1
|
Niu D, Wu Y, Lian J. Circular RNA vaccine in disease prevention and treatment. Signal Transduct Target Ther 2023; 8:341. [PMID: 37691066 PMCID: PMC10493228 DOI: 10.1038/s41392-023-01561-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/02/2023] [Accepted: 07/09/2023] [Indexed: 09/12/2023] Open
Abstract
CircRNAs are a class of single-stranded RNAs with covalently linked head-to-tail topology. In the decades since its initial discovery, their biogenesis, regulation, and function have rapidly disclosed, permitting a better understanding and adoption of them as new tools for medical applications. With the development of biotechnology and molecular medicine, artificial circRNAs have been engineered as a novel class of vaccines for disease treatment and prevention. Unlike the linear mRNA vaccine which applications were limited by its instability, inefficiency, and innate immunogenicity, circRNA vaccine which incorporate internal ribosome entry sites (IRESs) and open reading frame (ORF) provides an improved approach to RNA-based vaccination with safety, stability, simplicity of manufacture, and scalability. However, circRNA vaccines are at an early stage, and their optimization, delivery and applications require further development and evaluation. In this review, we comprehensively describe circRNA vaccine, including their history and superiority. We also summarize and discuss the current methodological research for circRNA vaccine preparation, including their design, synthesis, and purification. Finally, we highlight the delivery options of circRNA vaccine and its potential applications in diseases treatment and prevention. Considering their unique high stability, low immunogenicity, protein/peptide-coding capacity and special closed-loop construction, circRNA vaccine, and circRNA-based therapeutic platforms may have superior application prospects in a broad range of diseases.
Collapse
Affiliation(s)
- Dun Niu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Yaran Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Jiqin Lian
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
| |
Collapse
|
2
|
Functional Hallmarks of a Catalytic DNA that Makes Lariat RNA. Chemistry 2015; 22:3720-8. [DOI: 10.1002/chem.201503238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 12/25/2022]
|
3
|
Petkovic S, Müller S. RNA circularization strategies in vivo and in vitro. Nucleic Acids Res 2015; 43:2454-65. [PMID: 25662225 PMCID: PMC4344496 DOI: 10.1093/nar/gkv045] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 12/30/2022] Open
Abstract
In the plenitude of naturally occurring RNAs, circular RNAs (circRNAs) and their biological role were underestimated for years. However, circRNAs are ubiquitous in all domains of life, including eukaryotes, archaea, bacteria and viruses, where they can fulfill diverse biological functions. Some of those functions, as for example playing a role in the life cycle of viral and viroid genomes or in the maturation of tRNA genes, have been elucidated; other putative functions still remain elusive. Due to the resistance to exonucleases, circRNAs are promising tools for in vivo application as aptamers, trans-cleaving ribozymes or siRNAs. How are circRNAs generated in vivo and what approaches do exist to produce ring-shaped RNAs in vitro? In this review we illustrate the occurrence and mechanisms of RNA circularization in vivo, survey methods for the generation of circRNA in vitro and provide appropriate protocols.
