1
|
Varineau JE, Calo E. A common cellular response to broad splicing perturbations is characterized by metabolic transcript downregulation driven by the Mdm2-p53 axis. Dis Model Mech 2024; 17:dmm050356. [PMID: 38426258 PMCID: PMC10924232 DOI: 10.1242/dmm.050356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Disruptions in core cellular processes elicit stress responses that drive cell-state changes leading to organismal phenotypes. Perturbations in the splicing machinery cause widespread mis-splicing, resulting in p53-dependent cell-state changes that give rise to cell-type-specific phenotypes and disease. However, a unified framework for how cells respond to splicing perturbations, and how this response manifests itself in nuanced disease phenotypes, has yet to be established. Here, we show that a p53-stabilizing Mdm2 alternative splicing event and the resulting widespread downregulation of metabolic transcripts are common events that arise in response to various splicing perturbations in both cellular and organismal models. Together, our results classify a common cellular response to splicing perturbations, put forth a new mechanism behind the cell-type-specific phenotypes that arise when splicing is broadly disrupted, and lend insight into the pleiotropic nature of the effects of p53 stabilization in disease.
Collapse
Affiliation(s)
- Jade E. Varineau
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eliezer Calo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Hu P, Li Y, Zhang W, Liu R, Peng L, Xu R, Cai J, Yuan H, Feng T, Tian A, Yue M, Li J, Li W, Zhu C. The Spliceosome Factor EFTUD2 Promotes IFN Anti-HBV Effect through mRNA Splicing. Mediators Inflamm 2023; 2023:2546278. [PMID: 37396299 PMCID: PMC10313468 DOI: 10.1155/2023/2546278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/19/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Methods Using a CRISPR/Cas9 gene-editing system, EFTUD2 single allele knockout HepG2.2.15 cells were constructed. Subsequently, the HBV biomarkers in EFTUD2+/- HepG2.2.15 cells and wild-type (WT) cells with or without IFN-α treatment were detected. And the EFTUD2-regulated genes were then identified using mRNA sequence. Selected gene mRNA variants and their proteins were examined by qRT-PCR and Western blotting. To confirm the effects of EFTUD2 on HBV replication and IFN-stimulated gene (ISG) expression, a rescue experiment in EFTUD2+/- HepG2.2.15 cells was performed by EFTUD2 overexpression. Results IFN-induced anti-HBV activity was found to be restricted in EFTUD2+/- HepG2.2.15 cells. The mRNA sequence showed that EFTUD2 could regulate classical IFN and virus response genes. Mechanistically, EFTUD2 single allele knockout decreased the expression of ISG-encoded proteins, comprising Mx1, OAS1, and PKR (EIF2AK2), through mediated gene splicing. However, EFTUD2 did not affect the expression of Jak-STAT pathway genes. Furthermore, EFTUD2 overexpression could restore the attenuation of IFN anti-HBV activity and the reduction of ISG resulting from EFTUD2 single allele knockout. Conclusion EFTUD2, the spliceosome factor, is not IFN-inducible but is an IFN effector gene. EFTUD2 mediates IFN anti-HBV effect through regulation of gene splicing for certain ISGs, including Mx1, OAS1, and PKR. EFTUD2 does not affect IFN receptors or canonical signal transduction components. Therefore, it can be concluded that EFTUD2 regulates ISGs using a novel, nonclassical mechanism.
Collapse
Affiliation(s)
- Pingping Hu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuwen Li
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Linya Peng
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruirui Xu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinyuan Cai
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Yuan
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tiantong Feng
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Anran Tian
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Yue
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Chuanlong Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| |
Collapse
|
3
|
Erkelenz S, Stanković D, Mundorf J, Bresser T, Claudius AK, Boehm V, Gehring NH, Uhlirova M. Ecd promotes U5 snRNP maturation and Prp8 stability. Nucleic Acids Res 2021; 49:1688-1707. [PMID: 33444449 PMCID: PMC7897482 DOI: 10.1093/nar/gkaa1274] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/07/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Pre-mRNA splicing catalyzed by the spliceosome represents a critical step in the regulation of gene expression contributing to transcriptome and proteome diversity. The spliceosome consists of five small nuclear ribonucleoprotein particles (snRNPs), the biogenesis of which remains only partially understood. Here we define the evolutionarily conserved protein Ecdysoneless (Ecd) as a critical regulator of U5 snRNP assembly and Prp8 stability. Combining Drosophila genetics with proteomic approaches, we demonstrate the Ecd requirement for the maintenance of adult healthspan and lifespan and identify the Sm ring protein SmD3 as a novel interaction partner of Ecd. We show that the predominant task of Ecd is to deliver Prp8 to the emerging U5 snRNPs in the cytoplasm. Ecd deficiency, on the other hand, leads to reduced Prp8 protein levels and compromised U5 snRNP biogenesis, causing loss of splicing fidelity and transcriptome integrity. Based on our findings, we propose that Ecd chaperones Prp8 to the forming U5 snRNP allowing completion of the cytoplasmic part of the U5 snRNP biogenesis pathway necessary to meet the cellular demand for functional spliceosomes.
Collapse
Affiliation(s)
- Steffen Erkelenz
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
| | - Dimitrije Stanković
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
| | - Juliane Mundorf
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Tina Bresser
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Ann-Katrin Claudius
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Volker Boehm
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany.,Institute for Genetics, University of Cologne, Cologne 50674, Germany
| | - Niels H Gehring
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany.,Institute for Genetics, University of Cologne, Cologne 50674, Germany
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
4
|
Beauchamp MC, Djedid A, Bareke E, Merkuri F, Aber R, Tam AS, Lines MA, Boycott KM, Stirling PC, Fish JL, Majewski J, Jerome-Majewska LA. Mutation in Eftud2 causes craniofacial defects in mice via mis-splicing of Mdm2 and increased P53. Hum Mol Genet 2021; 30:739-757. [PMID: 33601405 DOI: 10.1093/hmg/ddab051] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 01/19/2023] Open
Abstract
EFTUD2 is mutated in patients with mandibulofacial dysostosis with microcephaly (MFDM). We generated a mutant mouse line with conditional mutation in Eftud2 and used Wnt1-Cre2 to delete it in neural crest cells. Homozygous deletion of Eftud2 causes brain and craniofacial malformations, affecting the same precursors as in MFDM patients. RNAseq analysis of embryonic heads revealed a significant increase in exon skipping and increased levels of an alternatively spliced Mdm2 transcript lacking exon 3. Exon skipping in Mdm2 was also increased in O9-1 mouse neural crest cells after siRNA knock-down of Eftud2 and in MFDM patient cells. Moreover, we found increased nuclear P53, higher expression of P53-target genes and increased cell death. Finally, overactivation of the P53 pathway in Eftud2 knockdown cells was attenuated by overexpression of non-spliced Mdm2, and craniofacial development was improved when Eftud2-mutant embryos were treated with Pifithrin-α, an inhibitor of P53. Thus, our work indicates that the P53-pathway can be targeted to prevent craniofacial abnormalities and shows a previously unknown role for alternative splicing of Mdm2 in the etiology of MFDM.
