1
|
Koch M, Clementi N, Rusca N, Vögele P, Erlacher M, Polacek N. The integrity of the G2421-C2395 base pair in the ribosomal E-site is crucial for protein synthesis. RNA Biol 2015; 12:70-81. [PMID: 25826414 PMCID: PMC4615901 DOI: 10.1080/15476286.2015.1017218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
During the elongation cycle of protein biosynthesis, tRNAs traverse through the ribosome by consecutive binding to the 3 ribosomal binding sites (A-, P-, and E- sites). While the ribosomal A- and P-sites have been functionally well characterized in the past, the contribution of the E-site to protein biosynthesis is still poorly understood in molecular terms. Previous studies suggested an important functional interaction of the terminal residue A76 of E-tRNA with the nucleobase of the universally conserved 23S rRNA residue C2394. Using an atomic mutagenesis approach to introduce non-natural nucleoside analogs into the 23S rRNA, we could show that removal of the nucleobase or the ribose 2'-OH at C2394 had no effect on protein synthesis. On the other hand, our data disclose the importance of the highly conserved E-site base pair G2421-C2395 for effective translation. Ribosomes with a disrupted G2421-C2395 base pair are defective in tRNA binding to the E-site. This results in an impaired translation of genuine mRNAs, while homo-polymeric templates are not affected. Cumulatively our data emphasize the importance of E-site tRNA occupancy and in particular the intactness of the 23S rRNA base pair G2421-C2395 for productive protein biosynthesis.
Collapse
Affiliation(s)
- Miriam Koch
- a Department of Chemistry and Biochemistry; University of Bern ; Bern , Switzerland
| | | | | | | | | | | |
Collapse
|
2
|
Seidman JS, Janssen BD, Hayes CS. Alternative fates of paused ribosomes during translation termination. J Biol Chem 2011; 286:31105-12. [PMID: 21757758 DOI: 10.1074/jbc.m111.268201] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial tmRNA·SmpB system facilitates recycling of stalled translational complexes in a process termed "ribosome rescue." During ribosome rescue, the nascent chain is tagged with the tmRNA-encoded ssrA peptide, which targets the tagged polypeptide for degradation. Translational pausing also induces a variety of recoding events such as frameshifts, ribosome hops, and stop codon readthrough. To examine the interplay between recoding and ribosome rescue, we determined the various fates of ribosomes that pause during translation termination. We expressed a model protein containing the C-terminal Asp-Pro nascent peptide motif (which interferes with translation termination) and quantified the protein chains produced by recoding and ssrA-peptide tagging. The nature and extent of translational recoding depended upon the codon for the C-terminal Pro residue, with CCU and CCC promoting efficient +1 frameshifting. In contrast, ssrA-peptide tagging was unaffected by C-terminal Pro coding. Moreover, +1 frameshifting was not suppressed by tmRNA·SmpB activity, suggesting that recoding and ribosome rescue are not competing events. However, cells lacking ribosomal protein L9 (ΔL9) exhibited a significant increase in recoding and a concomitant decrease in ssrA-peptide tagging. Pulse-chase analysis revealed that pre-termination ribosomes turn over more rapidly in ΔL9 cells, suggesting that increased recoding alleviates the translational arrest. Together, these results indicate that tmRNA·SmpB does not suppress transient ribosome pauses, but responds to prolonged translational arrest.
Collapse
Affiliation(s)
- Jason S Seidman
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106-9625, USA
| | | | | |
Collapse
|
3
|
Fu J, Hashem Y, Wower J, Frank J. tmRNA on its way through the ribosome: two steps of resume, and what next? RNA Biol 2011; 8:586-90. [PMID: 21593606 DOI: 10.4161/rna.8.4.15585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Trans-translation is a universal quality-control process eubacteria use to degrade incompletely synthesized proteins and rescue ribosome stalled on defective mRNAs. This process is facilitated by a ribonucleoprotein complex composed of transfer-messenger RNA (tmRNA)-a chimera made of a tRNA-like molecule and a short open reading frame (ORF) -and small protein B (SmpB). Determination of the structure of tmRNA and SmpB in complex with the ribosome, at the stage when translation has resumed on tmRNA, has provided an increased understanding of the structure of tmRNA as it transits the ribosome, and unique insights into the complex mechanism of template switching on the ribosome and SmpB-driven selection of the correct reading frame on tmRNA's ORF.
