1
|
Hu Z, Li M, Huo Z, Chen L, Liu S, Deng K, Lu X, Chen S, Fu Y, Xu A. U1 snRNP proteins promote proximal alternative polyadenylation sites by directly interacting with 3' end processing core factors. J Mol Cell Biol 2022; 14:6694001. [PMID: 36073763 PMCID: PMC9926334 DOI: 10.1093/jmcb/mjac054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/14/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
In eukaryotic cells, both alternative splicing and alternative polyadenylation (APA) play essential roles in the gene regulation network. U1 small ribonucleoprotein particle (U1 snRNP) is a major component of spliceosome, and U1 snRNP complex can suppress proximal APA sites through crosstalking with 3' end processing factors. However, here we show that both knockdown and overexpression of SNRPA, SNRPC, SNRNP70, and SNRPD2, the U1 snRNP proteins, promote the usage of proximal APA sites at the transcriptome level. SNRNP70 can drive the phase transition of PABPN1 from droplet to aggregate, which may reduce the repressive effects of PABPN1 on the proximal APA sites. Additionally, SNRNP70 can also promote the proximal APA sites by recruiting CPSF6, suggesting that the function of CPSF6 on APA is related with other RNA-binding proteins and cell context-dependent. Consequently, these results reveal that, on the contrary to U1 snRNP complex, the free proteins of U1 snRNP complex can promote proximal APA sites through the interaction with 3' end processing machinery.
Collapse
Affiliation(s)
| | | | | | - Liutao Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, China
| | - Susu Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, China
| | - Ke Deng
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, China
| | - Xin Lu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, China
| | | | - Anlong Xu
- Correspondence to: Anlong Xu, E-mail:
| |
Collapse
|
2
|
Carew NT, Nelson AM, Liang Z, Smith SM, Milcarek C. Linking Endoplasmic Reticular Stress and Alternative Splicing. Int J Mol Sci 2018; 19:ijms19123919. [PMID: 30544499 PMCID: PMC6321306 DOI: 10.3390/ijms19123919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022] Open
Abstract
RNA splicing patterns in antibody-secreting cells are shaped by endoplasmic reticulum stress, ELL2 (eleven-nineteen lysine-rich leukemia gene 2) induction, and changes in the levels of snRNAs. Endoplasmic reticulum stress induces the unfolded protein response comprising a highly conserved set of genes crucial for cell survival; among these is Ire1, whose auto-phosphorylation drives it to acquire a regulated mRNA decay activity. The mRNA-modifying function of phosphorylated Ire1 non-canonically splices Xbp1 mRNA and yet degrades other cellular mRNAs with related motifs. Naïve splenic B cells will activate Ire1 phosphorylation early on after lipopolysaccharide (LPS) stimulation, within 18 h; large-scale changes in mRNA content and splicing patterns result. Inhibition of the mRNA-degradation function of Ire1 is correlated with further differences in the splicing patterns and a reduction in the mRNA factors for snRNA transcription. Some of the >4000 splicing changes seen at 18 h after LPS stimulation persist into the late stages of antibody secretion, up to 72 h. Meanwhile some early splicing changes are supplanted by new splicing changes introduced by the up-regulation of ELL2, a transcription elongation factor. ELL2 is necessary for immunoglobulin secretion and does this by changing mRNA processing patterns of immunoglobulin heavy chain and >5000 other genes.
Collapse
Affiliation(s)
- Nolan T Carew
- School of Medicine, Department of Immunology, University of Pittsburgh, E1059 Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| | - Ashley M Nelson
- School of Medicine, Department of Immunology, University of Pittsburgh, E1059 Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| | - Zhitao Liang
- School of Medicine, Department of Immunology, University of Pittsburgh, E1059 Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| | - Sage M Smith
- School of Medicine, Department of Immunology, University of Pittsburgh, E1059 Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| | - Christine Milcarek
- School of Medicine, Department of Immunology, University of Pittsburgh, E1059 Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| |
Collapse
|
3
|
Nelson AM, Carew NT, Smith SM, Milcarek C. RNA Splicing in the Transition from B Cells to Antibody-Secreting Cells: The Influences of ELL2, Small Nuclear RNA, and Endoplasmic Reticulum Stress. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:3073-3083. [PMID: 30297340 PMCID: PMC6219926 DOI: 10.4049/jimmunol.1800557] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/07/2018] [Indexed: 12/21/2022]
Abstract
In the transition from B cells to Ab-secreting cells (ASCs) many genes are induced, such as ELL2, Irf4, Prdm1, Xbp1, whereas other mRNAs do not change in abundance. Nonetheless, using splicing array technology and mouse splenic B cells plus or minus LPS, we found that induced and "uninduced" genes can show large differences in splicing patterns between the cell stages, which could influence ASC development. We found that ∼55% of these splicing changes depend on ELL2, a transcription elongation factor that influences expression levels and splicing patterns of ASC signature genes, genes in the cell-cycle and N-glycan biosynthesis and processing pathways, and the secretory versus membrane forms of the IgH mRNA. Some of these changes occur when ELL2 binds directly to the genes encoding those mRNAs, whereas some of the changes are indirect. To attempt to account for the changes that occur in RNA splicing before or without ELL2 induction, we examined the amount of the small nuclear RNA molecules and found that they were significantly decreased within 18 h of LPS stimulation and stayed low until 72 h. Correlating with this, at 18 h after LPS, endoplasmic reticulum stress and Ire1 phosphorylation are induced. Inhibiting the regulated Ire1-dependent mRNA decay with 4u8C correlates with the reduction in small nuclear RNA and changes in the normal splicing patterns at 18 h. Thus, we conclude that the RNA splicing patterns in ASCs are shaped early by endoplasmic reticulum stress and Ire1 phosphorylation and later by ELL2 induction.