Collapse
Affiliation(s)
- Marie-Claude Beauchamp
- Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC H4A 3J1, Canada
| | - Anissa Djedid
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada
| | - Eric Bareke
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada
| | - Fjodor Merkuri
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Rachel Aber
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada
| | - Annie S Tam
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Matthew A Lines
- CHEO Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Kym M Boycott
- CHEO Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Jennifer L Fish
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada
| | - Loydie A Jerome-Majewska
- Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC H4A 3J1, Canada.,Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada.,Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
5
|
Jia J, Ganichkin OM, Preußner M, Absmeier E, Alings C, Loll B, Heyd F, Wahl MC. A Snu114-GTP-Prp8 module forms a relay station for efficient splicing in yeast. Nucleic Acids Res 2020; 48:4572-4584. [PMID: 32196113 PMCID: PMC7192624 DOI: 10.1093/nar/gkaa182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/26/2020] [Accepted: 03/10/2020] [Indexed: 01/24/2023] Open
Abstract
The single G protein of the spliceosome, Snu114, has been proposed to facilitate splicing as a molecular motor or as a regulatory G protein. However, available structures of spliceosomal complexes show Snu114 in the same GTP-bound state, and presently no Snu114 GTPase-regulatory protein is known. We determined a crystal structure of Snu114 with a Snu114-binding region of the Prp8 protein, in which Snu114 again adopts the same GTP-bound conformation seen in spliceosomes. Snu114 and the Snu114–Prp8 complex co-purified with endogenous GTP. Snu114 exhibited weak, intrinsic GTPase activity that was abolished by the Prp8 Snu114-binding region. Exchange of GTP-contacting residues in Snu114, or of Prp8 residues lining the Snu114 GTP-binding pocket, led to temperature-sensitive yeast growth and affected the same set of splicing events in vivo. Consistent with dynamic Snu114-mediated protein interactions during splicing, our results suggest that the Snu114–GTP–Prp8 module serves as a relay station during spliceosome activation and disassembly, but that GTPase activity may be dispensable for splicing.
Collapse
Affiliation(s)
- Junqiao Jia
- Freie Universität Berlin, Laboratory of Structural Biochemistry, Takustraβe 6, D-14195 Berlin, Germany
| | - Oleg M Ganichkin
- Freie Universität Berlin, Laboratory of Structural Biochemistry, Takustraβe 6, D-14195 Berlin, Germany
| | - Marco Preußner
- Freie Universität Berlin, Laboratory of RNA Biochemistry, Takustraβe 6, D-14195 Berlin, Germany
| | - Eva Absmeier
- Freie Universität Berlin, Laboratory of Structural Biochemistry, Takustraβe 6, D-14195 Berlin, Germany
| | - Claudia Alings
- Freie Universität Berlin, Laboratory of Structural Biochemistry, Takustraβe 6, D-14195 Berlin, Germany
| | - Bernhard Loll
- Freie Universität Berlin, Laboratory of Structural Biochemistry, Takustraβe 6, D-14195 Berlin, Germany
| | - Florian Heyd
- Freie Universität Berlin, Laboratory of RNA Biochemistry, Takustraβe 6, D-14195 Berlin, Germany
| | - Markus C Wahl
- Freie Universität Berlin, Laboratory of Structural Biochemistry, Takustraβe 6, D-14195 Berlin, Germany.,Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| |
Collapse
|
6
|
Gautam A, Beggs JD. Mutagenesis of Snu114 domain IV identifies a developmental role in meiotic splicing. RNA Biol 2019; 16:185-195. [PMID: 30672374 PMCID: PMC6380292 DOI: 10.1080/15476286.2018.1561145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/03/2018] [Accepted: 12/16/2018] [Indexed: 11/23/2022] Open
Abstract
Snu114, a component of the U5 snRNP, plays a key role in activation of the spliceosome. It controls the action of Brr2, an RNA-stimulated ATPase/RNA helicase that disrupts U4/U6 snRNA base-pairing prior to formation of the spliceosome's catalytic centre. Snu114 has a highly conserved domain structure that resembles that of the GTPase EF-2/EF-G in the ribosome. It has been suggested that the regulatory function of Snu114 in activation of the spliceosome is mediated by its C-terminal region, however, there has been only limited characterisation of the interactions of the C-terminal domains. We show a direct interaction between protein phosphatase PP1 and Snu114 domain 'IVa' and identify sequence 'YGVQYK' as a PP1 binding motif. Interestingly, this motif is also required for Cwc21 binding. We provide evidence for mutually exclusive interaction of Cwc21 and PP1 with Snu114 and show that the affinity of Cwc21 and PP1 for Snu114 is influenced by the different nucleotide-bound states of Snu114. Moreover, we identify a novel mutation in domain IVa that, while not affecting vegetative growth of yeast cells, causes a defect in splicing transcripts of the meiotic genes, SPO22, AMA1 and MER2, thereby inhibiting an early stage of meiosis.
Collapse
Affiliation(s)
- Amit Gautam
- a Wellcome Centre for Cell Biology , University of Edinburgh , Edinburgh , UK
| | - Jean D Beggs
- a Wellcome Centre for Cell Biology , University of Edinburgh , Edinburgh , UK
| |
Collapse
|
7
|
Mutations of RNA splicing factors in hematological malignancies. Cancer Lett 2017; 409:1-8. [PMID: 28888996 DOI: 10.1016/j.canlet.2017.08.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 01/01/2023]
Abstract
Systematic large-scale cancer genomic studies have produced numerous significant findings. These studies have not only revealed new cancer-promoting genes, but they also have identified cancer-promoting functions of previously known "housekeeping" genes. These studies have identified numerous mutations in genes which play a fundamental role in nuclear precursor mRNA splicing. Somatic mutations and copy number variation in many of the splicing factors which participate in the formation of multiple spliceosomal complexes appear to play a role in many cancers and in particular in myelodysplastic syndromes (MDS). Mutated proteins seem to interfere with the recognition of the authentic splice sites (SS) leading to utilization of suboptimal alternative splicing sites generating aberrantly spliced mRNA isoforms. This short review is focusing on the function of the splice factors involved in the formation of splicing complexes and potential mechanisms which affect usage of the authentic splice site recognition.
Collapse
|
8
|
Zhu DZ, Zhao XF, Liu CZ, Ma FF, Wang F, Gao XQ, Zhang XS. Interaction between RNA helicase ROOT INITIATION DEFECTIVE 1 and GAMETOPHYTIC FACTOR 1 is involved in female gametophyte development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5757-5768. [PMID: 27683728 PMCID: PMC5066494 DOI: 10.1093/jxb/erw341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
ROOT INITIATION DEFECTIVE 1 (RID1) is an Arabidopsis DEAH/RHA RNA helicase. It functions in hypocotyl de-differentiation, de novo meristem formation, and cell specification of the mature female gametophyte (FG). However, it is unclear how RID1 regulates FG development. In this study, we observed that mutations to RID1 disrupted the developmental synchrony and retarded the progression of FG development. RID1 exhibited RNA helicase activity, with a preference for unwinding double-stranded RNA in the 3' to 5' direction. Furthermore, we found that RID1 interacts with GAMETOPHYTIC FACTOR 1 (GFA1), which is an integral protein of the spliceosome component U5 small nuclear ribonucleoprotein (snRNP) particle. Substitution of specific RID1 amino acids (Y266F and T267I) inhibited the interaction with GFA1. In addition, the mutated RID1 could not complement the seed-abortion phenotype of the rid1 mutant. The rid1 and gfa1 mutants exhibited similar abnormalities in pre-mRNA splicing and down-regulated expression of some genes involved in FG development. Our results suggest that an interaction between RID1 and the U5 snRNP complex regulates essential pre-mRNA splicing of the genes required for FG development. This study provides new information regarding the mechanism underlying the FG developmental process.