Collapse
Affiliation(s)
- Jie Fu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | | | | |
Collapse
|
4
|
Visualizing the transfer-messenger RNA as the ribosome resumes translation. EMBO J 2010; 29:3819-25. [PMID: 20940705 PMCID: PMC2989109 DOI: 10.1038/emboj.2010.255] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 09/22/2010] [Indexed: 11/08/2022] Open
Abstract
Bacterial ribosomes stalled by truncated mRNAs are rescued by transfer-messenger RNA (tmRNA), a dual-function molecule that contains a tRNA-like domain (TLD) and an internal open reading frame (ORF). Occupying the empty A site with its TLD, the tmRNA enters the ribosome with the help of elongation factor Tu and a protein factor called small protein B (SmpB), and switches the translation to its own ORF. In this study, using cryo-electron microscopy, we obtained the first structure of an in vivo-formed complex containing ribosome and the tmRNA at the point where the TLD is accommodated into the ribosomal P site. We show that tmRNA maintains a stable 'arc and fork' structure on the ribosome when its TLD moves to the ribosomal P site and translation resumes on its ORF. Based on the density map, we built an atomic model, which suggests that SmpB interacts with the five nucleotides immediately upstream of the resume codon, thereby determining the correct selection of the reading frame on the ORF of tmRNA.
Collapse
|
5
|
Devaraj A, Shoji S, Holbrook ED, Fredrick K. A role for the 30S subunit E site in maintenance of the translational reading frame. RNA (NEW YORK, N.Y.) 2009; 15:255-65. [PMID: 19095617 PMCID: PMC2648707 DOI: 10.1261/rna.1320109] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The exit (E) site has been implicated in several ribosomal activities, including translocation, decoding, and maintenance of the translational reading frame. Here, we target the 30S subunit E site by introducing a deletion in rpsG that truncates the beta-hairpin of ribosomal protein S7. This mutation (S7DeltaR77-Y84) increases both -1 and +1 frameshifting but does not increase miscoding, providing evidence that the 30S E site plays a specific role in frame maintenance. Mutation S7DeltaR77-Y84 also stimulates +1 programmed frameshifting during prfB'-lacZ translation in many synthetic contexts. However, no effect is seen when the E codon of the frameshift site corresponds to those found in nature, suggesting that E-tRNA release does not normally limit the rate of prfB frameshifting. Ribosomes containing S7DeltaR77-Y84 exhibit an elevated rate of spontaneous reverse translocation and an increased K (1/2) for E-tRNA. These effects are of similar magnitude, suggesting that both result from destabilization of E-tRNA. Finally, this mutation of the 30S E site does not inhibit EF-G-dependent translocation, consistent with a primary role for the 50S E site in the mechanism.
