1
|
Riddle MR, Aspiras A, Damen F, McGaugh S, Tabin JA, Tabin CJ. Genetic mapping of metabolic traits in the blind Mexican cavefish reveals sex-dependent quantitative trait loci associated with cave adaptation. BMC Ecol Evol 2021; 21:94. [PMID: 34020589 PMCID: PMC8139031 DOI: 10.1186/s12862-021-01823-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite a longstanding interest in understanding how animals adapt to environments with limited nutrients, we have incomplete knowledge of the genetic basis of metabolic evolution. The Mexican tetra, Astyanax mexicanus, is a species of fish that consists of two morphotypes; eyeless cavefish that have adapted to a low-nutrient cave environment, and ancestral river-dwelling surface fish with abundant access to nutrients. Cavefish have evolved altered blood sugar regulation, starvation tolerance, increased fat accumulation, and superior body condition. To investigate the genetic basis of cavefish metabolic evolution we carried out a quantitative trait loci (QTL) analysis in surface/cave F2 hybrids. We genetically mapped seven metabolism-associated traits in hybrids that were challenged with a nutrient restricted diet. RESULTS We found that female F2 hybrids are bigger than males and have a longer hindgut, bigger liver, and heavier gonad, even after correcting for fish size. Although there is no difference between male and female blood sugar level, we found that high blood sugar is associated with weight gain in females and lower body weight and fat level in males. We identified a significant QTL associated with 24-h-fasting blood glucose level with the same effect in males and females. Differently, we identified sex-independent and sex-dependent QTL associated with fish length, body condition, liver size, hindgut length, and gonad weight. We found that some of the genes within the metabolism QTL display evidence of non-neutral evolution and are likely to be under selection. Furthermore, we report predicted nonsynonymous changes to the cavefish coding sequence of these genes. CONCLUSIONS Our study reveals previously unappreciated genomic regions associated with blood glucose regulation, body condition, gonad size, and internal organ morphology. In addition, we find an interaction between sex and metabolism-related traits in A. mexicanus. We reveal coding changes in genes that are likely under selection in the low-nutrient cave environment, leading to a better understanding of the genetic basis of metabolic evolution.
Collapse
Affiliation(s)
- Misty R Riddle
- Department of Biology, University of Nevada, Reno, Reno, NV, 89557, USA.
| | - Ariel Aspiras
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Fleur Damen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Suzanne McGaugh
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Julius A Tabin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Clifford J Tabin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
2
|
Lee J, Kim E, Hwang SU, Cai L, Kim M, Choi H, Oh D, Lee E, Hyun SH. Effect of D-Glucuronic Acid and N-acetyl-D-Glucosamine Treatment during In Vitro Maturation on Embryonic Development after Parthenogenesis and Somatic Cell Nuclear Transfer in Pigs. Animals (Basel) 2021; 11:ani11041034. [PMID: 33917537 PMCID: PMC8067516 DOI: 10.3390/ani11041034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Hyaluronic acid, also known as hyaluronan, is essential for the expansion of cumulus cells, the maturation of oocytes, and further embryo development. This study aimed to examine the effects of treatment with glucuronic acid and N-acetyl-D-glucosamine, which are components of hyaluronic acid, during porcine oocyte in vitro maturation and embryonic development after parthenogenetic activation and somatic cell nuclear transfer. We measured the diameter of mature oocytes, the thickness of the perivitelline space, the intracellular reactive oxygen species level, and the expression of cumulus cell expansion genes and reactive oxygen species-related genes and examined the cortical granule reaction of oocytes after electrical activation. In conclusion, the addition of 0.05 mM glucuronic acid and 0.05 mM N-acetyl-D-glucosamine and during the initial 22 h of in vitro maturation in pig oocytes has beneficial effects on cumulus expansion, perivitelline space thickness, cytoplasmic maturation, reactive oxygen species level, cortical granule exocytosis, and early embryonic development after parthenogenesis and somatic cell nuclear transfer. Glucuronic acid and N-acetyl-D-glucosamine can be applied to in vitro production technology and can be used as ingredients to produce high-quality porcine blastocysts. Abstract This study aimed to examine the effects of treatment with glucuronic acid (GA) and N-acetyl-D-glucosamine (AG), which are components of hyaluronic acid (HA), during porcine oocyte in vitro maturation (IVM). We measured the diameter of the oocyte, the thickness of the perivitelline space (PVS), the reactive oxygen species (ROS) level, and the expression of cumulus cell expansion and ROS-related genes and examined the cortical granule (CG) reaction of oocytes. The addition of 0.05 mM GA and 0.05 mM AG during the first 22 h of oocyte IVM significantly increased oocyte diameter and PVS size compared with the control (non-treatment). The addition of GA and AG reduced the intra-oocyte ROS content and improved the CG of the oocyte. GA and AG treatment increased the expression of CD44 and CX43 in cumulus cells and PRDX1 and TXN2 in oocytes. In both the chemically defined and the complex medium (Medium-199 + porcine follicular fluid), oocytes derived from the GA and AG treatments presented significantly higher blastocyst rates than the control after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT). In conclusion, the addition of GA and AG during IVM in pig oocytes has beneficial effects on oocyte IVM and early embryonic development after PA and SCNT.