Collapse
Affiliation(s)
- Ashley M Nelson
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Nolan T Carew
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Sage M Smith
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Christine Milcarek
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
4
|
Schaub A, Glasmacher E. Splicing in immune cells-mechanistic insights and emerging topics. Int Immunol 2018; 29:173-181. [PMID: 28498981 PMCID: PMC5890895 DOI: 10.1093/intimm/dxx026] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 04/27/2017] [Indexed: 11/26/2022] Open
Abstract
Differential splicing of mRNAs not only enables regulation of gene expression levels, but also ensures a high degree of gene-product diversity. The extent to which splicing of mRNAs is utilized as a mechanism in immune cells has become evident within the last few years. Still, only a few of these mechanisms have been well studied. In this review, we discuss some of the best-understood mechanisms, for instance the differential splicing of CD45 in T cells, as well as immunoglobulin genes in B cells. Beyond that we provide general mechanistic insights on how, when and where this process takes place and discuss the current knowledge regarding these topics in immune cells. We also highlight some of the reported links to immune-related diseases, genome-wide sequencing studies that revealed thousands of differentially spliced transcripts, as well as splicing studies on immune cells that remain mechanistically not fully understood. We thereby display potential emerging topics for future studies centered on splicing mechanisms in immune cells.
Collapse
Affiliation(s)
- Annalisa Schaub
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Elke Glasmacher
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| |
Collapse
|
5
|
Peng Y, Yuan J, Zhang Z, Chang X. Cytoplasmic poly(A)-binding protein 1 (PABPC1) interacts with the RNA-binding protein hnRNPLL and thereby regulates immunoglobulin secretion in plasma cells. J Biol Chem 2017; 292:12285-12295. [PMID: 28611064 DOI: 10.1074/jbc.m117.794834] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/11/2017] [Indexed: 01/09/2023] Open
Abstract
Increasing evidence indicates that alternative processing of mRNA, including alternative splicing, 3' alternative polyadenylation, and regulation of mRNA stability/translation, represents a major mechanism contributing to protein diversification. For example, in alternative polyadenylation, the 3' end of the immunoglobulin heavy chain mRNA is processed during B cell differentiation, and this processing involves RNA-binding proteins. hnRNPLL (heterogeneous nuclear ribonucleoprotein L-like protein) is an RNA-binding protein expressed in terminally differentiated lymphocytes, such as memory T cells and plasma cells. hnRNPLL regulates various processes of RNA metabolism, including alternative pre-mRNA splicing and RNA stability. In plasma cells, hnRNPLL also regulates the transition from the membrane isoform of the immunoglobulin heavy-chain (mIgH) to the secreted isoform (sIgH), but the precise mechanism remains to be identified. In this study, we report that hnRNPLL specifically associates with cytoplasmic PABPC1 (poly(A)-binding protein 1) in both T cells and plasma cells. We found that although PABPC1 is not required for the alternative splicing of CD45, a primary target of hnRNPLL in lymphocytes, PABPC1 does promote the binding of hnRNPLL to the immunoglobulin mRNA and regulates switching from mIgH to sIgH in plasma cells. Given the recently identified role of PABPC1 in mRNA alternative polyadenylation, our findings suggest that PABPC1 recruits hnRNPLL to the 3'-end of RNA and regulates the transition from membrane Ig to secreted Ig through mRNA alternative polyadenylation. In conclusion, our study has revealed a mechanism that regulates immunoglobulin secretion in B cells via cooperation between a plasma cell-specific RBP (hnRNPLL) and a universally expressed RBP (PABPC1).
