotides between the MRP and P RNAs strongly support the hypothesis that the MRP RNA is derived from the P RNA molecule in early eukaryote evolution.
Collapse
Affiliation(s)
- Yanglong Zhu
- Department of Biochemistry and Molecular Biology, and Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
18
|
Marck C, Kachouri-Lafond R, Lafontaine I, Westhof E, Dujon B, Grosjean H. The RNA polymerase III-dependent family of genes in hemiascomycetes: comparative RNomics, decoding strategies, transcription and evolutionary implications. Nucleic Acids Res 2006; 34:1816-35. [PMID: 16600899 PMCID: PMC1447645 DOI: 10.1093/nar/gkl085] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 02/03/2006] [Accepted: 03/03/2006] [Indexed: 01/09/2023] Open
Abstract
We present the first comprehensive analysis of RNA polymerase III (Pol III) transcribed genes in ten yeast genomes. This set includes all tRNA genes (tDNA) and genes coding for SNR6 (U6), SNR52, SCR1 and RPR1 RNA in the nine hemiascomycetes Saccharomyces cerevisiae, Saccharomyces castellii, Candida glabrata, Kluyveromyces waltii, Kluyveromyces lactis, Eremothecium gossypii, Debaryomyces hansenii, Candida albicans, Yarrowia lipolytica and the archiascomycete Schizosaccharomyces pombe. We systematically analysed sequence specificities of tRNA genes, polymorphism, variability of introns, gene redundancy and gene clustering. Analysis of decoding strategies showed that yeasts close to S.cerevisiae use bacterial decoding rules to read the Leu CUN and Arg CGN codons, in contrast to all other known Eukaryotes. In D.hansenii and C.albicans, we identified a novel tDNA-Leu (AAG), reading the Leu CUU/CUC/CUA codons with an unusual G at position 32. A systematic 'p-distance tree' using the 60 variable positions of the tRNA molecule revealed that most tDNAs cluster into amino acid-specific sub-trees, suggesting that, within hemiascomycetes, orthologous tDNAs are more closely related than paralogs. We finally determined the bipartite A- and B-box sequences recognized by TFIIIC. These minimal sequences are nearly conserved throughout hemiascomycetes and were satisfactorily retrieved at appropriate locations in other Pol III genes.
Collapse
MESH Headings
- Ascomycota/enzymology
- Ascomycota/genetics
- Base Sequence
- Codon
- Conserved Sequence
- DNA, Fungal/chemistry
- Evolution, Molecular
- Genes, Fungal
- Genome, Fungal
- Genomics
- Introns
- Molecular Sequence Data
- Multigene Family
- Polymorphism, Genetic
- Promoter Regions, Genetic
- RNA Polymerase III/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Untranslated/genetics
- Transcription Factors, TFIII/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Christian Marck
- Service de Biochimie et de Génétique Moléculaire, Bât 144. CEA/Saclay, 91191 Gif-sur-Yvette, France.
| | | | | | | | | | | |
Collapse
|
19
|
|