Collapse
Affiliation(s)
- Dong Zi Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Xue Fang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Chang Zhen Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Fang Fang Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Fang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Xin-Qi Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
9
|
Meyer F. Viral interactions with components of the splicing machinery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:241-68. [PMID: 27571697 DOI: 10.1016/bs.pmbts.2016.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Eukaryotic genes are often interrupted by stretches of sequence with no protein coding potential or obvious function. After transcription, these interrupting sequences must be removed to give rise to the mature messenger RNA. This fundamental process is called RNA splicing and is achieved by complicated machinery made of protein and RNA that assembles around the RNA to be edited. Viruses also use RNA splicing to maximize their coding potential and economize on genetic space, and use clever strategies to manipulate the splicing machinery to their advantage. This article gives an overview of the splicing process and provides examples of viral strategies that make use of various components of the splicing system to promote their replicative cycle. Representative virus families have been selected to illustrate the interaction with various regulatory proteins and ribonucleoproteins. The unifying theme is fine regulation through protein-protein and protein-RNA interactions with the spliceosome components and associated factors to promote or prevent spliceosome assembly on given splice sites, in addition to a strong influence from cis-regulatory sequences on viral transcripts. Because there is an intimate coupling of splicing with the processes that direct mRNA biogenesis, a description of how these viruses couple the regulation of splicing with the retention or stability of mRNAs is also included. It seems that a unique balance of suppression and activation of splicing and nuclear export works optimally for each family of viruses.
Collapse
Affiliation(s)
- F Meyer
- Department of Biochemistry & Molecular Biology, Entomology & Plant Pathology, Mississippi State University, Starkville, MS, USA.
| |
Collapse
|
10
|
Hoskins AA, Rodgers ML, Friedman LJ, Gelles J, Moore MJ. Single molecule analysis reveals reversible and irreversible steps during spliceosome activation. eLife 2016; 5. [PMID: 27244240 PMCID: PMC4922858 DOI: 10.7554/elife.14166] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 05/26/2016] [Indexed: 12/19/2022] Open
Abstract
The spliceosome is a complex machine composed of small nuclear ribonucleoproteins (snRNPs) and accessory proteins that excises introns from pre-mRNAs. After assembly the spliceosome is activated for catalysis by rearrangement of subunits to form an active site. How this rearrangement is coordinated is not well-understood. During activation, U4 must be released to allow U6 conformational change, while Prp19 complex (NTC) recruitment is essential for stabilizing the active site. We used multi-wavelength colocalization single molecule spectroscopy to directly observe the key events in Saccharomyces cerevisiae spliceosome activation. Following binding of the U4/U6.U5 tri-snRNP, the spliceosome either reverses assembly by discarding tri-snRNP or proceeds to activation by irreversible U4 loss. The major pathway for NTC recruitment occurs after U4 release. ATP stimulates both the competing U4 release and tri-snRNP discard processes. The data reveal the activation mechanism and show that overall splicing efficiency may be maintained through repeated rounds of disassembly and tri-snRNP reassociation. DOI:http://dx.doi.org/10.7554/eLife.14166.001 The genes in an organism’s DNA may be expressed to form a protein via an intermediate molecule called RNA. In many organisms including humans, gene expression often begins by making a precursor molecule called a pre-mRNA. The pre-mRNA contains regions called exons that code for the protein product and regions called introns that do not. A machine in the cell called the spliceosome has the job of removing the introns in the pre-mRNA and stitching the exons together by a process known as splicing. The spliceosome is made up of dozens of components that assemble on the pre-mRNAs. Before a newly assembled spliceosome can carry out splicing, it must be activated. The activation process involves several steps that are powered by the cell's universal power source (a molecule called ATP), including the release of many components from the spliceosome. Many of the details of the activation process are unclear. Spliceosomes in the yeast species Saccharomyces cerevisiae are similar to spliceosomes from humans, and so are often studied experimentally. Hoskins et al. have now used a technique called colocalization single molecule fluorescence spectroscopy to follow, in real time, a single yeast spliceosome molecule as it activates. This technique uses a specialized microscope and a number of colored lasers to detect different spliceosome proteins at the same time. Hoskins et al. found that one of the steps during activation is irreversible – once that step occurs, the spliceosome must either perform the next activation steps or start the processes of assembly and activation over again. Hoskins et al. also discovered that ATP causes some spliceosomes to be discarded during activation and not used for splicing. This indicates that before spliceosomes are allowed to activate, they may undergo 'quality control', which may be important for making sure that gene expression occurs efficiently and correctly. Future studies will investigate how this quality control process works in further detail. DOI:http://dx.doi.org/10.7554/eLife.14166.002
Collapse
Affiliation(s)
- Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Margaret L Rodgers
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Melissa J Moore
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
11
|
Mayerle M, Guthrie C. Prp8 retinitis pigmentosa mutants cause defects in the transition between the catalytic steps of splicing. RNA (NEW YORK, N.Y.) 2016; 22:793-809. [PMID: 26968627 PMCID: PMC4836653 DOI: 10.1261/rna.055459.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/11/2016] [Indexed: 05/14/2023]
Abstract
Pre-mRNA splicing must occur with high fidelity and efficiency for proper gene expression. The spliceosome uses DExD/H box helicases to promote on-pathway interactions while simultaneously minimizing errors. Prp8 and Snu114, an EF2-like GTPase, regulate the activity of the Brr2 helicase, promoting RNA unwinding by Brr2 at appropriate points in the splicing cycle and repressing it at others. Mutations linked to retinitis pigmentosa (RP), a disease that causes blindness in humans, map to the Brr2 regulatory region of Prp8. Previous in vitro studies of homologous mutations in Saccharomyces cerevisiaes how that Prp8-RP mutants cause defects in spliceosome activation. Here we show that a subset of RP mutations in Prp8 also causes defects in the transition between the first and second catalytic steps of splicing. Though Prp8-RP mutants do not cause defects in splicing fidelity, they result in an overall decrease in splicing efficiency. Furthermore, genetic analyses link Snu114 GTP/GDP occupancy to Prp8-dependent regulation of Brr2. Our results implicate the transition between the first and second catalytic steps as a critical place in the splicing cycle where Prp8-RP mutants influence splicing efficiency. The location of the Prp8-RP mutants, at the "hinge" that links the Prp8 Jab1-MPN regulatory "tail" to the globular portion of the domain, suggests that these Prp8-RP mutants inhibit regulated movement of the Prp8 Jab1/MPN domain into the Brr2 RNA binding channel to transiently inhibit Brr2. Therefore, in Prp8-linked RP, disease likely results not only from defects in spliceosome assembly and activation, but also because of defects in splicing catalysis.
Collapse
Affiliation(s)
- Megan Mayerle
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94143, USA
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
12
|
Nguyen THD, Galej WP, Bai XC, Oubridge C, Newman AJ, Scheres SHW, Nagai K. Cryo-EM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 Å resolution. Nature 2016; 530:298-302. [PMID: 26829225 PMCID: PMC4762201 DOI: 10.1038/nature16940] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/18/2015] [Indexed: 12/12/2022]
Abstract
U4/U6.U5 tri-snRNP represents a substantial part of the spliceosome before activation. A cryoEM structure of Saccharomyces cerevisiae U4/U6.U5 tri-snRNP at 3.7Å resolution led to an essentially complete atomic model comprising 30 proteins plus U4/U6 and U5 snRNAs. The structure reveals striking interweaving interactions of the protein and RNA components including extended polypeptides penetrating into subunit interfaces. The invariant ACAGAGA sequence of U6 snRNA, which base-pairs with the 5′-splice site during catalytic activation, forms a hairpin stabilised by Dib1 and Prp8 while the adjacent nucleotides interact with the exon binding loop 1 of U5 snRNA. Snu114 harbours GTP but its putative catalytic histidine is held away from the γ-phosphate by hydrogen bonding to a tyrosine in Prp8’s N-terminal domain. Mutation of this histidine to alanine has no detectable effect on yeast growth. The structure provides important new insights into the spliceosome activation process leading to the formation of the catalytic centre.