Collapse
Affiliation(s)
- Yuanzheng Peng
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Juanjuan Yuan
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Zhenchao Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xing Chang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China.
| |
Collapse
|
6
|
Kaida D. The reciprocal regulation between splicing and 3'-end processing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:499-511. [PMID: 27019070 PMCID: PMC5071671 DOI: 10.1002/wrna.1348] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/05/2016] [Accepted: 02/22/2016] [Indexed: 12/14/2022]
Abstract
Most eukaryotic precursor mRNAs are subjected to RNA processing events, including 5′‐end capping, splicing and 3′‐end processing. These processing events were historically studied independently; however, since the early 1990s tremendous efforts by many research groups have revealed that these processing factors interact with each other to control each other's functions. U1 snRNP and its components negatively regulate polyadenylation of precursor mRNAs. Importantly, this function is necessary for protecting the integrity of the transcriptome and for regulating gene length and the direction of transcription. In addition, physical and functional interactions occur between splicing factors and 3′‐end processing factors across the last exon. These interactions activate or inhibit splicing and 3′‐end processing depending on the context. Therefore, splicing and 3′‐end processing are reciprocally regulated in many ways through the complex protein–protein interaction network. Although interesting questions remain, future studies will illuminate the molecular mechanisms underlying the reciprocal regulation. WIREs RNA 2016, 7:499–511. doi: 10.1002/wrna.1348 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Daisuke Kaida
- Frontier Research Core for Life Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
7
|
Coordination of RNA Polymerase II Pausing and 3' End Processing Factor Recruitment with Alternative Polyadenylation. Mol Cell Biol 2015; 36:295-303. [PMID: 26527620 DOI: 10.1128/mcb.00898-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/28/2015] [Indexed: 11/20/2022] Open
Abstract
Most mammalian genes produce transcripts whose 3' ends are processed at multiple alternative positions by cleavage/polyadenylation (CPA). Poly(A) site cleavage frequently occurs cotranscriptionally and is facilitated by CPA factor binding to the RNA polymerase II (Pol II) C-terminal domain (CTD) phosphorylated on Ser2 residues of its heptad repeats (YS2PTSPS). The function of cotranscriptional events in the selection of alternative poly(A) sites is poorly understood. We investigated Pol II pausing, CTD Ser2 phosphorylation, and processing factor CstF recruitment at wild-type and mutant IgM transgenes that use alternative poly(A) sites to produce mRNAs encoding the secreted and membrane-bound forms of the immunoglobulin (Ig) heavy chain. The results show that the sites of Pol II pausing and processing factor recruitment change depending on which poly(A) site is utilized. In contrast, the extent of Pol II CTD Ser2 phosphorylation does not closely correlate with poly(A) site selection. We conclude that changes in properties of the transcription elongation complex closely correlate with utilization of different poly(A) sites, suggesting that cotranscriptional events may influence the decision between alternative modes of pre-mRNA 3' end processing.
Collapse
|
8
|
Pioli PD, Debnath I, Weis JJ, Weis JH. Zfp318 regulates IgD expression by abrogating transcription termination within the Ighm/Ighd locus. THE JOURNAL OF IMMUNOLOGY 2014; 193:2546-53. [PMID: 25057009 DOI: 10.4049/jimmunol.1401275] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The protein Zfp318 is expressed during the transition of naive B cells from an immature to mature state. To evaluate its role in mature B cell functions, a conditional gene deficiency in Zfp318 was created and deleted in bone marrow lineages via Vav-Cre. B cell development was minimally altered in the absence of the protein, although transitional 2 (T2) B cell populations were depressed in the absence of Zfp318. Intriguingly, the analysis of IgM and IgD expression by maturing and mature naive B cells demonstrated an elevated level of IgM gene products and a virtual loss of IgD products. Transcriptome analysis of Zfp318-deficient B cells revealed that only two gene products showed altered expression in the absence of Zfp318 (Ighd and Sva), demonstrating a remarkable specificity of Zfp318 action. In the absence of Zfp318, Ighm/Ighd transcripts, which would normally encode IgM and IgD from heterogeneous nuclear RNA transcripts via alternative splicing, lack intron and exon sequences from the IgD (Ighd)-encoding region. This finding indicates that Zfp318, in a novel manner, functions by repressing recognition of the transcriptional termination site at the 3' end of the terminal IgM-encoding exon, allowing for synthesis of the complete Ighm/Ighd heterogeneous nuclear RNA.
