1
|
Chen J, Wang H, Bai J, Liu W, Liu X, Yu D, Feng T, Sun Z, Zhang L, Ma L, Hu Y, Zou Y, Tan T, Zhong J, Hu M, Bai X, Pan D, Xing Y, Zhao Y, Tian K, Hu X, Li N. Generation of Pigs Resistant to Highly Pathogenic-Porcine Reproductive and Respiratory Syndrome Virus through Gene Editing of CD163. Int J Biol Sci 2019; 15:481-492. [PMID: 30745836 PMCID: PMC6367541 DOI: 10.7150/ijbs.25862] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/10/2018] [Indexed: 12/21/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease and the most economically important disease of the swine industry worldwide. Highly pathogenic-PRRS virus (HP-PRRSV) is a variant of PRRSV, which caused high morbidity and mortality. Scavenger receptor CD163, which contains nine scavenger receptor cysteine-rich (SRCR) domains, is a key entry mediator for PRRSV. A previous study demonstrated that SRCR domain 5 (SRCR5), encoded by exon 7, was essential for PRRSV infection in vitro. Here, we substituted exon 7 of porcine CD163 with the corresponding exon of human CD163-like 1 (hCD163L1) using a CRISPR/Cas9 system combined with a donor vector. In CD163Mut/Mut pigs, modifying CD163 gene had no adverse effects on hemoglobin-haptoglobin (Hb-Hp) complex clearance or erythroblast growth. In vitro infection experiments showed that the CD163 mutant strongly inhibited HP-PRRSV replication by inhibiting virus uncoating and genome release. Compared to wild-type (WT) pigs in vivo, HP-PRRSV-infected CD163Mut/Mut pigs showed a substantially decreased viral load in blood and relief from PRRSV-induced fever. While all WT pigs were dead, there of four CD163Mut/Mut pigs survived and recovered at the termination of the experiment. Our data demonstrated that modifying CD163 remarkably inhibited PRRSV replication and protected pigs from HP-PRRSV infection, thus establishing a good foundation for breeding PRRSV-resistant pigs via gene editing technology.
Collapse
Affiliation(s)
- Jingyao Chen
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Haitao Wang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Jianhui Bai
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Wenjie Liu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Xiaojuan Liu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Dawei Yu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Tao Feng
- College of animal science and technology, China Agricultural University, Beijing, China
| | - Zhaolin Sun
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Linlin Zhang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Linyuan Ma
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yiqing Hu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yunlong Zou
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Tan Tan
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Jie Zhong
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Man Hu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Xiaofei Bai
- National Research Center for Veterinary Medicine, Luoyang, Henan Province, China
| | - Dengke Pan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiming Xing
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yaofeng Zhao
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, Henan Province, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Xiaoxiang Hu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Kang Q, Sun Z, Zou Z, Wang M, Li Q, Hu X, Li N. Cell-penetrating peptide-driven Cre recombination in porcine primary cells and generation of marker-free pigs. PLoS One 2018; 13:e0190690. [PMID: 29315333 PMCID: PMC5760039 DOI: 10.1371/journal.pone.0190690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
Cell-penetrating peptides (CPPs) have been increasingly used to deliver various molecules, both in vitro and in vivo. However, there are no reports of CPPs being used in porcine fetal fibroblasts (PFFs). The increased use of transgenic pigs for basic research and biomedical applications depends on the availability of technologies for efficient genetic-modification of PFFs. Here, we report that three CPPs (CPP5, TAT, and R9) can efficiently deliver active Cre recombinase protein into PFFs via an energy-dependent endocytosis pathway. The three CPP–Cre proteins can enter PFFs and subsequently perform recombination with different efficiencies. The recombination efficacy of CPP5–Cre was found to be nearly 90%. The rate-limiting step for CPP–Cre-mediated recombination was the step of endosome escape. HA2 and chloroquine were found to improve the recombination efficiency of TAT–Cre. Furthermore, we successfully obtained marker-free transgenic pigs using TAT–Cre and CPP5–Cre. We provide a framework for the development of CPP-based farm animal transgenic technologies that would be beneficial to agriculture and biomedicine.