Collapse
Affiliation(s)
| | - Wojciech P Galej
- MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge CB2 0QH UK
| | - Xiao-Chen Bai
- MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge CB2 0QH UK
| | - Chris Oubridge
- MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge CB2 0QH UK
| | - Andrew J Newman
- MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge CB2 0QH UK
| | - Sjors H W Scheres
- MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge CB2 0QH UK
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge CB2 0QH UK
| |
Collapse
|
13
|
O’Connor BP, Danhorn T, De Arras L, Flatley BR, Marcus RA, Farias-Hesson E, Leach SM, Alper S. Regulation of toll-like receptor signaling by the SF3a mRNA splicing complex. PLoS Genet 2015; 11:e1004932. [PMID: 25658809 PMCID: PMC4450051 DOI: 10.1371/journal.pgen.1004932] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022] Open
Abstract
The innate immune response plays a key role in fighting infection by activating inflammation and stimulating the adaptive immune response. However, chronic activation of innate immunity can contribute to the pathogenesis of many diseases with an inflammatory component. Thus, various negatively acting factors turn off innate immunity subsequent to its activation to ensure that inflammation is self-limiting and to prevent inflammatory disease. These negatively acting pathways include the production of inhibitory acting alternate proteins encoded by alternative mRNA splice forms of genes in Toll-like receptor (TLR) signaling pathways. We previously found that the SF3a mRNA splicing complex was required for a robust innate immune response; SF3a acts to promote inflammation in part by inhibiting the production of a negatively acting splice form of the TLR signaling adaptor MyD88. Here we inhibit SF3a1 using RNAi and subsequently perform an RNAseq study to identify the full complement of genes and splicing events regulated by SF3a in murine macrophages. Surprisingly, in macrophages, SF3a has significant preference for mRNA splicing events within innate immune signaling pathways compared with other biological pathways, thereby affecting the splicing of specific genes in the TLR signaling pathway to modulate the innate immune response. Within minutes after we are exposed to pathogens, our bodies react with a rapid response known as the “innate immune response.” This arm of the immune response regulates the process of inflammation, in which various immune cells are recruited to sites of infection and are activated to produce a host of antimicrobial compounds. This response is critical to fight infection. However, this response, if it is activated too strongly or if it becomes chronic, can do damage and can contribute to numerous very common diseases ranging from atherosclerosis to asthma to cancer. Thus it is essential that this response be tightly regulated, turned on when we have an infection, and turned off when not needed. We are investigating a mechanism that helps turn off this response, to ensure that inflammation is limited to prevent inflammatory disease. This mechanism involves the production of alternate forms of RNAs and proteins that control inflammation. We have discovered that a protein known as SF3a1 can regulate the expression of these alternate inhibitory RNA forms and are investigating how to use this knowledge to better control inflammation.
Collapse
Affiliation(s)
- Brian P. O’Connor
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, United States of America
| | - Thomas Danhorn
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Lesly De Arras
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Brenna R. Flatley
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, United States of America
| | - Roland A. Marcus
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Eveline Farias-Hesson
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Sonia M. Leach
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Scott Alper
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
14
|
De Arras L, Laws R, Leach SM, Pontis K, Freedman JH, Schwartz DA, Alper S. Comparative genomics RNAi screen identifies Eftud2 as a novel regulator of innate immunity. Genetics 2014; 197:485-96. [PMID: 24361939 PMCID: PMC4063909 DOI: 10.1534/genetics.113.160499] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/15/2013] [Indexed: 01/08/2023] Open
Abstract
The extent of the innate immune response is regulated by many positively and negatively acting signaling proteins. This allows for proper activation of innate immunity to fight infection while ensuring that the response is limited to prevent unwanted complications. Thus mutations in innate immune regulators can lead to immune dysfunction or to inflammatory diseases such as arthritis or atherosclerosis. To identify novel innate immune regulators that could affect infectious or inflammatory disease, we have taken a comparative genomics RNAi screening approach in which we inhibit orthologous genes in the nematode Caenorhabditis elegans and murine macrophages, expecting that genes with evolutionarily conserved function also will regulate innate immunity in humans. Here we report the results of an RNAi screen of approximately half of the C. elegans genome, which led to the identification of many candidate genes that regulate innate immunity in C. elegans and mouse macrophages. One of these novel conserved regulators of innate immunity is the mRNA splicing regulator Eftud2, which we show controls the alternate splicing of the MyD88 innate immunity signaling adaptor to modulate the extent of the innate immune response.
Collapse
Affiliation(s)
- Lesly De Arras
- Integrated Department of Immunology, National Jewish Health and University of Colorado, Denver, Colorado 80206 Integrated Center for Genes, Environment and Health, National Jewish Health and University of Colorado, Denver, Colorado 80206
| | - Rebecca Laws
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts 02118
| | - Sonia M Leach
- Integrated Center for Genes, Environment and Health, National Jewish Health and University of Colorado, Denver, Colorado 80206
| | - Kyle Pontis
- Integrated Department of Immunology, National Jewish Health and University of Colorado, Denver, Colorado 80206 Integrated Center for Genes, Environment and Health, National Jewish Health and University of Colorado, Denver, Colorado 80206
| | - Jonathan H Freedman
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709
| | - David A Schwartz
- Integrated Center for Genes, Environment and Health, National Jewish Health and University of Colorado, Denver, Colorado 80206 Department of Medicine, University of Colorado, Aurora, Colorado 80045
| | - Scott Alper
- Integrated Department of Immunology, National Jewish Health and University of Colorado, Denver, Colorado 80206 Integrated Center for Genes, Environment and Health, National Jewish Health and University of Colorado, Denver, Colorado 80206
| |
Collapse
|
15
|
Nancollis V, Ruckshanthi JPD, Frazer LN, O'Keefe RT. The U5 snRNA internal loop 1 is a platform for Brr2, Snu114 and Prp8 protein binding during U5 snRNP assembly. J Cell Biochem 2014; 114:2770-84. [PMID: 23857713 PMCID: PMC4065371 DOI: 10.1002/jcb.24625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 06/26/2013] [Indexed: 12/25/2022]
Abstract
The U5 small nuclear ribonucleoprotein particle (snRNP) forms the heart of the spliceosome which is required for intron removal from pre-mRNA. The proteins Prp8, Snu114 and Brr2 all assemble with the U5 small nuclear RNA (snRNA) to produce the U5 snRNP. Successful assembly of the U5 snRNP, then incorporation of this snRNP into the U4/U6.U5 tri-snRNP and the spliceosome, is essential for producing an active spliceosome. We have investigated the requirements for Prp8, Snu114 and Brr2 association with the U5 snRNA to form the U5 snRNP in yeast. Mutations were constructed in the highly conserved loop 1 and internal loop 1 (IL1) of the U5 snRNA and their function assessed in vivo. The influence of these U5 mutations on association of Prp8, Snu114 and Brr2 with the U5 snRNA were then determined. U5 snRNA loop 1 and both sides of IL1 in U5 were important for association of Prp8, Snu114 and Brr2 with the U5 snRNA. Mutations in the 3′ side of U5 IL1 resulted in the greatest reduction of Prp8, Snu114 and Brr2 association with the U5 snRNA. Genetic screening of brr2 and U5 snRNA mutants revealed synthetic lethal interactions between alleles in Brr2 and the 3′ side of U5 snRNA IL1 which reflects reduced association between Brr2 and U5 IL1. We propose that the U5 snRNA IL1 is a platform for protein binding and is required for Prp8, Brr2 and Snu114 association with the U5 snRNA to form the U5 snRNP. J. Cell. Biochem. 114: 2770–2784, 2013. © 2013 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Verity Nancollis
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
16
|
Valadkhan S. The role of snRNAs in spliceosomal catalysis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 120:195-228. [PMID: 24156945 DOI: 10.1016/b978-0-12-381286-5.00006-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The spliceosomes, large ribonucleoprotein (RNP) assemblies that remove the intervening sequences from pre-mRNAs, contain a large number of proteins and five small nuclear RNAs (snRNAs). One snRNA, U6, contains highly conserved sequences that are thought to be the functional counterparts of the RNA elements that form the active site of self-splicing group II intron ribozymes. An in vitro-assembled, protein-free complex of U6 with U2, the base-pairing partner in the spliceosomal catalytic core, can catalyze a two-step splicing reaction in the absence of all other spliceosomal factors, suggesting that the two snRNAs may form all or a large share of the spliceosomal active site. On the other hand, several spliceosomal proteins are thought to help in the formation of functionally required RNA-RNA interactions in the catalytic core. Whether they also contribute functional groups to the spliceosomal active site, and thus whether the spliceosomes are RNA or RNP enzymes remain uncertain.