Collapse
Affiliation(s)
- Peter D Pioli
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Irina Debnath
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Janis J Weis
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - John H Weis
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
9
|
Abstract
B cells can be activated by cognate antigen, anti-B-cell receptor antibody, complement receptors, or polyclonal stimulators like lipopolysaccharide; the overall result is a large shift in RNA processing to the secretory-specific form of immunoglobulin (Ig) heavy chain mRNA and an upregulation of Igh mRNA amounts. Associated with this shift is the large-scale induction of Ig protein synthesis and the unfolded protein response to accommodate the massive quantity of secretory Ig that results. Stimulation to secretion also produces major structural accommodations and stress, with extensive generation of endoplasmic reticulum and Golgi as part of the cellular architecture. Reactive oxygen species can lead to either activation or apoptosis based on context and the high or low oxygen tension surrounding the cells. Transcription elongation factor ELL2 plays an important role in the induction of Ig secretory mRNA production, the unfolded protein response, and gene expression during hypoxia. After antigen stimulation, activated B cells from either the marginal zones or follicles can produce short-lived antibody secreting cells; it is not clear whether cells from both locations can become long-lived plasma cells. Autophagy is necessary for plasma cell long-term survival through the elimination of some of the accumulated damage to the ER from producing so much protein. Survival signals from the bone marrow stromal cells also contribute to plasma cell longevity, with BCMA serving a potentially unique survival role. Integrating the various information pathways converging on the plasma cell is crucial to the development of their long-lived, productive immune response.
Collapse
Affiliation(s)
- Ian Bayles
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Christine Milcarek
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
10
|
U1 snRNP-Dependent Suppression of Polyadenylation: Physiological Role and Therapeutic Opportunities in Cancer. Int J Cell Biol 2013; 2013:846510. [PMID: 24285958 PMCID: PMC3826338 DOI: 10.1155/2013/846510] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/05/2013] [Indexed: 11/17/2022] Open
Abstract
Pre-mRNA splicing and polyadenylation are critical steps in the maturation of eukaryotic mRNA. U1 snRNP is an essential component of the splicing machinery and participates in splice-site selection and spliceosome assembly by base-pairing to the 5' splice site. U1 snRNP also plays an additional, nonsplicing global function in 3' end mRNA processing; it actively suppresses the polyadenylation machinery from using early, mostly intronic polyadenylation signals which would lead to aberrant, truncated mRNAs. Thus, U1 snRNP safeguards pre-mRNA transcripts against premature polyadenylation and contributes to the regulation of alternative polyadenylation. Here, we review the role of U1 snRNP in 3' end mRNA processing, outline the evidence that led to the recognition of its physiological, general role in inhibiting polyadenylation, and finally highlight the possibility of manipulating this U1 snRNP function for therapeutic purposes in cancer.
Collapse
|
11
|
Rösel-Hillgärtner TD, Hung LH, Khrameeva E, Le Querrec P, Gelfand MS, Bindereif A. A novel intra-U1 snRNP cross-regulation mechanism: alternative splicing switch links U1C and U1-70K expression. PLoS Genet 2013; 9:e1003856. [PMID: 24146627 PMCID: PMC3798272 DOI: 10.1371/journal.pgen.1003856] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 08/21/2013] [Indexed: 11/18/2022] Open
Abstract
The U1 small nuclear ribonucleoprotein (snRNP)-specific U1C protein participates in 5′ splice site recognition and regulation of pre-mRNA splicing. Based on an RNA-Seq analysis in HeLa cells after U1C knockdown, we found a conserved, intra-U1 snRNP cross-regulation that links U1C and U1-70K expression through alternative splicing and U1 snRNP assembly. To investigate the underlying regulatory mechanism, we combined mutational minigene analysis, in vivo splice-site blocking by antisense morpholinos, and in vitro binding experiments. Alternative splicing of U1-70K pre-mRNA creates the normal (exons 7–8) and a non-productive mRNA isoform, whose balance is determined by U1C protein levels. The non-productive isoform is generated through a U1C-dependent alternative 3′ splice site, which requires an adjacent cluster of regulatory 5′ splice sites and binding of intact U1 snRNPs. As a result of nonsense-mediated decay (NMD) of the non-productive isoform, U1-70K mRNA and protein levels are down-regulated, and U1C incorporation into the U1 snRNP is impaired. U1-70K/U1C-deficient particles are assembled, shifting the alternative splicing balance back towards productive U1-70K splicing, and restoring assembly of intact U1 snRNPs. Taken together, we established a novel feedback regulation that controls U1-70K/U1C homeostasis and ensures correct U1 snRNP assembly and function. The accurate removal of intervening sequences (introns) from precursor messenger RNAs (pre-mRNAs) represents an essential step in the expression of most eukaryotic protein-coding genes. Alternative splicing can create from a single primary transcript various mature mRNAs with diverse, sometimes even antagonistic, biological functions. Many human diseases are based on alternative-splicing defects, and most interestingly, certain defects are caused by mutations in general splicing factors that participate in each splicing event. To address the question of how a general splicing factor can regulate alternative splicing events, here we investigated the regulatory role of the U1C protein, a specific component of the U1 small nuclear ribonucleoprotein (snRNP) and important in initial 5′ splice site recognition. Our RNA-Seq analysis demonstrated that U1C affects more than 300 cases of alternative splicing in the human system. One U1C target, U1-70K, appeared to be particularly interesting, because both protein products are components of the U1 snRNP and functionally depend on each other. Analyzing the mechanistic basis of this intra-U1 snRNP cross-regulation, we discovered a U1C-dependent alternative splicing switch in the U1-70K pre-mRNA that regulates U1-70K expression. In sum, this feedback loop controls and links U1C and U1-70K homeostasis to guarantee correct U1 snRNP assembly and function.
