1
|
Campagne S, Boigner S, Rüdisser S, Moursy A, Gillioz L, Knörlein A, Hall J, Ratni H, Cléry A, Allain FHT. Structural basis of a small molecule targeting RNA for a specific splicing correction. Nat Chem Biol 2019; 15:1191-1198. [PMID: 31636429 PMCID: PMC7617061 DOI: 10.1038/s41589-019-0384-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 09/07/2019] [Indexed: 12/24/2022]
Abstract
Splicing modifiers promoting SMN2 exon 7 inclusion have the potential to treat spinal muscular atrophy, the leading genetic cause of infantile death. These small molecules are SMN2 exon 7 selective and act during the early stages of spliceosome assembly. Here, we show at atomic resolution how the drug selectively promotes the recognition of the weak 5' splice site of SMN2 exon 7 by U1 snRNP. The solution structure of the RNA duplex formed following 5' splice site recognition in the presence of the splicing modifier revealed that the drug specifically stabilizes a bulged adenine at this exon-intron junction and converts the weak 5' splice site of SMN2 exon 7 into a stronger one. The small molecule acts as a specific splicing enhancer cooperatively with the splicing regulatory network. Our investigations uncovered a novel concept for gene-specific alternative splicing correction that we coined 5' splice site bulge repair.
Collapse
Affiliation(s)
- Sébastien Campagne
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| | - Sarah Boigner
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Simon Rüdisser
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
- Biomolecular NMR Spectroscopy Platform, ETH Zurich, Zurich, Switzerland
| | - Ahmed Moursy
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Laurent Gillioz
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Anna Knörlein
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Hasane Ratni
- F. Hoffmann-La Roche Ltd, Pharma Research & Early Development, Roche Innovation Center, Basel, Switzerland
| | - Antoine Cléry
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Frédéric H-T Allain
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Shchepachev V, Bresson S, Spanos C, Petfalski E, Fischer L, Rappsilber J, Tollervey D. Defining the RNA interactome by total RNA-associated protein purification. Mol Syst Biol 2019; 15:e8689. [PMID: 30962360 PMCID: PMC6452921 DOI: 10.15252/msb.20188689] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
The RNA binding proteome (RBPome) was previously investigated using UV crosslinking and purification of poly(A)-associated proteins. However, most cellular transcripts are not polyadenylated. We therefore developed total RNA-associated protein purification (TRAPP) based on 254 nm UV crosslinking and purification of all RNA-protein complexes using silica beads. In a variant approach (PAR-TRAPP), RNAs were labelled with 4-thiouracil prior to 350 nm crosslinking. PAR-TRAPP in yeast identified hundreds of RNA binding proteins, strongly enriched for canonical RBPs. In comparison, TRAPP identified many more proteins not expected to bind RNA, and this correlated strongly with protein abundance. Comparing TRAPP in yeast and E. coli showed apparent conservation of RNA binding by metabolic enzymes. Illustrating the value of total RBP purification, we discovered that the glycolytic enzyme enolase interacts with tRNAs. Exploiting PAR-TRAPP to determine the effects of brief exposure to weak acid stress revealed specific changes in late 60S ribosome biogenesis. Furthermore, we identified the precise sites of crosslinking for hundreds of RNA-peptide conjugates, using iTRAPP, providing insights into potential regulation. We conclude that TRAPP is a widely applicable tool for RBPome characterization.
Collapse
Affiliation(s)
- Vadim Shchepachev
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Stefan Bresson
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | - Lutz Fischer
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Zaman U, Richter FM, Hofele R, Kramer K, Sachsenberg T, Kohlbacher O, Lenz C, Urlaub H. Dithiothreitol (DTT) Acts as a Specific, UV-inducible Cross-linker in Elucidation of Protein-RNA Interactions. Mol Cell Proteomics 2015; 14:3196-210. [PMID: 26450613 DOI: 10.1074/mcp.m115.052795] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Indexed: 11/06/2022] Open
Abstract
Protein-RNA cross-linking by UV irradiation at 254 nm wavelength has been established as an unbiased method to identify proteins in direct contact with RNA, and has been successfully applied to investigate the spatial arrangement of protein and RNA in large macromolecular assemblies, e.g. ribonucleoprotein-complex particles (RNPs). The mass spectrometric analysis of such peptide-RNA cross-links provides high resolution structural data to the point of mapping protein-RNA interactions to specific peptides or even amino acids. However, the approach suffers from the low yield of cross-linking products, which can be addressed by improving enrichment and analysis methods. In the present article, we introduce dithiothreitol (DTT) as a potent protein-RNA cross-linker. In order to evaluate the efficiency and specificity of DTT, we used two systems, a small synthetic peptide from smB protein incubated with U1 snRNA oligonucleotide and native ribonucleoprotein complexes from S. cerevisiae. Our results unambiguously show that DTT covalently participates in cysteine-uracil crosslinks, which is observable as a mass increment of 151.9966 Da (C(4)H(8)S(2)O(2)) upon mass spectrometric analysis. DTT presents advantages for cross-linking of cysteine containing regions of proteins. This is evidenced by comparison to experiments where (tris(2-carboxyethyl)phosphine) is used as reducing agent, and significantly less cross-links encompassing cysteine residues are found. We further propose insertion of DTT between the cysteine and uracil reactive sites as the most probable structure of the cross-linking products.