Collapse
Affiliation(s)
- Aishwarya Devaraj
- Ohio State Biochemistry Program, The Ohio State University, Columbus, 43210, USA
| | | | | | | |
Collapse
|
6
|
Wower IK, Zwieb C, Wower J. Escherichia coli tmRNA lacking pseudoknot 1 tags truncated proteins in vivo and in vitro. RNA (NEW YORK, N.Y.) 2009; 15:128-137. [PMID: 19001120 PMCID: PMC2612775 DOI: 10.1261/rna.1192409] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 10/09/2008] [Indexed: 05/27/2023]
Abstract
Transfer-messenger RNA (tmRNA) and protein SmpB facilitate trans-translation, a quality-control process that tags truncated proteins with short peptides recognized by a number of proteases and recycles ribosomes stalled at the 3' end of mRNA templates lacking stop codons. The tmRNA molecule is a hybrid of tRNA- and mRNA-like domains that are usually connected by four pseudoknots (pk1-pk4). Replacement of pk1 with a single-stranded RNA yields pk1L, a mutant tmRNA that tags truncated proteins very poorly in vitro but very efficiently in vivo. However, deletion of the whole pk1 is deleterious for protein tagging. In contrast, deletion of helix 4 yields Deltah4, a fully functional tmRNA derivative containing a single hairpin instead of pk1. Further deletions in the pk1 segment yield two subclasses of mutant tmRNAs that are unable to tag truncated proteins, but some of them bind to stalled ribosomes. Our studies demonstrate that pk1 is not essential for tmRNA functions but contributes to the stability of the tmRNA structure. Our studies also indicate that the length of this RNA segment is critical for both tmRNA binding to the ribosome and resumption of translation.
Collapse
Affiliation(s)
- Iwona K Wower
- Department of Animal Sciences, Auburn University, Auburn, Alabama 36849-5415, USA
| | | | | |
Collapse
|
7
|
Tats A, Tenson T, Remm M. Preferred and avoided codon pairs in three domains of life. BMC Genomics 2008; 9:463. [PMID: 18842120 PMCID: PMC2585594 DOI: 10.1186/1471-2164-9-463] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 10/08/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alternative synonymous codons are not used with equal frequencies. In addition, the contexts of codons - neighboring nucleotides and neighboring codons - can have certain patterns. The codon context can influence both translational accuracy and elongation rates. However, it is not known how strong or conserved the codon context preferences in different organisms are. We analyzed 138 organisms (bacteria, archaea and eukaryotes) to find conserved patterns of codon pairs. RESULTS After removing the effects of single codon usage and dipeptide biases we discovered a set of neighboring codons for which avoidances or preferences were conserved in all three domains of life. Such biased codon pairs could be divided into subtypes on the basis of the nucleotide patterns that influence the bias. The most frequently avoided type of codon pair was nnUAnn. We discovered that 95.7% of avoided nnUAnn type patterns contain out-frame UAA or UAG triplets on the sense and/or antisense strand. On average, nnUAnn codon pairs are more frequently avoided in ORFeomes than in genomes. Thus we assume that translational selection plays a major role in the avoidance of these codon pairs. Among the preferred codon pairs, nnGCnn was the major type. CONCLUSION Translational selection shapes codon pair usage in protein coding sequences by rules that are common to all three domains of life. The most frequently avoided codon pairs contain the patterns nnUAnn, nnGGnn, nnGnnC, nnCGCn, GUCCnn, CUCCnn, nnCnnA or UUCGnn. The most frequently preferred codon pairs contain the patterns nnGCnn, nnCAnn or nnUnCn.
Collapse
Affiliation(s)
- Age Tats
- Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartu, Riia str. 23, Tartu 51010, Estonia.
| | | | | |
Collapse
|
8
|
Shine-Dalgarno interaction prevents incorporation of noncognate amino acids at the codon following the AUG. Proc Natl Acad Sci U S A 2008; 105:10715-20. [PMID: 18667704 DOI: 10.1073/pnas.0801974105] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During translation, usually only one in approximately 400 misincorporations affects the function of a nascent protein, because only chemically similar near-cognate amino acids are misincorporated in place of the cognate one. The deleterious misincorporation of a chemically dissimilar noncognate amino acid during the selection process is precluded by the presence of a tRNA at the ribosomal E-site. However, the selection of first aminoacyl-tRNA, directly after initiation, occurs without an occupied E-site, i.e., when only the P-site is filled with the initiator tRNA and thus should be highly error-prone. Here, we show how bacterial ribosomes have solved this accuracy problem: In the absence of a Shine-Dalgarno (SD) sequence, the first decoding step at the A-site after initiation is extremely error-prone, even resulting in the significant incorporation of noncognate amino acids. In contrast, when a SD sequence is present, the incorporation of noncognate amino acids is not observed. This is precisely the effect that the presence of a cognate tRNA at the E-site has during the elongation phase. These findings suggest that during the initiation phase, the SD interaction functionally compensates for the lack of codon-anticodon interaction at the E-site by reducing the misincorporation of near-cognate amino acids and prevents noncognate misincorporation.