Collapse
Affiliation(s)
| | - Lee-Hsueh Hung
- Institute of Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
| | - Ekaterina Khrameeva
- Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
- Lomonosov Moscow State University, Department of Bioengineering and Bioinformatics, Moscow, Russia
| | - Patrick Le Querrec
- Institute of Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
| | - Mikhail S. Gelfand
- Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
- Lomonosov Moscow State University, Department of Bioengineering and Bioinformatics, Moscow, Russia
| | - Albrecht Bindereif
- Institute of Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
12
|
Peterson ML. Immunoglobulin heavy chain gene regulation through polyadenylation and splicing competition. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:92-105. [PMID: 21956971 DOI: 10.1002/wrna.36] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The immunoglobulin heavy chain (IgH) genes, which encode one of the two chains of antibody molecules, were the first cellular genes shown to undergo developmentally regulated alternative RNA processing. These genes produce two different mRNAs from a single primary transcript. One mRNA is cleaved and polyadenylated at an upstream poly(A) signal while the other mRNA removes this poly(A) signal by RNA splicing and is cleaved and polyadenylated at a downstream poly(A) site. A broad range of studies have been performed to understand the mechanism of IgH RNA processing regulation during B lymphocyte development. The model that has emerged is much more complex than envisioned by the earliest view of regulation through poly(A) signal choice. Regulation requires that the IgH gene contain competing splice and cleavage-polyadenylation reactions with balanced efficiencies. Because non-IgH genes with these structural features also can be regulated, IgH gene-specific sequence elements are not required for regulation. Changes in cleavage-polyadenylation and RNA splicing, as well as pol II elongation, all contribute to IgH developmental RNA processing regulation. Multiple factors are likely involved in the regulation during B lymphocyte maturation. Additional biologically relevant factors that contribute to IgH regulation remain to be identified and incorporated into a mechanistic model for regulation. Much of the work to date confirms the complex nature of IgH mRNA regulation and suggests that a thorough understanding of this control will remain a challenge. However, it is also likely that such understanding will help elucidate novel mechanisms of RNA processing regulation.
Collapse
Affiliation(s)
- Martha L Peterson
- Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
13
|
Najjar I, Deglesne PA, Schischmanoff PO, Fabre EE, Boisson-Dupuis S, Nimmerjahn F, Bornkamm GW, Dusanter-Fourt I, Fagard R. STAT1-dependent IgG cell-surface expression in a human B cell line derived from a STAT1-deficient patient. J Leukoc Biol 2010; 87:1145-52. [PMID: 20200400 DOI: 10.1189/jlb.1109714] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
STAT1 is a key effector of cytokines involved in the resistance to pathogens; its identified transcriptional targets mediate the innate immune response involved in the defense against viruses and bacteria. Little is known about the role of STAT1 in adaptive immunity, including its impact on BCR or surface Ig expression. Analysis of this point is difficult in humans, as STAT1 deficiency is extremely rare. SD patients die early in childhood from a severe immunodeficiency. Herein, a SD B cell line obtained from a SD patient was compared with a B cell line from a STAT1-proficient subject in search of differences in surface Ig expression. In this SD B cell line, a complete absence of surface IgG was noted. The mRNA encoding the surface form of IgG was detected only in STAT1-proficient B cells; the mRNAs encoding the secreted and the surface forms were detected in SD and STAT1-proficient B cells. Re-expression of STAT1 in SD B cells restored surface IgG expression and a functional BCR. Conversely, shRNA silencing of STAT1 in B cells reduced considerably the expression of the surface IgG. Although limited to one B cell line, these results suggest that STAT1 may play an essential role in surface IgG expression in human B cells. Possible mechanisms involve regulation of mRNA splicing, transcription, or both. These observations extend the role of STAT1 further in adaptive immunity, including the regulation of BCR expression.
