1
|
Rubessa M, Feugang JM, Kandel ME, Schreiber S, Hessee J, Salerno F, Meyers S, Chu I, Popescu G, Wheeler MB. High-throughput sperm assay using label-free microscopy: morphometric comparison between different sperm structures of boar and stallion spermatozoa. Anim Reprod Sci 2020; 219:106509. [PMID: 32828395 DOI: 10.1016/j.anireprosci.2020.106509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 10/24/2022]
Abstract
The capacity for microscopic evaluation of sperm is useful for assisted reproductive technologies (ART), because this can allow for specific selection of sperm cells for in vitro fertilization (IVF). The objective of this study was to analyze the same sperm samples using two high-resolution methods: spatial light interference microscopy (SLIM) and atomic force microscopy (AFM) to determine if with one method there was more timely and different information obtained than the other. To address this objective, there was evaluation of sperm populations from boars and stallions. To the best of our knowledge, this is the first reported comparison when using AFM and high-sensitivity interferometric microscopy (such as SLIM) to evaluate spermatozoa. Results indicate that with the use of SLIM microscopy there is similar nanoscale sensitivity as with use of AFM while there is approximately 1,000 times greater throughput with use of SLIM. With SLIM, there is also allowace for the measurement of the dry mass (non-aqueous content) of spermatozoa, which may be a new label-free marker for sperm viability. In the second part of this study, there was analysis of two sperm populations. There were interesting correlations between the different compartments of the sperm and the dry mass in both boars and stallions. Furthermore, there was a correlation between the dry mass of the sperm head and the length and width of the acrosome in both boars and stallions. This correlation is positive in boars while it is negative in stallions.
Collapse
Affiliation(s)
- Marcello Rubessa
- Department of Animal Science, University of Illinois, Urbana-Champaign, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, Univ. of Illinois at Urbana-Champaign, USA
| | - Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Mikhail E Kandel
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute of Advanced Science and Technology, USA
| | - Sierra Schreiber
- Department of Animal Science, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Jade Hessee
- Department of Animal Science, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Francesca Salerno
- Department of Animal Science, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Sascha Meyers
- Department of Animal Science, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Iwei Chu
- Institute for Imaging & Analytical Technologies, Mississippi State University, Mississippi State, MS 39762, USA
| | - Gabriel Popescu
- Department of Bioengineering, University of Illinois, Urbana, Illinois 61801, USA; Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute of Advanced Science and Technology, USA
| | - Matthew B Wheeler
- Department of Animal Science, University of Illinois, Urbana-Champaign, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, Univ. of Illinois at Urbana-Champaign, USA; Department of Bioengineering, University of Illinois, Urbana, Illinois 61801, USA.
| |
Collapse
|
2
|
Adya AK, Canetta E. Nanotechnology and its applications to animal biotechnology. Anim Biotechnol 2020. [DOI: 10.1016/b978-0-12-811710-1.00014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Cunha ATM, Silva LP, Carvalho JO, Dode MAN. Shape and size of epididymal sperm from Gir bulls using atomic force microscopy: A nanoscale characterization of epididymal sperm. Reprod Biol 2019; 20:37-41. [PMID: 31899131 DOI: 10.1016/j.repbio.2019.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/17/2019] [Accepted: 12/22/2019] [Indexed: 11/16/2022]
Abstract
As epididymal sperm (EP) are not exposed to seminal plasma, they are physiologically different from ejaculated spermatozoa (EJ). Therefore, the aim of this study was to morphologically characterize the head of EP recovered from the epididymis tail, and to evaluate if the physiological differences between EP and EJ were also expressed in the head's shape and size. EP and EJ were recovered from seven Gir bulls and were individually assessed. Sperm cells were washed, fixed, and 20 cells from each animal were analyzed by atomic force microscopy (AFM). The images were acquired through contact mode. Then, an off-line processing software was used and the images acquired were manually segmented using digital zoom of the original images. Twenty-four structural features were assessed including one, two, and three dimensional parameters, and also shape descriptors which were calculated based on the one and two dimensional parameters. Data were compared by t-test, then, a collective analysis was performed using principal component analysis (PCA). The EP group presented higher roughness and elongation (P ≤ 0.05), and smaller form factor and circularity rate than that of the EJ group (P ≤ 0.05). For the other parameters no differences (P ≥ 0.05) were observed. In addition, in the PCA analysis no differences among EP and EJ were observed either (P ≤ 0.05). This study showed that EP and EJ collected from the same sire presented similar characteristics in nineteen of the twenty-four parameters evaluated, indicating that absence of seminal plasma does not affect the morphology of EP.