Collapse
Affiliation(s)
- Joohyeong Lee
- Laboratory of Veterinary Embryology and Bio-technology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (J.L.); (E.K.); (S.-U.H.); (L.C.); (M.K.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Eunhye Kim
- Laboratory of Veterinary Embryology and Bio-technology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (J.L.); (E.K.); (S.-U.H.); (L.C.); (M.K.); (H.C.); (D.O.)
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju 28644, Korea
| | - Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Bio-technology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (J.L.); (E.K.); (S.-U.H.); (L.C.); (M.K.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Bio-technology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (J.L.); (E.K.); (S.-U.H.); (L.C.); (M.K.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Bio-technology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (J.L.); (E.K.); (S.-U.H.); (L.C.); (M.K.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Bio-technology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (J.L.); (E.K.); (S.-U.H.); (L.C.); (M.K.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Dongjin Oh
- Laboratory of Veterinary Embryology and Bio-technology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (J.L.); (E.K.); (S.-U.H.); (L.C.); (M.K.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Eunsong Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (E.L.); (S.-H.H.); Tel.: +82-33-250-8670 (E.L.); +82-43-261-3393 (S.-H.H.)
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Bio-technology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (J.L.); (E.K.); (S.-U.H.); (L.C.); (M.K.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju 28644, Korea
- Correspondence: (E.L.); (S.-H.H.); Tel.: +82-33-250-8670 (E.L.); +82-43-261-3393 (S.-H.H.)
| |
Collapse
|
3
|
Cunha Bustamante-Filho I, Renato Menegassi S, Ribas Pereira G, Dias Salton G, Mosena Munari F, Roberto Schneider M, Costa Mattos R, Otávio Jardim Barcellos J, Pereira Laurino J, Obino Cirne-Lima E, Inês Mascarenhas Jobim M. Bovine seminal plasma osteopontin: Structural modelling, recombinant expression and its relationship with semen quality. Andrologia 2020; 53:e13905. [PMID: 33225455 DOI: 10.1111/and.13905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/13/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022] Open
Abstract
Osteopontin (OPN) is a multifunctional phosphoprotein that has been linked to fertility in bulls. However, the exact mechanism by which OPN contributes to fertilisation is yet unknown. The biotechnological use of OPN in bovine reproduction is promising but some gaps remain unfilled. The present work aimed: (a) to verify whether the seminal plasma OPN is associated with seminal traits and a standard breeding soundness exam; (b) to predict OPN interactions with integrins, CD44 and glycosaminoglycans through molecular docking; and (c) to develop a protocol for recombinant expression of OPN from vesicular gland cDNA. Ejaculates from top ranked bulls had higher amounts of seminal plasma OPN in comparison with bulls classified as questionable (p < .01). The structural modelling and molecular docking predictions indicated that bovine OPN binds to heparin disaccharide, hyaluronic acid and hyaluronan. In addition, docking studies described the binding complexes of OPN with CD44 and the integrin heterodimers α5β1 and αVβ3. Finally, expression of rOPN-6His was successfully obtained after 3 hr of induction with 0.5 mM IPTG at 37°C and a denaturing purification protocol resulted in efficiently purified recombinant OPN. The present results contribute to the development of biotechnological uses of OPN as a biomarker in bovine reproduction.