Collapse
|
9
|
Abstract
The tmRNA system performs translational surveillance and ribosome rescue in all eubacteria and some eukaryotic organelles. This system intervenes when ribosomes read to the 3' end of an mRNA or pause at internal codons with subsequent mRNA cleavage. A complex of alanyl-tmRNA (which functions as a tRNA and mRNA), SmpB protein, and EF-TucGTP binds stalled ribosomes, the nascent polypeptide is transferred to the alanine on tmRNA, and translation switches from the original message to a short tmRNA open reading frame (ORF) that encodes a degradation tag. Translation of the ORF and normal termination releases the tagged polypeptide for degradation and permits disassembly and recycling of ribosomal subunits for new rounds of protein synthesis. Structural and biochemical studies suggest mechanisms that keep tmRNA from interrupting normal translation and target ribosomes stalled with very short 3' mRNA extensions. Additional biological roles of tmRNA include stress management and the regulation of transcriptional circuits.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Macromolecular Substances
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Open Reading Frames
- Peptide Elongation Factor Tu/metabolism
- Protein Biosynthesis
- Protein Conformation
- RNA Stability
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA-Binding Proteins/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Sean D Moore
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
10
|
Sanders CL, Curran JF. Genetic analysis of the E site during RF2 programmed frameshifting. RNA (NEW YORK, N.Y.) 2007; 13:1483-91. [PMID: 17660276 PMCID: PMC1950767 DOI: 10.1261/rna.638707] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The roles of the ribosomal E site are not fully understood. Prior evidence suggests that deacyl-tRNA in the E site can prevent frameshifting. We hypothesized that if the E-site codon must dissociate from its tRNA to allow for frameshifting, then weak codon:anticodon duplexes should allow for greater frameshifting than stronger duplexes. Using the well-characterized Escherichia coli RF2 (prfB) programmed frameshift to study frameshifting, we mutagenized the E-site triplet to all Unn and Cnn codons. Those variants should represent a very wide range of duplex stability. Duplex stability was estimated using two different methods. Frameshifting is inversely correlated with stability, as estimated by either method. These findings indicate that pairing between the deacyl-tRNA and the E-site codon opposes frameshifting. We discuss the implications of these findings on frame maintenance and on the RF2 programmed frameshift mechanism.
Collapse
|
11
|
O'Connor M. Minimal translation of the tmRNA tag-coding region is required for ribosome release. Biochem Biophys Res Commun 2007; 357:276-81. [PMID: 17418810 DOI: 10.1016/j.bbrc.2007.03.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 03/23/2007] [Indexed: 11/22/2022]
Abstract
The trans-translation system in bacteria promotes recycling of stalled ribosomes and targets incomplete peptides for proteolysis. In Escherichia coli, loss of trans-translation function has little effect on growth under normal laboratory conditions. Among the subtle phenotypes of tmRNA-deficient mutants is the inability to plate certain lambda imm(P22) phages. This phenotype is dependent on the ribosome recycling functions of the trans-translation system but is independent of its proteolysis-targeting activity. The experiments described here show that translation of the first (resume) codon of the tmRNA open reading frame by a tRNA is both necessary and sufficient for ribosome recycling. While a variety of sense codons can replace the naturally-occurring GCA alanine codon as the resume codon, both AAA and AAG lysine codons are non-functional resume codons. These results suggest that the main function of tmRNA in releasing stalled ribosomes is to supply a stop codon and so facilitate termination and subsequent ribosome recycling.