Collapse
|
4
|
Mortimer D. The functional anatomy of the human spermatozoon: relating ultrastructure and function. Mol Hum Reprod 2019; 24:567-592. [PMID: 30215807 DOI: 10.1093/molehr/gay040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/11/2018] [Indexed: 12/16/2022] Open
Abstract
The Internet, magazine articles, and even biomedical journal articles, are full of cartoons of spermatozoa that bear minimal resemblance to real spermatozoa, especially human spermatozoa, and this had led to many misconceptions about what spermatozoa look like and how they are constituted. This review summarizes the historical and current state of knowledge of mammalian sperm ultrastructure, with particular emphasis on and relevance to human spermatozoa, combining information obtained from a variety of electron microscopic (EM) techniques. Available information on the composition and configuration of the various ultrastructural components of the spermatozoon has been related to their mechanistic purpose and roles in the primary aspects of sperm function and fertilization: motility, hyperactivation, capacitation, the acrosome reaction and sperm-oocyte fusion.
Collapse
Affiliation(s)
- David Mortimer
- Oozoa Biomedical Inc., Caulfeild Village, West Vancouver, BC, Canada
| |
Collapse
|
5
|
Reconstruction of bovine spermatozoa substances distribution and morphological differences between Holstein and Korean native cattle using three-dimensional refractive index tomography. Sci Rep 2019; 9:8774. [PMID: 31217533 PMCID: PMC6584538 DOI: 10.1038/s41598-019-45174-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/30/2019] [Indexed: 01/09/2023] Open
Abstract
Measurements of the three-dimensional (3D) structure of spermatozoon are crucial for the study of developmental biology and for the evaluation of in vitro fertilization. Here, we present 3D label-free imaging of individual spermatozoon and perform quantitative analysis of bovine, porcine, and mouse spermatozoa morphologies using refractive index tomography. Various morphological and biophysical properties were determined, including the internal structure, volume, surface area, concentration, and dry matter mass of individual spermatozoon. Furthermore, Holstein cows and Korean native cattle spermatozoa were systematically analyzed and revealed significant differences in spermatozoa head length, head width, midpiece length, and tail length between the two breeds. This label-free imaging approach provides a new technique for understanding the physiology of spermatozoa.
Collapse
|
6
|
Sunanda P, Panda B, Dash C, Padhy RN, Routray P. An illustration of human sperm morphology and their functional ability among different group of subfertile males. Andrology 2018; 6:680-689. [PMID: 29959832 DOI: 10.1111/andr.12500] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 02/22/2018] [Accepted: 04/08/2018] [Indexed: 11/30/2022]
Abstract
Condensed sperm chromatin is a prerequisite for natural fertilization. Some reports suggested the prevalence of chromatin condensation defects in teratozoospermia cases with head anomalies; conversely, earlier studies exemplified its occurrence in morphologically normal spermatozoa too. The aim of this study was to compare the condensation defects in correlation with head anomalies among different groups of subfertile males and its impact on the rate of fertilization in assisted reproduction procedures. Ultrastructure analysis of spermatozoa through scanning electron microscopy and atomic force microscopy could facilitate an in-depth evaluation of sperm morphology. Nuclear condensation defects (%) in spermatozoa were analyzed in 666 subjects, and its effect on the rate of fertilization was analyzed in 116 IVF and 90 intracytoplasmic sperm injection cases. There was no correlation of condensation defects with head anomalies (%). Student's t-test showed no significant changes in mean values of condensation defects in abnormal semen samples in comparison with the normal group. Condensation defects were observed in normal spermatozoa too, which was negatively associated with the rate of fertilization in IVF (p < 0.01), but intracytoplasmic sperm injection outcome remained unaffected. Ultrastructure study revealed sperm morphological features in height, amplitude, and three-dimensional views in atomic force microscopy images presenting surface topography, roughness property of head, and compact arrangement of mitochondria over axoneme with height profile at nanoscale. In pathological forms, surface roughness and nuclear thickness were marked higher than the normal spermatozoa. Thus, percentage of normal spermatozoa with condensation defects could be a predictive factor for the rate of fertilization in IVF. From diverse shapes of nucleus in AFM imaging, it could be predicted that defective nuclear shaping might be impeding the activity of some proteins/ biological motors, those regulate the proper Golgi spreading over peri-nuclear theca.