Collapse
Affiliation(s)
- Uzma Zaman
- From the ‡Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany; §Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Florian M Richter
- From the ‡Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Romina Hofele
- From the ‡Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany; §Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Katharina Kramer
- From the ‡Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany; §Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Timo Sachsenberg
- ¶Center for Bioinformatics, ‖Department of Computer Science, University of Tübingen, Sand 14, D-72076 Tübingen, Germany
| | - Oliver Kohlbacher
- ¶Center for Bioinformatics, ‖Department of Computer Science, University of Tübingen, Sand 14, D-72076 Tübingen, Germany; ¶¶Biomolecular Interactions, Max Planck Institute for Developmental Biology, Spemannstraße 35, D-72076 Tübingen, Germany
| | - Christof Lenz
- From the ‡Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany; §Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Henning Urlaub
- From the ‡Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany; §Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany;
| |
Collapse
|
4
|
Nguyen-Huynh NT, Sharov G, Potel C, Fichter P, Trowitzsch S, Berger I, Lamour V, Schultz P, Potier N, Leize-Wagner E. Chemical cross-linking and mass spectrometry to determine the subunit interaction network in a recombinant human SAGA HAT subcomplex. Protein Sci 2015; 24:1232-46. [PMID: 25753033 DOI: 10.1002/pro.2676] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 01/04/2023]
Abstract
Understanding the way how proteins interact with each other to form transient or stable protein complexes is a key aspect in structural biology. In this study, we combined chemical cross-linking with mass spectrometry to determine the binding stoichiometry and map the protein-protein interaction network of a human SAGA HAT subcomplex. MALDI-MS equipped with high mass detection was used to follow the cross-linking reaction using bis[sulfosuccinimidyl] suberate (BS3) and confirm the heterotetrameric stoichiometry of the specific stabilized subcomplex. Cross-linking with isotopically labeled BS3 d0-d4 followed by trypsin digestion allowed the identification of intra- and intercross-linked peptides using two dedicated search engines: pLink and xQuest. The identified interlinked peptides suggest a strong network of interaction between GCN5, ADA2B and ADA3 subunits; SGF29 is interacting with GCN5 and ADA3 but not with ADA2B. These restraint data were combined to molecular modeling and a low-resolution interacting model for the human SAGA HAT subcomplex could be proposed, illustrating the potential of an integrative strategy using cross-linking and mass spectrometry for addressing the structural architecture of multiprotein complexes.