Collapse
Affiliation(s)
- Saba Valadkhan
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
17
|
Price AM, Görnemann J, Guthrie C, Brow DA. An unanticipated early function of DEAD-box ATPase Prp28 during commitment to splicing is modulated by U5 snRNP protein Prp8. RNA (NEW YORK, N.Y.) 2014; 20:46-60. [PMID: 24231520 PMCID: PMC3866644 DOI: 10.1261/rna.041970.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The stepwise assembly of the highly dynamic spliceosome is guided by RNA-dependent ATPases of the DEAD-box family, whose regulation is poorly understood. In the canonical assembly model, the U4/U6.U5 triple snRNP binds only after joining of the U1 and, subsequently, U2 snRNPs to the intron-containing pre-mRNA. Catalytic activation requires the exchange of U6 for U1 snRNA at the 5' splice site, which is promoted by the DEAD-box protein Prp28. Because Prp8, an integral U5 snRNP protein, is thought to be a central regulator of DEAD-box proteins, we conducted a targeted search in Prp8 for cold-insensitive suppressors of a cold-sensitive Prp28 mutant, prp28-1. We identified a cluster of suppressor mutations in an N-terminal bromodomain-like sequence of Prp8. To identify the precise defect in prp28-1 strains that is suppressed by the Prp8 alleles, we analyzed spliceosome assembly in vivo and in vitro. Surprisingly, in the prp28-1 strain, we observed a block not only to spliceosome activation but also to one of the earliest steps of assembly, formation of the ATP-independent commitment complex 2 (CC2). The Prp8 suppressor partially corrected both the early assembly and later activation defects of prp28-1, supporting a role for this U5 snRNP protein in both the ATP-independent and ATP-dependent functions of Prp28. We conclude that the U5 snRNP has a role in the earliest events of assembly, prior to its stable incorporation into the spliceosome.
Collapse
Affiliation(s)
- Argenta M. Price
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, USA
| | - Janina Görnemann
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, USA
- Corresponding authorsE-mail E-mail
| | - David A. Brow
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
- Corresponding authorsE-mail E-mail
| |
Collapse
|
18
|
Livesay SB, Collier SE, Bitton DA, Bähler J, Ohi MD. Structural and functional characterization of the N terminus of Schizosaccharomyces pombe Cwf10. EUKARYOTIC CELL 2013; 12:1472-89. [PMID: 24014766 PMCID: PMC3837936 DOI: 10.1128/ec.00140-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/03/2013] [Indexed: 01/10/2023]
Abstract
The spliceosome is a dynamic macromolecular machine that catalyzes the removal of introns from pre-mRNA, yielding mature message. Schizosaccharomyces pombe Cwf10 (homolog of Saccharomyces cerevisiae Snu114 and human U5-116K), an integral member of the U5 snRNP, is a GTPase that has multiple roles within the splicing cycle. Cwf10/Snu114 family members are highly homologous to eukaryotic translation elongation factor EF2, and they contain a conserved N-terminal extension (NTE) to the EF2-like portion, predicted to be an intrinsically unfolded domain. Using S. pombe as a model system, we show that the NTE is not essential, but cells lacking this domain are defective in pre-mRNA splicing. Genetic interactions between cwf10-ΔNTE and other pre-mRNA splicing mutants are consistent with a role for the NTE in spliceosome activation and second-step catalysis. Characterization of Cwf10-NTE by various biophysical techniques shows that in solution the NTE contains regions of both structure and disorder. The first 23 highly conserved amino acids of the NTE are essential for its role in splicing but when overexpressed are not sufficient to restore pre-mRNA splicing to wild-type levels in cwf10-ΔNTE cells. When the entire NTE is overexpressed in the cwf10-ΔNTE background, it can complement the truncated Cwf10 protein in trans, and it immunoprecipitates a complex similar in composition to the late-stage U5.U2/U6 spliceosome. These data show that the structurally flexible NTE is capable of independently incorporating into the spliceosome and improving splicing function, possibly indicating a role for the NTE in stabilizing conformational rearrangements during a splice cycle.
Collapse
Affiliation(s)
- S. Brent Livesay
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Scott E. Collier
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Danny A. Bitton
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Jürg Bähler
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Melanie D. Ohi
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
19
|
Chang TH, Tung L, Yeh FL, Chen JH, Chang SL. Functions of the DExD/H-box proteins in nuclear pre-mRNA splicing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:764-74. [PMID: 23454554 DOI: 10.1016/j.bbagrm.2013.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/05/2013] [Accepted: 02/13/2013] [Indexed: 01/09/2023]
Abstract
In eukaryotes, many genes are transcribed as precursor messenger RNAs (pre-mRNAs) that contain exons and introns, the latter of which must be removed and exons ligated to form the mature mRNAs. This process is called pre-mRNA splicing, which occurs in the nucleus. Although the chemistry of pre-mRNA splicing is identical to that of the self-splicing Group II introns, hundreds of proteins and five small nuclear RNAs (snRNAs), U1, U2, U4, U5, and U6, are essential for executing pre-mRNA splicing. Spliceosome, arguably the most complex cellular machine made up of all those proteins and snRNAs, is responsible for carrying out pre-mRNA splicing. In contrast to the transcription and the translation machineries, spliceosome is formed anew onto each pre-mRNA and undergoes a series of highly coordinated reconfigurations to form the catalytic center. This amazing process is orchestrated by a number of DExD/H-proteins that are the focus of this article, which aims to review the field in general and to project the exciting challenges and opportunities ahead. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
|
20
|
Abstract
RNA splicing is one of the fundamental processes in gene expression in eukaryotes. Splicing of pre-mRNA is catalysed by a large ribonucleoprotein complex called the spliceosome, which consists of five small nuclear RNAs and numerous protein factors. The spliceosome is a highly dynamic structure, assembled by sequential binding and release of the small nuclear RNAs and protein factors. DExD/H-box RNA helicases are required to mediate structural changes in the spliceosome at various steps in the assembly pathway and have also been implicated in the fidelity control of the splicing reaction. Other proteins also play key roles in mediating the progression of the spliceosome pathway. In this review, we discuss the functional roles of the protein factors involved in the spliceosome pathway primarily from studies in the yeast system.
Collapse
|
21
|
Hayduk AJ, Stark MR, Rader SD. In vitro reconstitution of yeast splicing with U4 snRNA reveals multiple roles for the 3' stem-loop. RNA (NEW YORK, N.Y.) 2012; 18:1075-1090. [PMID: 22411955 PMCID: PMC3334694 DOI: 10.1261/rna.031757.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/26/2012] [Indexed: 05/31/2023]
Abstract
U4 small nuclear RNA (snRNA) plays a fundamental role in the process of premessenger RNA splicing, yet many questions remain regarding the location, interactions, and roles of its functional domains. To address some of these questions, we developed the first in vitro reconstitution system for yeast U4 small nuclear ribonucleoproteins (snRNPs). We used this system to examine the functional domains of U4 by measuring reconstitution of splicing, U4/U6 base-pairing, and triple-snRNP formation. In contrast to previous work in human extracts and Xenopus oocytes, we found that the 3' stem-loop of U4 is necessary for efficient base-pairing with U6. In particular, the loop is sensitive to changes in both length and sequence. Intriguingly, a number of mutations that we tested resulted in more stable interactions with U6 than wild-type U4. Nevertheless, each of these mutants was impaired in its ability to support splicing, indicating that these regions of U4 have functions subsequent to base pair formation with U6. Our data suggest that one such function is likely to be in tri-snRNP formation, when U5 joins the U4/U6 di-snRNP. We have identified two regions, the upper stem of the 3' stem-loop and the central domain, that promote tri-snRNP formation. In addition, the loop of the 3' stem-loop promotes di-snRNP formation, while the central domain and the 3'-terminal domain appear to antagonize di-snRNP formation.