Collapse
Affiliation(s)
- Ivan Cunha Bustamante-Filho
- Laboratório de Biotecnologia, Universidade do Vale do Taquari - UNIVATES, Lajeado, RS, Brazil.,Departamento de Ciência Animal, PPG Zootecnia - NESPRO, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Gene Center, Ludwig-Maximilians Universität München, Munich, Bayern, Germany
| | - Silvio Renato Menegassi
- Departamento de Ciência Animal, PPG Zootecnia - NESPRO, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriel Ribas Pereira
- Laboratório de Biotecnologia, Universidade do Vale do Taquari - UNIVATES, Lajeado, RS, Brazil
| | - Gabrielle Dias Salton
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fernanda Mosena Munari
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Rodrigo Costa Mattos
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Júlio Otávio Jardim Barcellos
- Departamento de Ciência Animal, PPG Zootecnia - NESPRO, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jomar Pereira Laurino
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Elizabeth Obino Cirne-Lima
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
4
|
Effect of Oocyte Quality Assessed by Brilliant Cresyl Blue (BCB) Staining on Cumulus Cell Expansion and Sonic Hedgehog Signaling in Porcine during In Vitro Maturation. Int J Mol Sci 2020; 21:ijms21124423. [PMID: 32580308 PMCID: PMC7352309 DOI: 10.3390/ijms21124423] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 12/11/2022] Open
Abstract
Brilliant cresyl blue (BCB) staining is used to select developmentally competent cumulus-oocyte complexes (COCs) for in vitro maturation (IVM). However, limited attention has been paid to what drives the higher developmental competence of BCB+ COCs. Sonic hedgehog signaling (SHH) is an important signaling pathway for ovarian follicular development and oocyte maturation. Therefore, this study investigated the effect of oocyte quality assessed by BCB staining on cumulus cell expansion, oocyte nuclear maturation, subsequent embryo development, apoptosis levels, and SHH signaling protein expression, in porcine COCs. After IVM, BCB+ COCs exhibited a significantly higher proportion of complete cumulus cell expansion and metaphase II rate in oocytes than BCB- COCs. After in vitro fertilization, the BCB+ group showed a significantly higher monospermy rate, fertilization efficiency, percentage of cleavage and blastocyst formation, with a higher total cell number and a lower apoptosis in blastocysts as compared with the BCB- group. Furthermore, significantly lower apoptosis levels and a higher expression of SHH-signaling proteins in COCs were observed, before and after IVM. In conclusion, high-quality oocytes had a greater potential to expand their surrounding cumulus cells with active SHH signaling and a lower apoptosis. This could provide COCs with a proper environment for maturation, thereby leading to a better subsequent embryo development.
Collapse
|
5
|
Severance AL, Midic U, Latham KE. Genotypic divergence in mouse oocyte transcriptomes: possible pathways to hybrid vigor impacting fertility and embryogenesis. Physiol Genomics 2019; 52:96-109. [PMID: 31869285 DOI: 10.1152/physiolgenomics.00078.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
What causes hybrid vigor phenotypes in mammalian oocytes and preimplantation embryos? Answering this question should provide new insight into determinants of oocyte and embryo quality and infertility. Hybrid vigor could arise through a variety of mechanisms, many of which must operate through posttranscriptional mechanisms affecting oocyte mRNA accumulation, stability, translation, and degradation. The differential regulation of such mRNAs may impact essential pathways and functions within the oocyte. We conducted in-depth transcriptome comparisons of immature and mature oocytes of C57BL/6J and DBA/2J inbred strains and C57BL/6J × DBA/2J F1 (BDF1) hybrid oocytes with RNA sequencing, combined with novel computational methods of analysis. We observed extensive differences in mRNA expression and regulation between parental inbred strains and between inbred and hybrid genotypes, including mRNAs encoding proposed markers of oocyte quality. Unique BDF1 oocyte characteristics arise through a combination of additive dominance and incomplete dominance features in the transcriptome, with a lesser degree of transgressive mRNA expression. Special features of the BDF1 transcriptome most prominently relate to histone expression, mitochondrial function, and oxidative phosphorylation. The study reveals the major underlying mechanisms that contribute to superior properties of hybrid oocytes in a mouse model.