Collapse
Affiliation(s)
- Nha-Thi Nguyen-Huynh
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 CNRS/Université de Strasbourg - "Chimie de la Matière Complexe", 1 Rue Blaise Pascal, 67008, Strasbourg, France
| | - Grigory Sharov
- Integrated Structural Biology Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104, INSERM U964, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Clément Potel
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 CNRS/Université de Strasbourg - "Chimie de la Matière Complexe", 1 Rue Blaise Pascal, 67008, Strasbourg, France
| | - Pélagie Fichter
- Integrated Structural Biology Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104, INSERM U964, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Simon Trowitzsch
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Imre Berger
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Valérie Lamour
- Integrated Structural Biology Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104, INSERM U964, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Patrick Schultz
- Integrated Structural Biology Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104, INSERM U964, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Noëlle Potier
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 CNRS/Université de Strasbourg - "Chimie de la Matière Complexe", 1 Rue Blaise Pascal, 67008, Strasbourg, France
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 CNRS/Université de Strasbourg - "Chimie de la Matière Complexe", 1 Rue Blaise Pascal, 67008, Strasbourg, France
| |
Collapse
|
5
|
Predicting protein-RNA interaction amino acids using random forest based on submodularity subset selection. Comput Biol Chem 2014; 53PB:324-330. [PMID: 25462339 DOI: 10.1016/j.compbiolchem.2014.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 10/31/2014] [Accepted: 11/08/2014] [Indexed: 12/25/2022]
Abstract
Protein-RNA interaction plays a very crucial role in many biological processes, such as protein synthesis, transcription and post-transcription of gene expression and pathogenesis of disease. Especially RNAs always function through binding to proteins. Identification of binding interface region is especially useful for cellular pathways analysis and drug design. In this study, we proposed a novel approach for binding sites identification in proteins, which not only integrates local features and global features from protein sequence directly, but also constructed a balanced training dataset using sub-sampling based on submodularity subset selection. Firstly we extracted local features and global features from protein sequence, such as evolution information and molecule weight. Secondly, the number of non-interaction sites is much more than interaction sites, which leads to a sample imbalance problem, and hence biased machine learning model with preference to non-interaction sites. To better resolve this problem, instead of previous randomly sub-sampling over-represented non-interaction sites, a novel sampling approach based on submodularity subset selection was employed, which can select more representative data subset. Finally random forest were trained on optimally selected training subsets to predict interaction sites. Our result showed that our proposed method is very promising for predicting protein-RNA interaction residues, it achieved an accuracy of 0.863, which is better than other state-of-the-art methods. Furthermore, it also indicated the extracted global features have very strong discriminate ability for identifying interaction residues from random forest feature importance analysis.
Collapse
|
6
|
Schmidt C, Kramer K, Urlaub H. Investigation of protein-RNA interactions by mass spectrometry--Techniques and applications. J Proteomics 2012; 75:3478-94. [PMID: 22575267 DOI: 10.1016/j.jprot.2012.04.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/19/2012] [Accepted: 04/22/2012] [Indexed: 12/26/2022]
Abstract
Protein-RNA complexes play many important roles in diverse cellular functions. They are involved in a wide variety of different processes in growth and differentiation at the various stages of the cell cycle. As their function and catalytic activity are directly coupled to the structural arrangement of their components--proteins and ribonucleic acids--the investigation of protein-RNA interactions is of great functional and structural importance. Here we discuss the most prominent examples of protein-RNA complexes and describe some frequently used purification strategies. We present various techniques and applications of mass spectrometry to study protein-RNA complexes. We discuss the analysis of intact complexes as well as proteomics-based and crosslinking-based approaches in which proteins are cleaved into smaller peptides. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.
Collapse
Affiliation(s)
- Carla Schmidt
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | |
Collapse
|
7
|
Schug KA, Serrano C, Frycák P. Controlled band dispersion for quantitative binding determination and analysis with electrospray ionization-mass spectrometry. MASS SPECTROMETRY REVIEWS 2010; 29:806-829. [PMID: 19890977 DOI: 10.1002/mas.20267] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review discusses recent emerging techniques that have been used to couple flow-injection analysis (FIA) and electrospray ionization-mass spectrometry (ESI-MS) for the quantitation of noncovalent binding interactions. Focus is placed predominantly on two such methods. Diffusion-based measurements, developed by Konermann and co-workers, uses controlled-band dispersion prior to ESI-MS to determine diffusion constants and binding constants based on the temporal variation of ligand signal measured in the mass spectrum (an indirect technique). Dynamic titration, developed by Schug and co-workers, is a direct method, where a temporal compositional gradient of a guest molecule is induced in the presence of host in solution to monitor the concentration dependence of complex formation as a function of observed complex ion abundance after ESI-MS. Further discussion places these techniques in the context of a variety of other direct and indirect ESI-MS-based binding determination methods, and highlights advantages, disadvantages, and practical considerations for their proper use to investigate a broad range of macromolecular and small-molecule interaction systems.