Collapse
Affiliation(s)
- Imen Najjar
- INSERM, unité 978/Université Paris 13, UFR SMBH 74 rue Marcel Cachin, 93017 Bobigny cedex France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ly L, Wasinger VC. Mass and charge selective protein fractionation for the differential analysis of T-cell and CD34+ stem cell proteins from cord blood. J Proteomics 2010; 73:571-8. [DOI: 10.1016/j.jprot.2009.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 08/11/2009] [Accepted: 09/02/2009] [Indexed: 12/11/2022]
|
15
|
Transcription elongation factor ELL2 directs immunoglobulin secretion in plasma cells by stimulating altered RNA processing. Nat Immunol 2009; 10:1102-9. [PMID: 19749764 PMCID: PMC2771556 DOI: 10.1038/ni.1786] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 07/28/2009] [Indexed: 01/16/2023]
Abstract
Immunoglobulin secretion is modulated by a competition between use of a weak promoter proximal poly(A) site and a non-consensus splice site in the last secretory-specific exon of the heavy chain pre-mRNA. RNA polymerase II transcription elongation factor ELL2, induced in plasma cells, enhanced both polyadenylation and exon skipping with the Igh gene and reporter constructs. Lowering ELL2 expression by hnRNP F transfection or siRNA reduced secretory-specific forms of IgH mRNA. ELL2 and polyadenylation factor CstF-64 co-tracked with RNA polymerase II across the Igh mu and gamma gene segments; association of both factors was blocked by ELL2 siRNA. Thus loading of ELL2 and CstF-64 on RNAP-II was linked, causative for enhanced proximal poly(A) site use and necessary for IgH mRNA processing.
Collapse
|
16
|
Jia R, Zheng ZM. Regulation of bovine papillomavirus type 1 gene expression by RNA processing. Front Biosci (Landmark Ed) 2009; 14:1270-82. [PMID: 19273129 DOI: 10.2741/3307] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Bovine papillomavirus type 1 (BPV-1) has served as a prototype for studying the molecular biology and pathogenesis of papillomaviruses. The expression of BPV-1 early and late genes is highly regulated at both transcription and post-transcriptional levels and strictly tied to the differentiation of keratinocytes. BPV-1 infects keratinocytes in the basal layer of the skin and replicates in the nucleus of infected cells in a differentiation-dependent manner. Although viral early genes begin to be expressed from the infected, undifferentiated basal cells, viral late genes are not expressed until the infected cells enter the terminal differentiation stage. Both BPV-1 early and late transcripts are intron-containing bicistronic or polycistronic RNAs, bearing more than one open reading frame and are polyadenylated at either an early or late poly (A) site. Nuclear RNA processing of these transcripts by RNA splicing and poly (A) site selection has been extensively analyzed in the past decade and various viral cis-elements and cellular factors involved in regulation of viral RNA processing were discovered, leading to our better understanding of the gene expression and biology of human papillomaviruses.
Collapse
Affiliation(s)
- Rong Jia
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
17
|
Lorković ZJ, Barta A. Role of Cajal bodies and nucleolus in the maturation of the U1 snRNP in Arabidopsis. PLoS One 2008; 3:e3989. [PMID: 19098980 PMCID: PMC2600615 DOI: 10.1371/journal.pone.0003989] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 11/21/2008] [Indexed: 01/31/2023] Open
Abstract
Background The biogenesis of spliceosomal snRNPs takes place in both the cytoplasm where Sm core proteins are added and snRNAs are modified at the 5′ and 3′ termini and in the nucleus where snRNP-specific proteins associate. U1 snRNP consists of U1 snRNA, seven Sm proteins and three snRNP-specific proteins, U1-70K, U1A, and U1C. It has been shown previously that after import to the nucleus U2 and U4/U6 snRNP-specific proteins first appear in Cajal bodies (CB) and then in splicing speckles. In addition, in cells grown under normal conditions U2, U4, U5, and U6 snRNAs/snRNPs are abundant in CBs. Therefore, it has been proposed that the final assembly of these spliceosomal snRNPs takes place in this nuclear compartment. In contrast, U1 snRNA in both animal and plant cells has rarely been found in this nuclear compartment. Methodology/Principal Findings Here, we analysed the subnuclear distribution of Arabidopsis U1 snRNP-specific proteins fused to GFP or mRFP in transiently transformed Arabidopsis protoplasts. Irrespective of the tag used, U1-70K was exclusively found in the nucleus, whereas U1A and U1C were equally distributed between the nucleus and the cytoplasm. In the nucleus all three proteins localised to CBs and nucleoli although to different extent. Interestingly, we also found that the appearance of the three proteins in nuclear speckles differ significantly. U1-70K was mostly found in speckles whereas U1A and U1C in ∼90% of cells showed diffuse nucleoplasmic in combination with CBs and nucleolar localisation. Conclusions/Significance Our data indicate that CBs and nucleolus are involved in the maturation of U1 snRNP. Differences in nuclear accumulation and distribution between U1-70K and U1A and U1C proteins may indicate that either U1-70K or U1A and U1C associate with, or is/are involved, in other nuclear processes apart from pre-mRNA splicing.