Collapse
Affiliation(s)
- Ashley L Severance
- Genetics Graduate Program, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Uros Midic
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan.,Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Keith E Latham
- Genetics Graduate Program, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan.,Department of Animal Science, Michigan State University, East Lansing, Michigan.,Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
6
|
Saeed-Zidane M, Tesfaye D, Mohammed Shaker Y, Tholen E, Neuhoff C, Rings F, Held E, Hoelker M, Schellander K, Salilew-Wondim D. Hyaluronic acid and epidermal growth factor improved the bovine embryo quality by regulating the DNA methylation and expression patterns of the focal adhesion pathway. PLoS One 2019; 14:e0223753. [PMID: 31661494 PMCID: PMC6818761 DOI: 10.1371/journal.pone.0223753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 09/27/2019] [Indexed: 11/19/2022] Open
Abstract
Focal adhesion pathway is one of the key molecular pathways affected by suboptimal culture conditions during embryonic development. The epidermal growth factor (EGF) and hyaluronic acid (HA) are believed to be involved in the focal adhesion pathway function by regulating the adherence of the molecules to the extracellular matrix. However, regulatory and molecular mechanisms through which the EGF and HA could influence the embryo development is not clear. Therefore, this study aimed to investigate the effect of continued or stage specific supplementation of EGF and/or HA on the developmental competence and quality of bovine preimplantation embryos and the subsequent consequences on the expression and DNA methylation patterns of genes involved in the focal adhesion pathway. The results revealed that, the supplementation of EGF or HA from zygote to the blastocysts stage reduced the level of reactive oxygen species and increased hatching rate after thawing. On the other hand, HA decreased the apoptotic nuclei and increased blastocyst compared to EGF supplemented group. Gene expression and DNA methylation analysis in the resulting blastocysts indicated that, combined supplementation of EGF and HA increased the expression of genes involved in focal adhesion pathway while supplementation of EGF, HA or a combination of EGF and HA during the entire preimplantation period changed the DNA methylation patterns of genes involved in focal adhesion pathway. On the other hand, blastocysts developed in culture media supplemented with EGF + HA until the 16-cell stage exhibited higher expression level of genes involved in focal adhesion pathway compared to those supplemented after the 16-cell stage. Conversely, the DNA methylation level of candidate genes was increased in the blastocysts obtained from embryos cultured in media supplemented with EGF + HA after 16-cell stage. In conclusion, supplementation of bovine embryos with EGF and/or HA during the entire preimplantation period or in a stage specific manner altered the DNA methylation and expression patterns of candidate genes involved in the focal adhesion pathway which was in turn associated with the observed embryonic developmental competence and quality.
Collapse
Affiliation(s)
- Mohammed Saeed-Zidane
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Animal and Poultry Physiology Department, Animal and Poultry Production Division, Desert Research Center, Mataria, Cairo, Egypt
| | - Dawit Tesfaye
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
- Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - Yousri Mohammed Shaker
- Animal and Poultry Physiology Department, Animal and Poultry Production Division, Desert Research Center, Mataria, Cairo, Egypt
| | - Ernst Tholen
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
| | - Christiane Neuhoff
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
| | - Franca Rings
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
| | - Eva Held
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
| | - Michael Hoelker
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
- Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - Karl Schellander
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
- Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - Dessie Salilew-Wondim
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
7
|
Endogenously produced hydrogen sulfide is involved in porcine oocyte maturation in vitro. Nitric Oxide 2015; 51:24-35. [PMID: 26456342 DOI: 10.1016/j.niox.2015.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/12/2015] [Accepted: 09/29/2015] [Indexed: 11/22/2022]
Abstract
Hydrogen sulfide, one of three known gasotransmitters, is involved in physiological processes, including reproductive functions. Oocyte maturation and surrounding cumulus cell expansion play an essential role in female reproduction and subsequent embryonic development. Although the positive effects of exogenous hydrogen sulfide on maturing oocytes are well known, the role of endogenous hydrogen sulfide, which is physiologically released by enzymes, has not yet been described in oocytes. In this study, we observed the presence of Cystathionine β-Synthase (CBS), Cystathionine γ-Lyase (CTH) and 3-Mercaptopyruvate Sulfurtransferase (3-MPST), hydrogen sulfide-releasing enzymes, in porcine oocytes. Endogenous hydrogen sulfide production was detected in immature and matured oocytes as well as its requirement for meiotic maturation. Individual hydrogen sulfide-releasing enzymes seem to be capable of substituting for each other in hydrogen sulfide production. However, meiosis suppression by inhibition of all hydrogen sulfide-releasing enzymes is not irreversible and this effect is a result of M-Phase/Maturation Promoting Factor (MPF) and Mitogen-Activated Protein Kinase (MAPK) activity inhibition. Futhermore, cumulus expansion expressed by hyaluronic acid (HA) production is affected by the inhibition of hydrogen sulfide production. Moreover, quality changes of the expanded cumuli are indicated. These results demonstrate hydrogen sulfide involvement in oocyte maturation as well as cumulus expansion. As such, hydrogen sulfide appears to be an important cell messenger during mammalian oocyte meiosis and adequate cumulus expansion.