Collapse
Affiliation(s)
- Amy J. Hayduk
- Department of Chemistry, University of Northern British Columbia, Prince George, British Columbia, V2N 4Z9 Canada
| | - Martha R. Stark
- Department of Chemistry, University of Northern British Columbia, Prince George, British Columbia, V2N 4Z9 Canada
| | - Stephen D. Rader
- Department of Chemistry, University of Northern British Columbia, Prince George, British Columbia, V2N 4Z9 Canada
| |
Collapse
|
22
|
Gao X, Zhao X, Zhu Y, He J, Shao J, Su C, Zhang Y, Zhang W, Saarikettu J, Silvennoinen O, Yao Z, Yang J. Tudor staphylococcal nuclease (Tudor-SN) participates in small ribonucleoprotein (snRNP) assembly via interacting with symmetrically dimethylated Sm proteins. J Biol Chem 2012; 287:18130-41. [PMID: 22493508 DOI: 10.1074/jbc.m111.311852] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Human Tudor staphylococcal nuclease (Tudor-SN) is composed of four tandem repeats of staphylococcal nuclease (SN)-like domains, followed by a tudor and SN-like domain (TSN) consisting of a central tudor flanked by two partial SN-like sequences. The crystal structure of the tudor domain displays a conserved aromatic cage, which is predicted to hook methyl groups. Here, we demonstrated that the TSN domain of Tudor-SN binds to symmetrically dimethylarginine (sDMA)-modified SmB/B' and SmD1/D3 core proteins of the spliceosome. We demonstrated that this interaction ability is reduced by the methyltransferase inhibitor 5-deoxy-5-(methylthio)adenosine. Mutagenesis experiments indicated that the conserved amino acids (Phe-715, Tyr-721, Tyr-738, and Tyr-741) in the methyl-binding cage of the TSN domain are required for Tudor-SN-SmB interaction. Furthermore, depletion of Tudor-SN affects the association of Sm protein with snRNAs and, as a result, inhibits the assembly of uridine-rich small ribonucleoprotein mediated by the Sm core complex in vivo. Our results reveal the molecular basis for the involvement of Tudor-SN in regulating small nuclear ribonucleoprotein biogenesis, which provides novel insight related to the biological activity of Tudor-SN.
Collapse
Affiliation(s)
- Xingjie Gao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 30070, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Albulescu LO, Sabet N, Gudipati M, Stepankiw N, Bergman ZJ, Huffaker TC, Pleiss JA. A quantitative, high-throughput reverse genetic screen reveals novel connections between Pre-mRNA splicing and 5' and 3' end transcript determinants. PLoS Genet 2012; 8:e1002530. [PMID: 22479188 PMCID: PMC3315463 DOI: 10.1371/journal.pgen.1002530] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 12/19/2011] [Indexed: 11/17/2022] Open
Abstract
Here we present the development and implementation of a genome-wide reverse genetic screen in the budding yeast, Saccharomyces cerevisiae, that couples high-throughput strain growth, robotic RNA isolation and cDNA synthesis, and quantitative PCR to allow for a robust determination of the level of nearly any cellular RNA in the background of ~5,500 different mutants. As an initial test of this approach, we sought to identify the full complement of factors that impact pre-mRNA splicing. Increasing lines of evidence suggest a relationship between pre-mRNA splicing and other cellular pathways including chromatin remodeling, transcription, and 3' end processing, yet in many cases the specific proteins responsible for functionally connecting these pathways remain unclear. Moreover, it is unclear whether all pathways that are coupled to splicing have been identified. As expected, our approach sensitively detects pre-mRNA accumulation in the vast majority of strains containing mutations in known splicing factors. Remarkably, however, several additional candidates were found to cause increases in pre-mRNA levels similar to that seen for canonical splicing mutants, none of which had previously been implicated in the splicing pathway. Instead, several of these factors have been previously implicated to play roles in chromatin remodeling, 3' end processing, and other novel categories. Further analysis of these factors using splicing-sensitive microarrays confirms that deletion of Bdf1, a factor that links transcription initiation and chromatin remodeling, leads to a global splicing defect, providing evidence for a novel connection between pre-mRNA splicing and this component of the SWR1 complex. By contrast, mutations in 3' end processing factors such as Cft2 and Yth1 also result in pre-mRNA splicing defects, although only for a subset of transcripts, suggesting that spliceosome assembly in S. cerevisiae may more closely resemble mammalian models of exon-definition. More broadly, our work demonstrates the capacity of this approach to identify novel regulators of various cellular RNAs.
Collapse
Affiliation(s)
- Laura-Oana Albulescu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | | | | | | | | | | | | |
Collapse
|
24
|
Valadkhan S, Jaladat Y. The spliceosomal proteome: at the heart of the largest cellular ribonucleoprotein machine. Proteomics 2010; 10:4128-41. [PMID: 21080498 DOI: 10.1002/pmic.201000354] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Almost all primary transcripts in higher eukaryotes undergo several splicing events and alternative splicing is a major factor in generating proteomic diversity. Thus, the spliceosome, the ribonucleoprotein assembly that performs splicing, is a highly critical cellular machine and as expected, a very complex one. Indeed, the spliceosome is one of the largest, if not the largest, molecular machine in the cell with over 150 different components in human. A large fraction of the spliceosomal proteome is organized into small nuclear ribonucleoprotein particles by associating with one of the small nuclear RNAs, and the function of many spliceosomal proteins revolve around their association or interaction with the spliceosomal RNAs or the substrate pre-messenger RNAs. In addition to the complex web of protein-RNA interactions, an equally complex network of protein-protein interactions exists in the spliceosome, which includes a number of large, conserved proteins with critical functions in the spliceosomal catalytic core. These include the largest conserved nuclear protein, Prp8, which plays a critical role in spliceosomal function in a hitherto unknown manner. Taken together, the large spliceosomal proteome and its dynamic nature has made it a highly challenging system to study, and at the same time, provides an exciting example of the evolution of a proteome around a backbone of primordial RNAs likely dating from the RNA World.
Collapse
Affiliation(s)
- Saba Valadkhan
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44113, USA.