Collapse
Affiliation(s)
- Sonja Petkovic
- Institut für Biochemie, Ernst Moritz Arndt Universität Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Sabine Müller
- Institut für Biochemie, Ernst Moritz Arndt Universität Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| |
Collapse
|
4
|
Fauster K, Hartl M, Santner T, Aigner M, Kreutz C, Bister K, Ennifar E, Micura R. 2'-Azido RNA, a versatile tool for chemical biology: synthesis, X-ray structure, siRNA applications, click labeling. ACS Chem Biol 2012; 7:581-9. [PMID: 22273279 PMCID: PMC3307367 DOI: 10.1021/cb200510k] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
Chemical modification can significantly enrich the structural
and
functional repertoire of ribonucleic acids and endow them with new
outstanding properties. Here, we report the syntheses of novel 2′-azido
cytidine and 2′-azido guanosine building blocks and demonstrate
their efficient site-specific incorporation into RNA by mastering
the synthetic challenge of using phosphoramidite chemistry in the
presence of azido groups. Our study includes the detailed characterization
of 2′-azido nucleoside containing RNA using UV-melting profile
analysis and CD and NMR spectroscopy. Importantly, the X-ray crystallographic
analysis of 2′-azido uridine and 2′-azido adenosine
modified RNAs reveals crucial structural details of this modification
within an A-form double helical environment. The 2′-azido group
supports the C3′-endo ribose conformation
and shows distinct water-bridged hydrogen bonding patterns in the
minor groove. Additionally, siRNA induced silencing of the brain acid
soluble protein (BASP1) encoding gene in chicken fibroblasts demonstrated
that 2′-azido modifications are well tolerated in the guide
strand, even directly at the cleavage site. Furthermore, the 2′-azido
modifications are compatible with 2′-fluoro and/or 2′-O-methyl modifications to achieve siRNAs of rich modification
patterns and tunable properties, such as increased nuclease resistance
or additional chemical reactivity. The latter was demonstrated by
the utilization of the 2′-azido groups for bioorthogonal Click
reactions that allows efficient fluorescent labeling of the RNA. In
summary, the present comprehensive investigation on site-specifically
modified 2′-azido RNA including all four nucleosides provides
a basic rationale behind the physico- and biochemical properties of
this flexible and thus far neglected type of RNA modification.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eric Ennifar
- Architecture et Réactivité
de l′ARN, Institut de Biologie Moléculaire et Cellulaire, CNRS/Université de Strasbourg, 67084 Strasbourg,
France
| | | |
Collapse
|
5
|
Silverman SK. Deoxyribozymes: selection design and serendipity in the development of DNA catalysts. Acc Chem Res 2009; 42:1521-31. [PMID: 19572701 DOI: 10.1021/ar900052y] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
One of the chemist's key motivations is to explore the forefront of catalysis. In this Account, we describe our laboratory's efforts at one such forefront: the use of DNA as a catalyst. Natural biological catalysts include both protein enzymes and RNA enzymes (ribozymes), whereas nature apparently uses DNA solely for genetic information storage. Nevertheless, the chemical similarities between RNA and DNA naturally lead to laboratory examination of DNA as a catalyst, especially because DNA is more stable than RNA and is less costly and easier to synthesize. Many catalytically active DNA sequences (deoxyribozymes, also called DNAzymes) have been identified in the laboratory by in vitro selection, in which many random DNA sequences are evaluated in parallel to find those rare sequences that have a desired functional ability. Since 2001, our research group has pursued new deoxyribozymes for various chemical reactions. We consider DNA simply as a large biopolymer that can adopt intricate three-dimensional structure and, in the presence of appropriate metal ions, generate the chemical complexity required to achieve catalysis. Our initial efforts focused on deoxyribozymes that ligate two RNA substrates. In these studies, we used only substrates that are readily obtained biochemically. Highly active deoxyribozymes were identified, with emergent questions regarding chemical selectivity during RNA phosphodiester bond formation. Deoxyribozymes allow synthesis of interesting RNA products, such as branches and lariats, that are otherwise challenging to prepare. Our experiments have demonstrated that deoxyribozymes can have very high rate enhancements and chemical selectivities. We have also shown how the in vitro selection process itself can be directed toward desired goals, such as selective formation of native 3'-5' RNA linkages. A final lesson is that unanticipated selection outcomes can be very interesting, highlighting the importance of allowing such opportunities in future experiments. More recently, we have begun using nonoligonucleotide substrates in our efforts with deoxyribozymes. We have especially focused on developing DNA catalysts for reactions of small molecules or amino acid side chains. For example, new deoxyribozymes have the catalytic power to create a nucleopeptide linkage between a tyrosine or serine side chain and the 5'-terminus of an RNA strand. Although considerable further work remains to establish DNA as a practical catalyst for small molecules and full-length proteins, the progress to date is very promising. The many lessons learned during the experiments described in this Account will help us and others to realize the full catalytic power of DNA.
Collapse
Affiliation(s)
- Scott K. Silverman
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801
| |
Collapse
|
6
|
Abstract
Since their first identification by in vitro selection in 1994, deoxyribozymes have been developed to catalyze a variety of chemical reactions. The first DNA-catalyzed reaction was cleavage of a ribonucleotide linkage within an oligonucleotide substrate. In subsequent years, growing collections of deoxyribozymes have been developed for several reactions that have practical utility for RNA research. These deoxyribozymes are useful for site-specific RNA cleavage as well as ligation to form linear, branched, and lariat RNA products. An application related to RNA ligation is deoxyribozyme-catalyzed labeling of RNA (DECAL), which is used to attach a biophysical tag to a desired RNA sequence at a specific position. With current achievements and likely future developments, deoxyribozymes are a useful contributor to the toolbox of RNA research methods.