Collapse
|
8
|
Zhao G, Zhou X, Fang T, Hou Y, Hu Y. Hyaluronic acid promotes the expression of progesterone receptor membrane component 1 via epigenetic silencing of miR-139-5p in human and rat granulosa cells. Biol Reprod 2014; 91:116. [PMID: 25232020 DOI: 10.1095/biolreprod.114.120295] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Primary ovarian insufficiency (POI) is a serious reproductive dysfunction in which the follicle pool is reduced and depleted. Abnormal apoptosis of ovarian granulosa cells (GCs) is believed to result in follicle loss. Progesterone receptor membrane component 1 (PGRMC1), which is critical for GC survival, was reported to be reduced in POI patients, but the mechanism is unknown. In the present study, we found that PGRMC1 expression was correlated with the level of hyaluronic acid (HA) in POI patients. HA up-regulated PGRMC1 expression in GCs via suppression of miR-139-5p, which was proven by Western blotting and luciferase reporter assays to target PGRMC1. Consistent with these findings, levels of miR-139-5p were significantly increased and presented an inverse correlation with PGRMC1 in POI patients. Noticeably, HA inhibited CD44-mediated miR-139-5p expression but had no effect on luciferase activity after insertion of miR-139 promoter into luciferase plasmid. Interestingly, miR-139-5p was significantly up-regulated in KGN cells (GC tumor cell line) by the histone deacetylase inhibitor trichostatin A, indicating that HA down-regulated miR-139-5p expression via histone deacetylation. Taken together, we report an unrecognized mechanism of HA in the promotion of PGRMC1 expression, suggesting that HA may be a potential molecule for the prevention and treatment of POI.
Collapse
Affiliation(s)
- Guangfeng Zhao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xue Zhou
- Immunology and Reproductive Biology Laboratory, Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Ting Fang
- Immunology and Reproductive Biology Laboratory, Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yayi Hou
- Immunology and Reproductive Biology Laboratory, Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
9
|
Effect of hyaluronan on developmental competence and quality of oocytes and obtained blastocysts from in vitro maturation of bovine oocytes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:519189. [PMID: 24689043 PMCID: PMC3945031 DOI: 10.1155/2014/519189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/31/2013] [Accepted: 01/03/2014] [Indexed: 01/29/2023]
Abstract
The objective of the present study was to evaluate the effect of hyaluronan (HA) during IVM on meiotic maturation, embryonic development, and the quality of oocytes,
granulosa cells (GC), and obtained blastocysts. COCs were matured in vitro in control medium and medium with additional 0.035% or 0.07% of exogenous HA. The meiotic maturity
did not differ between the analysed groups. The best rate and the highest quality of obtained blastocysts were observed when 0.07% HA was used. A highly significant difference
(P < 0.001) was noted in the mean number of apoptotic nuclei per blastocyst and in the DCI between the 0.07% HA and the control blastocysts (P < 0.01). Our results suggest that
addition of 0.035% HA and 0.07% HA to oocyte maturation media does not affect oocyte nuclear maturation and DNA fragmentation. However, the addition of 0.07% HA during
IVM decreases the level of blastocysts DNA fragmentation. Finally, our results suggest that it may be risky to increase the HA concentration during IVM above 0.07% as we found
significantly higher Bax mRNA expression levels in GC cultured with 0.07% HA. The final concentration of HA being supplemented to oocyte maturation media is critical for the
success of the IVP procedure.