Collapse
Affiliation(s)
- Michael O'Connor
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| |
Collapse
|
12
|
Dinos G, Kalpaxis DL, Wilson DN, Nierhaus KH. Deacylated tRNA is released from the E site upon A site occupation but before GTP is hydrolyzed by EF-Tu. Nucleic Acids Res 2005; 33:5291-6. [PMID: 16166657 PMCID: PMC1216338 DOI: 10.1093/nar/gki833] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The presence or absence of deacylated tRNA at the E site sharply influences the activation energy required for binding of a ternary complex to the ribosomal A site indicating the different conformations that the E-tRNA imparts on the ribosome. Here we address two questions: (i) whether or not peptidyltransferase—the essential catalytic activity of the large ribosomal subunit—also depends on the occupancy state of the E site and (ii) at what stage the E-tRNA is released during an elongation cycle. Kinetics of the puromycin reaction on various functional states of the ribosome indicate that the A-site substrate of the peptidyltransferase center, puromycin, requires the same activation energy for peptide-bond formation under all conditions tested. We further demonstrate that deacylated tRNA is released from the E site by binding a ternary complex aminoacyl-tRNA•EF-Tu•GDPNP to the A site. This observation indicates that the E-tRNA is released after the decoding step but before both GTP hydrolysis by EF-Tu and accommodation of the A-tRNA. Collectively these results reveal that the reciprocal linkage between the E and A sites affects the decoding center on the 30S subunit, but does not influence the rate of peptide-bond formation at the active center of the 50S subunit.
Collapse
Affiliation(s)
- George Dinos
- Max-Planck-Institut für Molekulare GenetikAG Ribosomen, Ihnestrasse 73, D-14195 Berlin, Germany
- Laboratory of Biochemistry, School of Medicine, University of Patras26500 Patras, Greece
| | - Dimitrios L. Kalpaxis
- Laboratory of Biochemistry, School of Medicine, University of Patras26500 Patras, Greece
| | - Daniel N. Wilson
- Max-Planck-Institut für Molekulare GenetikAG Ribosomen, Ihnestrasse 73, D-14195 Berlin, Germany
| | - Knud H. Nierhaus
- Max-Planck-Institut für Molekulare GenetikAG Ribosomen, Ihnestrasse 73, D-14195 Berlin, Germany
- To whom correspondence should be addressed. Tel: +49 30 8413 1700; Fax: +49 30 8413 1794;
| |
Collapse
|
13
|
Bekaert M, Rousset JP. An extended signal involved in eukaryotic -1 frameshifting operates through modification of the E site tRNA. Mol Cell 2005; 17:61-8. [PMID: 15629717 PMCID: PMC7129640 DOI: 10.1016/j.molcel.2004.12.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 09/15/2004] [Accepted: 10/26/2004] [Indexed: 11/29/2022]
Abstract
By using a sensitive search program based on hidden Markov models (HMM), we identified 74 viruses carrying frameshift sites among 1500 fully sequenced virus genomes. These viruses are clustered in specific families or genera. Sequence analysis of the frameshift sites identified here, along with previously characterized sites, identified a strong bias toward the two nucleotides 5′ of the shifty heptamer signal. Functional analysis in the yeast Saccharomyces cerevisiae demonstrated that high frameshifting efficiency is correlated with the presence of a Ψ39 modification in the tRNA present in the E site of the ribosome at the time of frameshifting. These results demonstrate that an extended signal is involved in eukaryotic frameshifting and suggest additional interactions between tRNAs and the ribosome during decoding.
Collapse
Affiliation(s)
| | - Jean-Pierre Rousset
- Correspondence: Jean-Pierre Rousset, 33 (0)1 69 15 50 51 (phone), 33 (0)1 69 15 46 29 (fax)
| |
Collapse
|