Collapse
Affiliation(s)
- Kevin A Schug
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, USA.
| | | | | |
Collapse
|
8
|
Protein folding by domain V of Escherichia coli 23S rRNA: specificity of RNA-protein interactions. J Bacteriol 2008; 190:3344-52. [PMID: 18310328 DOI: 10.1128/jb.01800-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The peptidyl transferase center, present in domain V of 23S rRNA of eubacteria and large rRNA of plants and animals, can act as a general protein folding modulator. Here we show that a few specific nucleotides in Escherichia coli domain V RNA bind to unfolded proteins and, as shown previously, bring the trapped proteins to a folding-competent state before releasing them. These nucleotides are the same for the proteins studied so far: bovine carbonic anhydrase, lactate dehydrogenase, malate dehydrogenase, and chicken egg white lysozyme. The amino acids that interact with these nucleotides are also found to be specific in the two cases tested: bovine carbonic anhydrase and lysozyme. They are either neutral or positively charged and are present in random coils on the surface of the crystal structure of both the proteins. In fact, two of these amino acid-nucleotide pairs are identical in the two cases. How these features might help the process of protein folding is discussed.
Collapse
|
9
|
Kühn-Hölsken E, Dybkov O, Sander B, Lührmann R, Urlaub H. Improved identification of enriched peptide RNA cross-links from ribonucleoprotein particles (RNPs) by mass spectrometry. Nucleic Acids Res 2007; 35:e95. [PMID: 17652325 PMCID: PMC1976460 DOI: 10.1093/nar/gkm540] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Direct UV cross-linking combined with mass spectrometry (MS) is a powerful tool to identify hitherto non-characterized protein-RNA contact sites in native ribonucleoprotein particles (RNPs) such as the spliceosome. Identification of contact sites after cross-linking is restricted by: (i) the relatively low cross-linking yield and (ii) the amount of starting material available for cross-linking studies. Therefore, the most critical step in such analyses is the extensive purification of the cross-linked peptide-RNA heteroconjugates from the excess of non-crosslinked material before MS analysis. Here, we describe a strategy that combines small-scale reversed-phase liquid chromatography (RP-HPLC) of UV-irradiated and hydrolyzed RNPs, immobilized metal-ion affinity chromatography (IMAC) to enrich cross-linked species and their analysis by matrix-assisted laser desorption/ionisation (MALDI) MS(/MS). In cases where no MS/MS analysis can be performed, treatment of the enriched fractions with alkaline phosphatase leads to unambiguous identification of the cross-linked species. We demonstrate the feasibility of this strategy by MS analysis of enriched peptide-RNA cross-links from UV-irradiated reconstituted [15.5K-61K-U4atac snRNA] snRNPs and native U1 snRNPs. Applying our approach to a partial complex of U2 snRNP allowed us to identify the contact site between the U2 snRNP-specific protein p14/SF3b14a and the branch-site interacting region (BSiR) of U2 snRNA.
Collapse
MESH Headings
- Alkaline Phosphatase
- Amino Acid Sequence
- Binding Sites
- Chromatography, Affinity
- Chromatography, Liquid/methods
- Computational Biology
- Molecular Sequence Data
- Peptides/chemistry
- Peptides/isolation & purification
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/isolation & purification
- Ribonucleoprotein, U1 Small Nuclear/chemistry
- Ribonucleoprotein, U1 Small Nuclear/radiation effects
- Ribonucleoprotein, U2 Small Nuclear/chemistry
- Ribonucleoprotein, U2 Small Nuclear/radiation effects
- Ribonucleoproteins, Small Nuclear/chemistry
- Ribonucleoproteins, Small Nuclear/radiation effects
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Ultraviolet Rays
Collapse
Affiliation(s)
- Eva Kühn-Hölsken
- Bioanalytical Mass Spectrometry Group and Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Olexandr Dybkov
- Bioanalytical Mass Spectrometry Group and Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Björn Sander
- Bioanalytical Mass Spectrometry Group and Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Reinhard Lührmann
- Bioanalytical Mass Spectrometry Group and Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group and Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- *To whom correspondence should be addressed.+49 551 2011060+49 551 2011197
| |
Collapse
|
10
|
|
11
|
Affiliation(s)
- Dana A Baum
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
12
|