Collapse
|
10
|
Beek J, Nauwynck H, Maes D, Van Soom A. Inhibitors of zinc-dependent metalloproteases hinder sperm passage through the cumulus oophorus during porcine fertilization in vitro. Reproduction 2012; 144:687-97. [PMID: 23081896 DOI: 10.1530/rep-12-0311] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, we report for the first time on a possible contribution of metalloproteases in sperm passage through the cumulus matrix in pigs. The presence of 20 μM 1,10-phenanthroline (1,10-PHEN), inhibitor of zinc-dependent metalloproteases, strongly inhibited the degree of sperm penetration in cumulus-intact (CI), but not in cumulus-free (CF), porcine oocytes during IVF. The inhibitory effect of 1,10-PHEN was due to the chelation of metal ions as a non-chelating analog (1,7-PHEN) did not affect IVF rates. Furthermore, incubation with 1,10-PHEN did not affect sperm binding to the zona pellucida nor sperm motility, membrane integrity, or acrosomal status. These findings led to the assumption that 1,10-PHEN interacts with a sperm- or cumulus-derived metalloprotease. Metalloproteases are key players in physiological processes involving degradation or remodeling of extracellular matrix. In vivo, their proteolytic activity is regulated by tissue inhibitors of metalloproteases (TIMP1-TIMP4). We tested the effect of TIMP3 on fertilization parameters after porcine IVF. Similar to 1,10-PHEN, TIMP3 inhibited total fertilization rate of CI but not CF oocytes and did not influence sperm quality parameters. Although the inhibitory effect was stronger in CI oocytes, TIMP3 also reduced the degree of sperm penetration in CF oocytes, suggesting the involvement of a metalloprotease in a subsequent step during fertilization. In conclusion, our results indicate the involvement of TIMP3-sensitive, zinc-dependent metalloprotease activity in sperm passage through the cumulus oophorus in pigs. The results should provide the basis for further biochemical research toward the localization and identification of the metalloprotease involved.
Collapse
Affiliation(s)
- J Beek
- Department Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium.
| | | | | | | |
Collapse
|
11
|
Physiological function of hyaluronan in mammalian oocyte maturation. Reprod Med Biol 2011; 10:221-229. [PMID: 29699096 DOI: 10.1007/s12522-011-0093-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022] Open
Abstract
Despite its structural simplicity, hyaluronan exhibits a broad spectrum of biological activities. Cumulus expansion observed during oocyte maturation in mammals is also induced by hyaluronan accumulation in cumulus-oocyte complexes. It has been demonstrated that this volumetric change in cumulus-oocyte complexes correlates with the progression of oocyte maturation. We have investigated the molecular mechanism of oocyte maturation in mammals, focusing on hyaluronan accumulation in cumulus-oocyte complexes during cumulus expansion. In this review, we describe the physiological function of hyaluronan, emphasizing the progression of oocyte maturation in mammals based on our previous findings.
Collapse
|
12
|
Tunjung WAS, Yokoo M, Hoshino Y, Miyake Y, Kadowaki A, Sato E. Effect of hyaluronan to inhibit caspase activation in porcine granulosa cells. Biochem Biophys Res Commun 2009; 382:160-4. [DOI: 10.1016/j.bbrc.2009.02.163] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 02/26/2009] [Indexed: 10/21/2022]
|
13
|
Brüssow KP, Rátky J, Rodriguez-Martinez H. Fertilization and early embryonic development in the porcine fallopian tube. Reprod Domest Anim 2008; 43 Suppl 2:245-51. [PMID: 18638131 DOI: 10.1111/j.1439-0531.2008.01169.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fertilization and early embryo development relies on a complex interplay between the Fallopian tube and the gametes before and after fertilization. Thereby the oviduct, as a dynamic reproductive organ, enables reception, transport and maturation of male and female gametes, their fusion, and supports early embryo development. This paper reviews current knowledge regarding physiological processes behind the transport of boar spermatozoa, their storage in and release from the functional sperm reservoir (SR), and of the interactions that newly ovulated oocytes play within the tube during their transport to the site of fertilization. Experimental evidence of an ovarian control on sperm release from the SR is highlighted. Furthermore, the impact of oviductal secretion on sperm capacitation, oocyte maturation, fertilization and early embryo development is stressed.