Collapse
Affiliation(s)
- Zdravko J Lorković
- Department of Medical Biochemistry, Max F Perutz Laboratories, Medical University of Vienna, Vienna, Austria.
| | | |
Collapse
|
18
|
Shell SA, Martincic K, Tran J, Milcarek C. Increased phosphorylation of the carboxyl-terminal domain of RNA polymerase II and loading of polyadenylation and cotranscriptional factors contribute to regulation of the ig heavy chain mRNA in plasma cells. THE JOURNAL OF IMMUNOLOGY 2008; 179:7663-73. [PMID: 18025212 DOI: 10.4049/jimmunol.179.11.7663] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
B cells produce Ig H chain (IgH) mRNA and protein, primarily of the membrane-bound specific form. Plasma cells produce 20- to 50-fold higher amounts of IgH mRNA, most processed to the secretory specific form; this shift is mediated by substantial changes in RNA processing but only a small increase in IgH transcription rate. We investigated RNA polymerase II (RNAP-II) loading and phosphorylation of its C-terminal domain (CTD) on the IgG2a H chain gene, comparing two mouse cell lines representing B (A20) and plasma cells (AxJ) that express the identical H chain gene whose RNA is processed in different ways. Using chromatin immunoprecipitation and real-time PCR, we detected increased RNAP-II and Ser-2 and Ser-5 phosphorylation of RNAP-II CTD close to the IgH promoter in plasma cells. We detected increased association of several 3' end-processing factors, ELL2 and PC4, at the 5' end of the IgH gene in AxJ as compared with A20 cells. Polymerase progress and factor associations were inhibited by 5,6-dichlorobenzimidazole riboside, a drug that interferes with the addition of the Ser-2 to the CTD of RNAP-II. Taken together, these data indicate a role for CTD phosphorylation and polyadenylation/ELL2/PC4 factor loading on the polymerase in the choice of the secretory poly(A) site for the IgH gene.
Collapse
Affiliation(s)
- Scott A Shell
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
19
|
Guan F, Caratozzolo RM, Goraczniak R, Ho ES, Gunderson SI. A bipartite U1 site represses U1A expression by synergizing with PIE to inhibit nuclear polyadenylation. RNA (NEW YORK, N.Y.) 2007; 13:2129-40. [PMID: 17942741 PMCID: PMC2080603 DOI: 10.1261/rna.756707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
U1A protein negatively autoregulates itself by polyadenylation inhibition of its own pre-mRNA by binding as two molecules to a 3'UTR-located Polyadenylation Inhibitory Element (PIE). The (U1A)2-PIE complex specifically blocks U1A mRNA biosynthesis by inhibiting polyA tail addition, leading to lower mRNA levels. U1 snRNP bound to a 5'ss-like sequence, which we call a U1 site, in the 3'UTRs of certain papillomaviruses leads to inhibition of viral late gene expression via a similar mechanism. Although such U1 sites can also be artificially used to potently silence reporter and endogenous genes, no naturally occurring U1 sites have been found in eukaryotic genes. Here we identify a conserved U1 site in the human U1A gene that is, unexpectedly, within a bipartite element where the other part represses the U1 site via a base-pairing mechanism. The bipartite element inhibits U1A expression via a synergistic action with the nearby PIE. Unexpectedly, synergy is not based on stabilizing binding of the inhibitory factors to the 3'UTR, but rather is a property of the larger ternary complex. Inhibition targets the biosynthetic step of polyA tail addition rather than altering mRNA stability. This is the first example of a functional U1 site in a cellular gene and of a single gene containing two dissimilar elements that inhibit nuclear polyadenylation. Parallels with other examples where U1 snRNP inhibits expression are discussed. We expect that other cellular genes will harbor functional U1 sites.