Lenz C, Kühn-Hölsken E, Urlaub H. Detection of protein-RNA crosslinks by NanoLC-ESI-MS/MS using precursor ion scanning and multiple reaction monitoring (MRM) experiments. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:869-81. [PMID: 17349801 DOI: 10.1016/j.jasms.2007.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 01/18/2007] [Accepted: 01/22/2007] [Indexed: 05/14/2023]
Abstract
Protein-RNA interactions within ribonucleoprotein particles (RNPs) can be investigated by UV-induced crosslinking of proteins to their cognate RNAs and subsequent isolation and mass-spectrometric analysis of crosslinked peptide-RNA oligonucleotides. Because of the low crosslinking yield, a major challenge in protein-RNA UV crosslinking is the detection of the crosslinked species over the excess of non-crosslinked material, especially when complex systems (native RNPs) are investigated. Here, we applied a novel approach that uses on-line nanoLC-ESI-MS/MS to detect and subsequently sequence peptide-RNA oligonucleotide crosslinks from crude mixtures. To detect the crosslinks we made use of features shared by crosslinks and phosphopeptides, that is, the phosphate groups that both carry. A precursor ion scan for m/z 79 (negative-ion mode, -ve) is applied to selectively detect analytes bearing the phosphate-containing species (i.e., residual non-crosslinked RNA and peptide-RNA crosslinks) from crude mixtures and to determine their exact m/z values. On this basis, a multiple reaction monitoring (MRM) experiment monitors the expected decomposition from the different precursor charge states of the putative crosslinks to one of the four possible RNA nucleobases [m/z 112, 113, 136, 152 (positive-ion mode, +ve)]. On detection, a high-quality MS/MS is triggered to establish the structure of the crosslink. In a feasibility study, we detected and subsequently sequenced peptide-RNA crosslinks obtained by UV-irradiation of (1) native U1 snRNPs and (2) [15.5K-61K-U4atac] snRNPs prepared by reconstitution in vitro. MRM-triggered collision-induced dissociation (CID) MS/MS enabled us to obtain sequence information about the crosslinked peptide and RNA moiety.
Collapse
|
13
|
Abstract
The interaction of RNA-binding proteins (RBPs) with RNA is a crucial aspect of normal cellular metabolism. Yet, the diverse number of RBPs and RNA motifs to which they bind, the wide range of interaction strengths and the fact that RBPs associate in dynamic complexes have made it challenging to determine whether a particular RNA-binding protein binds a particular RNA. Recent work by three different laboratories has led to the development of new tools to query such interactions in the more physiological environs of cultured cells. The use of these methods has led to insights into (1) the networks of RNAs regulated by a particular protein, (2) the identification of new protein partners within messenger ribonucleoprotein particles and (3) the flux of RNA-binding proteins on an mRNA throughout its lifecycle. Here, I examine these new methods and discuss their relative strengths and current limitations.
Collapse
Affiliation(s)
- Robert B Denman
- Department of Molecular Biology, Laboratory of Biochemical Molecular Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| |
Collapse
|
14
|
Balczun C, Bunse A, Schwarz C, Piotrowski M, Kück U. Chloroplast heat shock protein Cpn60 fromChlamydomonas reinhardtiiexhibits a novel function as a group II intron-specific RNA-binding protein. FEBS Lett 2006; 580:4527-32. [PMID: 16872603 DOI: 10.1016/j.febslet.2006.07.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 07/10/2006] [Accepted: 07/10/2006] [Indexed: 11/22/2022]
Abstract
Intron-binding proteins in eukaryotic organelles are mainly encoded by the nuclear genome and are thought to promote the maturation of precursor RNAs. Here, we present a biochemical approach that enable the isolation of a novel nuclear-encoded protein from Chlamydomonas reinhardtii showing specific binding properties to organelle group II intron RNA. Using FPLC chromatography of chloroplast protein extracts, a 61-kDa RNA-binding protein was isolated and then tentatively identified by mass spectrometry as the chloroplast heat shock protein Cpn60. Heterologous Cpn60 protein was used in RNA protein gel mobility shift assays and revealed that the ATPase domains of Cpn60 mediates the specific binding of two group II intron RNAs, derived from the homologous chloroplast psaA gene and the heterologous mitochondrial LSU rRNA gene. The function of Cpn60 as a general organelle splicing factor is discussed.