| | | |
Collapse
|
25
|
Gunderson FQ, Johnson TL. Acetylation by the transcriptional coactivator Gcn5 plays a novel role in co-transcriptional spliceosome assembly. PLoS Genet 2009; 5:e1000682. [PMID: 19834536 PMCID: PMC2752994 DOI: 10.1371/journal.pgen.1000682] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 09/14/2009] [Indexed: 11/23/2022] Open
Abstract
In the last several years, a number of studies have shown that spliceosome assembly and splicing catalysis can occur co-transcriptionally. However, it has been unclear which specific transcription factors play key roles in coupling splicing to transcription and the mechanisms through which they act. Here we report the discovery that Gcn5, which encodes the histone acetyltransferase (HAT) activity of the SAGA complex, has genetic interactions with the genes encoding the heterodimeric U2 snRNP proteins Msl1 and Lea1. These interactions are dependent upon the HAT activity of Gcn5, suggesting a functional relationship between Gcn5 HAT activity and Msl1/Lea1 function. To understand the relationship between Gcn5 and Msl1/Lea1, we carried out an analysis of Gcn5's role in co-transcriptional recruitment of Msl1 and Lea1 to pre-mRNA and found that Gcn5 HAT activity is required for co-transcriptional recruitment of the U2 snRNP (and subsequent snRNP) components to the branchpoint, while it is not required for U1 recruitment. Although previous studies suggest that transcription elongation can alter co-transcriptional pre-mRNA splicing, we do not observe evidence of defective transcription elongation for these genes in the absence of Gcn5, while Gcn5-dependent histone acetylation is enriched in the promoter regions. Unexpectedly, we also observe Msl1 enrichment in the promoter region for wild-type cells and cells lacking Gcn5, indicating that Msl1 recruitment during active transcription can occur independently of its association at the branchpoint region. These results demonstrate a novel role for acetylation by SAGA in co-transcriptional recruitment of the U2 snRNP and recognition of the intron branchpoint. Pre-messenger RNA splicing, the removal of non-coding RNA sequences (introns) that interrupt the protein-coding sequence of genes, is required for proper gene expression. While recent studies have revealed that intron recognition begins while the RNA is actively being synthesized by RNA polymerase II, little is known about how the proteins involved in gene transcription and RNA splicing interact to coordinate the two reactions. Here we show that the protein complex SAGA, which allows RNA polymerase II to navigate the three-dimensional structure of packaged DNA by acetylating histone proteins, has an additional role in pre-messenger RNA splicing. Our genetic analysis shows that the SAGA complex has functional interactions with specific components of the splicing machinery. Furthermore, SAGA's acetylation activity, which we find to be targeted toward promoter-bound histones of intron-containing genes, is required for proper recruitment of these components to RNA during active transcription. Our work supports a model whereby SAGA–dependent acetylation facilitates recruitment of the splicing machinery to the pre–mRNA for proper co-transcriptional splicing.
Collapse
Affiliation(s)
- Felizza Q. Gunderson
- Department of Biology, Molecular Biology Section, University of California San Diego, La Jolla, California, United States of America
| | - Tracy L. Johnson
- Department of Biology, Molecular Biology Section, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Analysis of synthetic lethality reveals genetic interactions between the GTPase Snu114p and snRNAs in the catalytic core of the Saccharomyces cerevisiae spliceosome. Genetics 2009; 183:497-515-1SI-4SI. [PMID: 19620389 DOI: 10.1534/genetics.109.107243] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Conformational changes of snRNAs in the spliceosome required for pre-mRNA splicing are regulated by eight ATPases and one GTPase Snu114p. The Snu114p guanine state regulates U4/U6 unwinding during spliceosome activation and U2/U6 unwinding during spliceosome disassembly through the ATPase Brr2p. We investigated 618 genetic interactions to identify an extensive genetic interaction network between SNU114 and snRNAs. Snu114p G domain alleles were exacerbated by mutations that stabilize U4/U6 base pairing. G domain alleles were made worse by U2 and U6 mutations that stabilize or destabilize U2/U6 base pairing in helix I. Compensatory mutations that restored U2/U6 base pairing in helix I relieved synthetic lethality. Snu114p G domain alleles were also worsened by mutations in U6 predicted to increase 5' splice site base pairing. Both N-terminal and G domain alleles were exacerbated by U5 loop 1 mutations at positions involved in aligning exons while C-terminus alleles were synthetically lethal with U5 internal loop 1 mutations. This suggests a spatial orientation for Snu114p with U5. We propose that the RNA base pairing state is directly or indirectly sensed by the Snu114p G domain allowing the Snu114p C-terminal domain to regulate Brr2p or other proteins to bring about RNA/RNA rearrangements required for splicing.
Collapse
|
27
|
Kershaw CJ, Barrass JD, Beggs JD, O'Keefe RT. Mutations in the U5 snRNA result in altered splicing of subsets of pre-mRNAs and reduced stability of Prp8. RNA (NEW YORK, N.Y.) 2009; 15:1292-304. [PMID: 19447917 PMCID: PMC2704078 DOI: 10.1261/rna.1347409] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The U5 snRNA loop 1 aligns the 5' and 3' exons for ligation during the second step of pre-mRNA splicing. U5 is intimately associated with Prp8, which mediates pre-mRNA repositioning within the catalytic core of the spliceosome and interacts directly with U5 loop 1. The genome-wide effect of three U5 loop 1 mutants has been assessed by microarray analysis. These mutants exhibited impaired and improved splicing of subsets of pre-mRNAs compared to wild-type U5. Analysis of pre-mRNAs that accumulate revealed a change in base prevalence at specific positions near the splice sites. Analysis of processed pre-mRNAs exhibiting mRNA accumulation revealed a bias in base prevalence at one position within the 5' exon. While U5 loop 1 can interact with some of these positions the base bias is not directly related to sequence changes in loop 1. All positions that display a bias in base prevalence are at or next to positions known to interact with Prp8. Analysis of Prp8 in the presence of the three U5 loop 1 mutants revealed that the most severe mutant displayed reduced Prp8 stability. Depletion of U5 snRNA in vivo also resulted in reduced Prp8 stability. Our data suggest that certain mutations in U5 loop 1 perturb the stability of Prp8 and may affect interactions of Prp8 with a subset of pre-mRNAs influencing their splicing. Therefore, the integrity of U5 is important for the stability of Prp8 during splicing and provides one possible explanation for why U5 loop 1 and Prp8 are so highly conserved.
Collapse
Affiliation(s)
- Christopher J Kershaw
- Faculty of Life Sciences, The University of Manchester, Manchester M139PT, United Kingdom
| | | | | | | |
Collapse
|
28
|
Zhang L, Xu T, Maeder C, Bud LO, Shanks J, Nix J, Guthrie C, Pleiss JA, Zhao R. Structural evidence for consecutive Hel308-like modules in the spliceosomal ATPase Brr2. Nat Struct Mol Biol 2009; 16:731-9. [PMID: 19525970 PMCID: PMC2743687 DOI: 10.1038/nsmb.1625] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 05/22/2009] [Indexed: 11/29/2022]
Abstract
Brr2 is a DExD/H-box helicase responsible for U4/U6 unwinding during spliceosomal activation. Brr2 contains two helicase-like domains, each of which is followed by a Sec63 domain with unknown function. We determined the crystal structure of the second Sec63 domain, which unexpectedly resembles domains 4 and 5 of DNA helicase Hel308. This, together with sequence similarities between Brr2’s helicase-like domains and domains 1–3 of Hel308, led us to hypothesize that Brr2 contains two consecutive Hel308-like modules (Hel308-I and II). Our structural model and mutagenesis data suggest that Brr2 shares a similar helicase mechanism with Hel308. We demonstrate that Hel308-II interacts with Prp8 and Snu114 in vitro and in vivo. We further find that the C-terminal region of Prp8 (Prp8-CTR) facilitates the binding of the Brr2/Prp8-CTR complex to U4/U6. Our results have important implications for the mechanism and regulation of Brr2’s activity.
Collapse
Affiliation(s)
- Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Pre-mRNA splicing is an essential step in gene expression where intron regions are removed and coding exon sequences are joined to form an mRNA for translation. Splicing is catalysed by an RNA-protein complex called the spliceosome. A number of spliceosome proteins are required for assembly and remodelling of the spliceosome with pre-mRNA to orient the splice sites correctly and catalyse the two steps of splicing. The spliceosome protein Snu114p is a GTPase that is related to the translation elongation factor EF-2. Snu114p plays a key role in spliceosome remodelling. In the present review, we briefly summarize the current knowledge of the function of Snu114p in pre-mRNA splicing and the role it plays in spliceosome dynamics.