Collapse
Affiliation(s)
- Fei Guan
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
20
|
Peterson ML. Mechanisms controlling production of membrane and secreted immunoglobulin during B cell development. Immunol Res 2007; 37:33-46. [PMID: 17496345 DOI: 10.1007/bf02686094] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/27/2022]
Abstract
The immunoglobulin gene which encodes both membrane-associated and secreted proteins through alternative RNA processing reactions has been a model system used for over 25 yr to better understand the regulatory mechanisms governing alternative RNA processing. This gene contains competing cleavage-polyadenylation and RNA splicing reactions and the relative use of the two pathways is differentially regulated between B cells and plasma cells. General cleavage-polyadenylation and RNA splicing reactions are both altered during B cell maturation to affect immunoglobulin expression. However, the specific factors involved in this regulation have yet to be identified clearly. As transcriptional regulators stimulate the developmental RNA processing switch, microarray analysis is a promising approach to identify candidate regulators of this complex RNA processing mechanism.
Collapse
Affiliation(s)
- Martha L Peterson
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA.
| |
Collapse
|
21
|
Peterson ML, Bingham GL, Cowan C. Multiple features contribute to the use of the immunoglobulin M secretion-specific poly(A) signal but are not required for developmental regulation. Mol Cell Biol 2006; 26:6762-71. [PMID: 16943419 PMCID: PMC1592873 DOI: 10.1128/mcb.00889-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The secretory-specific poly(A) signal (mus) of the immunoglobulin mu gene plays a central role in regulating alternative RNA processing to produce RNAs that encode membrane-associated and secreted immunoglobulins. This poly(A) signal is in direct competition with a splice reaction, and regulation requires that these two reaction efficiencies be balanced. The mus poly(A) signal has several unique sequence features that may contribute to its strength and regulation. Site-directed mutations and small internal deletions made in the intact mu gene show that an extensive AU/A-rich sequence surrounding AAUAAA enhances signal use and that, of the two potential downstream GU-rich elements, both of which appear suboptimally located, only the proximal GU-rich sequence contributes substantially to use of this signal. A GU-rich sequence placed at a more standard location did not improve mus poly(A) signal use. All mu genes tested that contained modified mus poly(A) signals were developmentally regulated, indicating that the GU-rich sequences, the sequences between them previously identified as suboptimal U1A binding sites, and an upstream suboptimal U1A site do not contribute to mu mRNA processing regulation. Expression of wild-type and modified mu genes in HeLa cells overexpressing U1A also failed to demonstrate that U1A contributes to mus poly(A) signal regulation.
Collapse
Affiliation(s)
- Martha L Peterson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, 800 Rose St., 108A Combs Building, Lexington, KY 40536-0096, USA.
| | | | | |
Collapse
|
22
|
Law MJ, Rice AJ, Lin P, Laird-Offringa IA. The role of RNA structure in the interaction of U1A protein with U1 hairpin II RNA. RNA (NEW YORK, N.Y.) 2006; 12:1168-78. [PMID: 16738410 PMCID: PMC1484440 DOI: 10.1261/rna.75206] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The N-terminal RNA Recognition Motif (RRM1) of the spliceosomal protein U1A interacting with its target U1 hairpin II (U1hpII) has been used as a paradigm for RRM-containing proteins interacting with their RNA targets. U1A binds to U1hpII via direct interactions with a 7-nucleotide (nt) consensus binding sequence at the 5' end of a 10-nt loop, and via hydrogen bonds with the closing C-G base pair at the top of the RNA stem. Using surface plasmon resonance (Biacore), we have examined the role of structural features of U1hpII in binding to U1A RRM1. Mutational analysis of the closing base pair suggests it plays a minor role in binding and mainly prevents "breathing" of the loop. Lengthening the stem and nontarget part of the loop suggests that the increased negative charge of the RNA might slightly aid association. However, this is offset by an increase in dissociation, which may be caused by attraction of the RRM to nontarget parts of the RNA. Studies of a single stranded target and RNAs with untethered loops indicate that structure is not very relevant for association but is important for complex stability. In particular, breaking the link between the stem and the 5' side of the loop greatly increases complex dissociation, presumably by hindering simultaneous contacts between the RRM and stem and loop nucleotides. While binding of U1A to a single stranded target is much weaker than to U1hpII, it occurs with nanomolar affinity, supporting recent evidence that binding of unstructured RNA by U1A has physiological significance.
Collapse
Affiliation(s)
- Michael J Law
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9176, USA
| | | | | | | |
Collapse
|