Collapse
|
7
|
Silverman SK. Catalytic DNA (deoxyribozymes) for synthetic applications-current abilities and future prospects. Chem Commun (Camb) 2008:3467-85. [PMID: 18654692 DOI: 10.1039/b807292m] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The discovery of naturally occurring catalytic RNA (RNA enzymes, or ribozymes) in the 1980s immediately revised the view of RNA as a passive messenger that solely carries information from DNA to proteins. Because DNA and RNA differ only by the absence or presence of a 2'-hydroxyl group on each ribose ring of the polymer, the question of 'catalytic DNA?' arises. Although no natural DNA catalysts have been reported, since 1994 many artificial DNA enzymes, or 'deoxyribozymes', have been described. Deoxyribozymes offer insight into the mechanisms of natural and artificial ribozymes. DNA enzymes are also used as tools for in vitro and in vivo biochemistry, and they are key components of analytical sensors. This review focuses primarily on catalytic DNA for synthetic applications. Broadly defined, deoxyribozymes may have the greatest potential for catalyzing reactions in which the high selectivities of 'enzymes' are advantageous relative to traditional small-molecule catalysts. Although the scope of DNA-catalyzed synthesis is currently limited in most cases to oligonucleotide substrates, recent efforts have began to expand this frontier in promising new directions.
Collapse
Affiliation(s)
- Scott K Silverman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.
| |
Collapse
|
8
|
Nielsen H, Johansen SD. A new RNA branching activity: the GIR1 ribozyme. Blood Cells Mol Dis 2006; 38:102-9. [PMID: 17188534 DOI: 10.1016/j.bcmd.2006.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 11/07/2006] [Indexed: 11/27/2022]
Abstract
The formation of lariat intermediates during the first step of splicing of group II introns and spliceosomal introns is a well-studied fundamental reaction in molecular biology. Apart from this prominent example, there are surprisingly few occurrences of branched nucleotides or even 2',5'-phosphodiester bonds in biology. We recently described a new ribozyme, the GIR1 branching ribozyme, which catalyzes the formation of a tiny lariat that caps an mRNA. This new example together with work on artificial branching ribozymes and deoxyribozymes shows that branching is facile and points to the possibility that branching reactions could be more prevalent than previously recognized.
Collapse
Affiliation(s)
- Henrik Nielsen
- Department of Medical Biochemistry and Genetics, The Panum Institute, University of Copenhagen, Denmark.
| | | |
Collapse
|
9
|
Wang Y, Silverman SK. Experimental tests of two proofreading mechanisms for 5'-splice site selection. ACS Chem Biol 2006; 1:316-24. [PMID: 17163761 DOI: 10.1021/cb6001569] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Self-splicing group II intron RNAs catalyze a two-step process in which the intron is excised as a lariat by two successive phosphodiester exchange reactions. The reversibility of the first step has been hypothesized to act as a proofreading mechanism for improper 5'-splice site selection. However, without synthetic access to mis-spliced RNAs, this hypothesis could not be tested. Here, we used a deoxyribozyme to synthesize several branched RNAs that are derived from the ai5gamma group II intron and mis-spliced at the 5'-splice site. Unlike the correctly spliced ai5gamma RNAs, the mis-spliced RNAs are observed not to undergo the reverse of the first step. This is well-controlled negative evidence against the hypothesis that first-step reversibility is a proofreading mechanism for 5'-splice site selection. In a reaction equivalent either to the hydrolytic first step of splicing or to the hydrolytic reverse of the second step of splicing, a mis-spliced 5'-exon can be "trimmed" to its proper length by the corresponding mis-spliced intron, and in one case, the trimmed 5'-exon was observed to proceed correctly through the second step of splicing. These findings are the first direct evidence that this second proofreading mechanism can occur with a group II intron RNA that is mis-spliced at the 5'-splice site. On the basis of the likely structural and evolutionary relationship between group II introns and the spliceosome, we suggest that this second proofreading mechanism may be operative in the spliceosome.
Collapse
Affiliation(s)
- Yangming Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | |
Collapse
|