Collapse
Affiliation(s)
- P Sunanda
- Centre for Human Reproduction, IMS & SUM Hospital, Bhubaneswar, Odisha, India
| | - B Panda
- O & G Department, Centre for Human Reproduction, IMS & SUM Hospital, SOA University, Bhubaneswar, Odisha, India
| | - C Dash
- Centre for Human Reproduction, IMS & SUM Hospital, Bhubaneswar, Odisha, India
| | - R N Padhy
- Central Research Laboratory, IMS& SUM Hospital, Bhubaneswar, Odisha, India
| | - P Routray
- Aquaculture Production and Environment Division, Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| |
Collapse
|
7
|
|
8
|
Nanoscale differences in the shape and size of X and Y chromosome-bearing bovine sperm heads assessed by atomic force microscopy. PLoS One 2013; 8:e59387. [PMID: 23527178 PMCID: PMC3602057 DOI: 10.1371/journal.pone.0059387] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/14/2013] [Indexed: 01/08/2023] Open
Abstract
Sperm dimensions and the question of whether X and Y chromosome-bearing sperm differ in size or shape has been of great interest, especially for the development of alternative methods to sort or classify sperm cells. The aim of the present study was to evaluate possible differences in the shape and size of the sperm head between X and Y chromosome-bearing sperm by atomic force microscopy (AFM). One ejaculate per bull (n = 4) was used. Each ejaculate was separated into four fractions: non-sexed (NS), sexed for X-sperm (SX), sexed for Y-sperm (SY) and a pooling of SX and SY samples (SXY). Using AFM, 400 sperm heads per group were measured. Twenty three structural features were assessed including one-, two- and three-dimensional parameters and shape descriptors. These measurements determine the micro- to nanoscale features of X- and Y-bearing chromosomes in sperm cells. No differences were observed for any individual variables between SX and SY groups. Next, a simultaneous evaluation of all features using statistical discriminant analysis was performed to determine if it was possible to distinguish to which group belong each individual cells. This analysis clearly showed, a distinct separation of NS, SXY, SX and SY groups. The recognition of this structural possibility to distinguish between X and Y sperm cell might improve the understanding of sperm cells biology. These results indicated that the associations of several structural measurements of the sperm cell head are promising candidates for development of a new method of sperm sexing.
Collapse
|
9
|
Ierardi V, Niccolini A, Alderighi M, Gazzano A, Martelli F, Solaro R. AFM characterization of rabbit spermatozoa. Microsc Res Tech 2008; 71:529-35. [DOI: 10.1002/jemt.20584] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Kumar S, Chaudhury K, Sen P, Guha SK. Atomic force microscopy: a powerful tool for high-resolution imaging of spermatozoa. J Nanobiotechnology 2005; 3:9. [PMID: 16188038 PMCID: PMC1253532 DOI: 10.1186/1477-3155-3-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 09/27/2005] [Indexed: 12/29/2022] Open
Abstract
Atomic force microscopy (AFM) has emerged as the only technique capable of real-time imaging of the surface of a living cell at nano-resolution. Since AFM provides the advantage of directly observing living biological cells in their native environment, this technique has found many applications in pharmacology, biotechnology, microbiology, structural and molecular biology, genetics and other biology-related fields. AFM has also proved to be a valuable tool for reproductive biologists. An exhaustive review on the various applications of AFM to sperm cells is presented. AFM has been extensively applied for determining the structural and topological features of spermatozoa. Unstained, unfixed spermatozoa in their natural physiological surroundings can be imaged by this technique which provides valuable information about the morphological and pathological defects in sperm cells as three-dimensional images with precise topographical details. Sperm head defects and the acrosome at the tip of the head responsible for fertilization, can be examined and correlated with the lack of functional integrity of the cell. Considerable amount of work is reported on the structural details of the highly condensed chromatin in sperm head using AFM. Detailed information on 3D topographical images of spermatozoa acquired by AFM is expected to provide a better understanding of various reproductive pathways which, in turn, can facilitate improved infertility management and/or contraceptive development.
Collapse
Affiliation(s)
- Sunil Kumar
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721 302, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721 302, India
| | - Prasenjit Sen
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Sujoy K Guha
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721 302, India
| |
Collapse
|