Collapse
Affiliation(s)
- Carsten Balczun
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
15
|
Rhode BM, Hartmuth K, Westhof E, Lührmann R. Proximity of conserved U6 and U2 snRNA elements to the 5' splice site region in activated spliceosomes. EMBO J 2006; 25:2475-86. [PMID: 16688215 PMCID: PMC1478171 DOI: 10.1038/sj.emboj.7601134] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 04/18/2006] [Indexed: 11/08/2022] Open
Abstract
Major structural changes occur in the spliceosome during its catalytic activation, which immediately precedes the splicing of pre-mRNA. Whereas changes in snRNA conformation are well documented at the level of secondary RNA-RNA interactions, little is known about the tertiary structure of this RNA-RNA network, which comprises the spliceosome's catalytic core. Here, we have used the hydroxyl-radical probe Fe-BABE, tethered to the tenth nucleotide (U(+10)) of the 5' end of a pre-mRNA intron, to map RNA-RNA proximities in spliceosomes. These studies revealed that several conserved snRNA regions are close to U(+10) in activated spliceosomes, namely (i) the U6 snRNA ACAGAG-box region, (ii) portions of the U6 intramolecular stem-loop (U6-ISL) including a nucleotide implicated in the first catalytic step (U74), and (iii) the region of U2 that interacts with the branch point. These data constrain the relative orientation of these structural elements with respect to U(+10) in the activated spliceosome. Upon conversion of the activated spliceosome to complex C, the accessibility of U6-ISL to hydroxyl-radical cleavage is altered, suggesting rearrangements after the first catalytic step.
Collapse
Affiliation(s)
- Britta M Rhode
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | |
Collapse
|
16
|
Harris D, Zhang Z, Chaubey B, Pandey VN. Identification of cellular factors associated with the 3'-nontranslated region of the hepatitis C virus genome. Mol Cell Proteomics 2006; 5:1006-18. [PMID: 16500930 DOI: 10.1074/mcp.m500429-mcp200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chronic infection by hepatitis C virus (HCV) is the leading cause of severe hepatitis that often develops into liver cirrhosis and hepatocellular carcinoma. The molecular mechanisms underlying HCV replication and pathogenesis are poorly understood. Similarly, the role(s) of host factors in the replication of HCV remains largely undefined. Based on our knowledge of other RNA viruses, it is likely that a number of cellular factors may be involved in facilitating HCV replication. It has been demonstrated that elements within the 3'-nontranslated region (3'-NTR) of the (+) strand HCV genome are essential for initiation of (-) strand synthesis. The RNA signals within the highly conserved 3'-NTR may be the site for recruiting cellular factors that mediate virus replication/pathogenesis. However, the identities of putative cellular factors interacting with these RNA signals remain unknown. In this report, we demonstrate that an RNA affinity capture system developed in our laboratory used in conjunction with LC/MS/MS allowed us to positively identify more than 70 cellular proteins that interact with the 3'-NTR (+) of HCV. Binding of these cellular proteins was not competed out by a 10-fold excess of nonspecific competitor RNA. With few exceptions, all of the identified cellular proteins are RNA-binding proteins whose reported cellular functions provide unique insights into host cell-virus interactions and possible mechanisms influencing HCV replication and HCV-associated pathogenesis. Small interfering RNA-mediated silencing of selected 3'-NTR-binding proteins in an HCV replicon cell line reduced replicon RNA to undetectable levels, suggesting important roles for these cellular factors in HCV replication.
Collapse
Affiliation(s)
- Dylan Harris
- Department of Biochemistry and Molecular Biology and Centre for the Study of Emerging and Re-emerging Pathogens, University of Medicine and Dentistry of New Jersey--New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|
17
|
Kühn-Hölsken E, Lenz C, Sander B, Lührmann R, Urlaub H. Complete MALDI-ToF MS analysis of cross-linked peptide-RNA oligonucleotides derived from nonlabeled UV-irradiated ribonucleoprotein particles. RNA (NEW YORK, N.Y.) 2005; 11:1915-30. [PMID: 16314460 PMCID: PMC1370879 DOI: 10.1261/rna.2176605] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 09/12/2005] [Indexed: 05/05/2023]
Abstract
Protein-RNA cross-linking combined with mass spectrometry is a powerful tool to elucidate hitherto non-characterized protein-RNA contacts in ribonucleoprotein particles, as, for example, within spliceosomes. Here, we describe an improved methodology for the sequence analysis of purified peptide-RNA oligonucleotide cross-links that is based solely on MALDI-ToF mass spectrometry. The utility of this methodology is demonstrated on cross-links isolated from UV-irradiated spliceosomal particles; these were (1) [15.5K-61 K-U4 atac] small nuclear ribonucleoprotein (snRNP) particles prepared by reconstitution in vitro, and (2) U1 snRNP particles purified from HeLa cells. We show that the use of 2',4',6'-trihydroxyacetophenone (THAP) as MALDI matrix allows analysis of cross-linked peptide-RNA oligonucleotides in the reflectron mode at high resolution, enabling sufficient accuracy to assign unambiguously cross-linked RNA sequences. Most important, post-source decay (PSD) analysis under these conditions was successfully applied to obtain sequence information about the cross-linked peptide and RNA moieties within a single spectrum, including the identification of the actual cross-linking site. Thus, in U4 atac snRNA we identified His 270 in the spliceosomal U4/U6 snRNP-specific protein 61 K (hPrp31p) cross-linked to U 44; in the U1 snRNP we show that Leu175 of the U1 snRNP-specific 70K protein is cross-linked to U 30 of U1 snRNA. This type of analysis is applicable to any type of RNP complex and may be expected to pave the way for the further analysis of protein-RNA complexes in much lower abundance and/or of cross-links that are obtained in low yield.