Collapse
Affiliation(s)
- K-P Brüssow
- Department of Reproductive Biology, FBN Research Institute for the Biology of Farm Animals, Dummerstorf, Germany.
| | | | | |
Collapse
|
14
|
Influence of hyaluronan accumulation during cumulus expansion onin vitroporcine oocyte maturation. ZYGOTE 2008; 16:309-14. [DOI: 10.1017/s0967199408004954] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SummaryDuring oocyte maturation, the cumulus–oocyte complexes (COCs) expand dramatically. This phenomenon, which is known as cumulus expansion, is the result of the synthesis and accumulation of hyaluronan in the extracellular space between cumulus cells. The purpose of this study was to investigate the effect of 6-diazo-5-oxo-l-norleucine (DON), an inhibitor of hyaluronan synthesis, on cumulus expansion duringin vitroporcine oocyte maturation and hyaluronan accumulation within COCs. Further, this study aimed to examine the influence of hyaluronan accumulation within COCs on the rate of oocyte maturation. Cumulus expansion was observed duringin vitromaturation. However, the addition of DON to the maturation medium significantly inhibited cumulus expansion. The total inhibition of hyaluronan accumulation within COCs was observed with the use of confocal microscopy. Moreover, a positive correlation between the area of cumulus expansion and the rate of oocyte maturation was observed. These results demonstrate that the hyaluronan accumulation within the COCs during oocyte maturation affects oocyte maturation. On the basis of these results, we propose that hyaluronan accumulation within the COCs during cumulus expansion is a necessary step in the porcine oocyte maturation process.
Collapse
|
15
|
Borg N, Holland M. The effect of glycosaminoglycans on rat gametes in vitro and the associated signal pathway. Reproduction 2008; 135:311-9. [DOI: 10.1530/rep-07-0267] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effects of adding the extracellular glycosaminoglycans (GAGs), hyaluronic acid (HA) and chondroitin sulphate (CS) to ratin vitrofertilisation (IVF) media were assessed. Metaphase II (MII) oocytes were also incubated in GAG-supplemented modified rat 1-cell embryo culture medium (mR1ECM+BSA) for 3 days. Cytoplasmic fragmentation was significantly reduced in mR1ECM+BSA with HA (39.0–48.0%) compared with the control (82.0%). In IVF experiments, neither HA (8.0–30.8%) nor CS (9.7–42.5%) improved fertilisation rates compared with controls fertilised in M16 (47.2%) or enriched Krebs–Ringer bicarbonate solution (61.5%). RT-PCR and Western blot were used to probe for CD44 mRNA and protein in Sprague–Dawley gametes and cumulus cells. CD44 was identified in cumulus cells, suggesting a role for oocyte maturation and cumulus expansion. The CD44 protein was also present on caudal epididymal spermatozoa that were highly stimulated by CSin vitroimplicating a role in fertilisation for CS and CD44.
Collapse
|
16
|
De La Chesnaye E, Kerr B, Paredes A, Merchant-Larios H, Méndez JP, Ojeda SR. Fbxw15/Fbxo12J is an F-box protein-encoding gene selectively expressed in oocytes of the mouse ovary. Biol Reprod 2007; 78:714-25. [PMID: 18094359 DOI: 10.1095/biolreprod.107.063826] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In recent years, several factors required for follicular assembly and/or early growth of newly formed primordial follicles have been characterized, but additional factors likely remain to be identified. We have used cDNA arrays to compare gene expression in the neonatal mouse ovary at 48 h (when primordial follicles are being assembled) and at 96 h (when early follicular growth is taking place) after birth to that of ovaries collected <24 h after birth (when follicles have not yet been formed). Segregating genes according to their pattern of expression revealed the presence of one cluster of 24 genes for which expression consistently increased at 48 and 96 h. The top increaser in this cluster encodes a approximately 1.5-kb mRNA containing an open reading frame of 1401 bp that encodes a protein of 466 amino acids. The predicted 52.3-kDa protein is a member of the F-box-only (FBXO) protein family, termed FBXW15 or FBXO12J. It has a cytoplasmic localization that includes the endoplasmic reticulum. Expression of Fbxw15/Fbxp12J mRNA is oocyte-specific; the mRNA is first detected on Gestational Day 18, decreasing thereafter to minimal levels on the day of birth. The prevalence of Fbxw15/Fbxp12J mRNA increases again at 48 and 96 h after birth, coinciding with the time of follicular assembly and the initiation of early follicular growth, respectively. The specific expression of Fbxw15/Fbxp12J in oocytes and its developmental pattern of expression suggest a role for this gene in the regulation of oocyte physiology.
Collapse
Affiliation(s)
- Elsa De La Chesnaye
- UIM en Biología del Desarrollo, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|