Collapse
|
30
|
Crawford DJ, Hoskins AA, Friedman LJ, Gelles J, Moore MJ. Visualizing the splicing of single pre-mRNA molecules in whole cell extract. RNA (NEW YORK, N.Y.) 2008; 14:170-9. [PMID: 18025254 PMCID: PMC2151038 DOI: 10.1261/rna.794808] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 10/11/2007] [Indexed: 05/23/2023]
Abstract
The excision of introns from nascent eukaryotic transcripts is catalyzed by the spliceosome, a highly complex and dynamic macromolecular machine composed of RNA and protein. Because of its complexity, biochemical analysis of the spliceosome has been previously limited to bulk assays in largely unfractionated cell extracts. We now report development of methodologies for studying the splicing of isolated single pre-mRNA molecules in real time. In this system, a fluorescently tagged pre-mRNA is tethered to a glass surface via its 3'-end. Splicing can be observed in Saccharomyces cerevisiae whole cell extract by monitoring loss of intron-specific fluorescence with a multi-wavelength total internal reflection fluorescence (TIRF) microscope. To prolong fluorophore lifetime, two enzyme-based O2 scavenging systems compatible with splicing were also developed. This work provides a powerful new approach for elucidating the mechanisms of spliceosome function and demonstrates the feasibility of utilizing TIRF microscopy for biochemical studies of single molecules in highly complex environments.
Collapse
Affiliation(s)
- Daniel J Crawford
- Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02453, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
RNA helicases comprise a large family of enzymes that are thought to utilize the energy of NTP binding and hydrolysis to remodel RNA or RNA-protein complexes, resulting in RNA duplex strand separation, displacement of proteins from RNA molecules, or both. These functions of RNA helicases are required for all aspects of cellular RNA metabolism, from bacteria to humans. We provide a brief overview of the functions of RNA helicases and highlight some of the recent key advances that have contributed to our current understanding of their biological function and mechanism of action.
Collapse
|
32
|
Valadkhan S. The spliceosome: caught in a web of shifting interactions. Curr Opin Struct Biol 2007; 17:310-5. [PMID: 17574835 DOI: 10.1016/j.sbi.2007.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 03/27/2007] [Accepted: 05/25/2007] [Indexed: 11/23/2022]
Abstract
Splicing is a crucial, ubiquitous and highly complex step in eukaryotic gene expression. The daunting complexity of the splicing reaction, although fascinating, has severely limited our understanding of its mechanistic details. Recent advances have begun to provide exciting new insights into the dynamic interactions that govern the function of the spliceosome, the multi-megadalton complex that performs splicing. An emerging paradigm is the presence of a succession of distinct conformational states, which are stabilized by an intricate network of interactions. Recent data suggest that even subtle changes in the composition of the interaction network can result in interconversion of the different conformational states, providing opportunities for regulation and proofreading of spliceosome function. Significant progress in proteomics has elucidated the protein composition of the spliceosome at different stages of assembly. Also, the increased sophistication and resolution of cryo-electron microscopy techniques, combined with high-resolution structural studies on a smaller scale, promise to create detailed images of the global structure of the spliceosome and its main components, which in turn will provide a plethora of mechanistic insights. Overall, the past two years have seen a convergence of data from different lines of research into what promises to become a holistic picture of spliceosome function.
Collapse
Affiliation(s)
- Saba Valadkhan
- Center for RNA Molecular Biology, Case Western Reserve University, 10900 Euclid Avenue, Wood RT 100-8, Cleveland, OH 44106, USA.
| |
Collapse
|
33
|
Zhang L, Shen J, Guarnieri MT, Heroux A, Yang K, Zhao R. Crystal structure of the C-terminal domain of splicing factor Prp8 carrying retinitis pigmentosa mutants. Protein Sci 2007; 16:1024-31. [PMID: 17473007 PMCID: PMC2206663 DOI: 10.1110/ps.072872007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prp8 is a critical pre-mRNA splicing factor. Prp8 is proposed to help form and stabilize the spliceosome catalytic core and to be an important regulator of spliceosome activation. Mutations in human Prp8 (hPrp8) cause a severe form of the genetic disorder retinitis pigmentosa, RP13. Understanding the molecular mechanism of Prp8's function in pre-mRNA splicing and RP13 has been hindered by its large size (over 2000 amino acids) and remarkably low-sequence similarity with other proteins. Here we present the crystal structure of the C-terminal domain (the last 273 residues) of Caenorhabditis elegans Prp8 (cPrp8). The core of the C-terminal domain is an alpha/beta structure that forms the MPN (Mpr1, Pad1 N-terminal) fold but without Zn(2+) coordination. We propose that the C-terminal domain is a protein interaction domain instead of a Zn(2+)-dependent metalloenzyme as proposed for some MPN proteins. Mapping of RP13 mutants on the Prp8 structure suggests that these residues constitute a binding surface between Prp8 and other partner(s), and the disruption of this interaction provides a plausible molecular mechanism for RP13.
Collapse
Affiliation(s)
- Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045, USA
| | | | | | | | | | | |
Collapse
|
34
|
Segregation distortion in Arabidopsis gametophytic factor 1 (gfa1) mutants is caused by a deficiency of an essential RNA splicing factor. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s00497-007-0046-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Matlin AJ, Moore MJ. Spliceosome assembly and composition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:14-35. [PMID: 18380338 DOI: 10.1007/978-0-387-77374-2_2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cells control alternative splicing by modulating assembly of the pre-mRNA splicing machinery at competing splice sites. Therefore, a working knowledge of spliceosome assembly is essential for understanding how alternative splice site choices are achieved. In this chapter, we review spliceosome assembly with particular emphasis on the known steps and factors subject to regulation during alternative splice site selection in mammalian cells. We also review recent advances regarding similarities and differences between the in vivo and in vitro assembly pathways, as well as proofreading mechanisms contributing to the fidelity of splice site selection.
Collapse
Affiliation(s)
- Arianne J Matlin
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|
36
|
Small EC, Leggett SR, Winans AA, Staley JP. The EF-G-like GTPase Snu114p regulates spliceosome dynamics mediated by Brr2p, a DExD/H box ATPase. Mol Cell 2006; 23:389-99. [PMID: 16885028 PMCID: PMC3777414 DOI: 10.1016/j.molcel.2006.05.043] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 05/30/2006] [Accepted: 05/31/2006] [Indexed: 11/26/2022]
Abstract
Binding of a pre-mRNA substrate triggers spliceosome activation, whereas the release of the mRNA product triggers spliceosome disassembly. The mechanisms that underlie the regulation of these rearrangements remain unclear. We find evidence that the GTPase Snu114p mediates the regulation of spliceosome activation and disassembly. Specifically, both unwinding of U4/U6, required for spliceosome activation, and disassembly of the postsplicing U2/U6.U5.intron complex are repressed by Snu114p bound to GDP and derepressed by Snu114p bound to GTP or nonhydrolyzable GTP analogs. Further, similar to U4/U6 unwinding, spliceosome disassembly requires the DExD/H box ATPase Brr2p. Together, our data define a common mechanism for regulating and executing spliceosome activation and disassembly. Although sequence similarity with EF-G suggests Snu114p functions as a molecular motor, our findings indicate that Snu114p functions as a classic regulatory G protein. We propose that Snu114p serves as a signal-dependent switch that transduces signals to Brr2p to control spliceosome dynamics.
Collapse
Affiliation(s)
- Eliza C. Small
- Department of Biochemistry and Molecular Biology, The University of Chicago Chicago, IL 60637
| | - Stephanie R. Leggett
- Department of Molecular Genetics and Cell Biology The University of Chicago Chicago, IL 60637
| | - Adrienne A. Winans
- Department of Molecular Genetics and Cell Biology The University of Chicago Chicago, IL 60637
| | - Jonathan P. Staley
- Department of Molecular Genetics and Cell Biology The University of Chicago Chicago, IL 60637
- Correspondence: 773-834-5886 (phone); 773-834-9064 (fax)
| |
Collapse
|