Collapse
MESH Headings
- Amino Acid Sequence
- Cross-Linking Reagents/pharmacology
- Crystallography, X-Ray
- HeLa Cells
- Humans
- Models, Chemical
- Models, Molecular
- Molecular Sequence Data
- Oligonucleotides/analysis
- Peptides
- RNA/chemistry
- Ribonucleoprotein, U1 Small Nuclear/chemistry
- Ribonucleoprotein, U1 Small Nuclear/metabolism
- Ribonucleoprotein, U4-U6 Small Nuclear/chemistry
- Ribonucleoprotein, U4-U6 Small Nuclear/metabolism
- Sequence Homology, Amino Acid
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Ultraviolet Rays
Collapse
Affiliation(s)
- Eva Kühn-Hölsken
- Bioanalytical Mass Spectrometry Group, Max Planck institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
18
|
Silverman SK. In vitro selection, characterization, and application of deoxyribozymes that cleave RNA. Nucleic Acids Res 2005; 33:6151-63. [PMID: 16286368 PMCID: PMC1283523 DOI: 10.1093/nar/gki930] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Over the last decade, many catalytically active DNA molecules (deoxyribozymes; DNA enzymes) have been identified by in vitro selection from random-sequence DNA pools. This article focuses on deoxyribozymes that cleave RNA substrates. The first DNA enzyme was reported in 1994 and cleaves an RNA linkage. Since that time, many other RNA-cleaving deoxyribozymes have been identified. Most but not all of these deoxyribozymes require a divalent metal ion cofactor such as Mg2+ to catalyze attack by a specific RNA 2′-hydroxyl group on the adjacent phosphodiester linkage, forming a 2′,3′-cyclic phosphate and a 5′-hydroxyl group. Several deoxyribozymes that cleave RNA have utility for in vitro RNA biochemistry. Some DNA enzymes have been applied in vivo to degrade mRNAs, and others have been engineered into sensors. The practical impact of RNA-cleaving deoxyribozymes should continue to increase as additional applications are developed.
Collapse
Affiliation(s)
- Scott K Silverman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
19
|
Buratti E, Baralle M, De Conti L, Baralle D, Romano M, Ayala YM, Baralle FE. hnRNP H binding at the 5' splice site correlates with the pathological effect of two intronic mutations in the NF-1 and TSHbeta genes. Nucleic Acids Res 2004; 32:4224-36. [PMID: 15299088 PMCID: PMC514374 DOI: 10.1093/nar/gkh752] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We have recently reported a disease-causing substitution (+5G > C) at the donor site of NF-1 exon 3 that produces its skipping. We have now studied in detail the splicing mechanism involved in analyzing RNA-protein complexes at several 5' splice sites. Characteristic protein patterns were observed by pulldown and band-shift/super-shift analysis. Here, we show that hnRNP H binds specifically to the wild-type GGGgu donor sequence of the NF-1 exon 3. Depletion analyses shows that this protein restricts the accessibility of U1 small nuclear ribonucleoprotein (U1snRNA) to the donor site. In this context, the +5G > C mutation abolishes both U1snRNP base pairing and the 5' splice site (5'ss) function. However, exon recognition in the mutant can be rescued by disrupting the binding of hnRNP H, demonstrating that this protein enhances the effects of the +5G > C substitution. Significantly, a similar situation was found for a second disease-causing +5G > A substitution in the 5'ss of TSHbeta exon 2, which harbors a GGgu donor sequence. Thus, the reason why similar nucleotide substitutions can be either neutral or very disruptive of splicing function can be explained by the presence of specific binding signatures depending on local contexts.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, 34012 Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|