Collapse
Affiliation(s)
- Qianqian Kang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhaolin Sun
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhiyuan Zou
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ming Wang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qiuyan Li
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaoxiang Hu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ning Li
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Kšiňanová M, Čikoš Š, Babel’ová J, Šefčíková Z, Špirková A, Koppel J, Fabian D. The Responses of Mouse Preimplantation Embryos to Leptin In Vitro in a Transgenerational Model for Obesity. Front Endocrinol (Lausanne) 2017; 8:233. [PMID: 28959235 PMCID: PMC5604062 DOI: 10.3389/fendo.2017.00233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/28/2017] [Indexed: 11/14/2022] Open
Abstract
The aim of the present study was to test the hypothesis that leptin can directly mediate the negative effect of maternal obesity on preimplantation embryos. As previously shown, maternal obesity retards early embryonic development in vivo and increases the incidence of apoptosis in blastocysts. When two-cell embryos isolated from control and obese mice were transferred to identical (leptin free) conditions in vitro, no differences in any growth or quality parameters were recorded, including apoptosis incidence in blastocysts. Embryos isolated from control mice responded to transfer to environments with a high concentration of leptin (10 ng/mL) with a significant increase in arrest at the first or subsequent cell cycle. However, the majority of non-arrested embryos developed into blastocysts, showing morphology comparable to those cultured in the leptin-free group. On the other hand, the exposure of embryos isolated from obese mice to high leptin concentration in vitro did not retard their development. Furthermore, these embryos developed into blastocysts, showing a lower incidence of apoptosis. In vivo-developed blastocysts recovered from obese mice showed elevated expression levels of the proapoptotic gene BAX and the insulin-responsive glucose transporter gene SLC2A4. In conclusion, elevated leptin levels have both positive and negative effects on preimplantation embryo development in vitro, a response that likely depends on the body condition of the embryo donor. Moreover, these results suggest that leptin acts as a survival factor rather than an apoptotic inductor in embryonic cells. Since no elevations in the expression of the leptin receptor gene (LEPR) or fat metabolism-associated genes (PLIN2, SLC27A4) were recorded in blastocysts recovered from obese mice, the role of leptin in mediating the effects of obesity on embryos at the peripheral level is likely lower than expected.
Collapse
Affiliation(s)
- Martina Kšiňanová
- Institute of Animal Physiology, Slovak Academy of Sciences, Košice, Slovakia
| | - Štefan Čikoš
- Institute of Animal Physiology, Slovak Academy of Sciences, Košice, Slovakia
| | - Janka Babel’ová
- Institute of Animal Physiology, Slovak Academy of Sciences, Košice, Slovakia
| | - Zuzana Šefčíková
- Institute of Animal Physiology, Slovak Academy of Sciences, Košice, Slovakia
| | - Alexandra Špirková
- Institute of Animal Physiology, Slovak Academy of Sciences, Košice, Slovakia
| | - Juraj Koppel
- Institute of Animal Physiology, Slovak Academy of Sciences, Košice, Slovakia
| | - Dušan Fabian
- Institute of Animal Physiology, Slovak Academy of Sciences, Košice, Slovakia
| |
Collapse
|
4
|
Generation of bi-transgenic pigs overexpressing human lactoferrin and lysozyme in milk. Transgenic Res 2014; 24:365-73. [PMID: 25236863 DOI: 10.1007/s11248-014-9835-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 09/06/2014] [Indexed: 10/24/2022]
Abstract
Intensive swine production industry uses antibiotics to treat diseases and improve pig growth. This can not only cause antibiotic resistance, but can also pollute the environment or eventually affect human public health. To date, human lactoferrin (hLF) and human lysozyme (hLZ) have been known as non-adaptive but interactive antimicrobial members and could act in concert against bacteria, which contribute to host defense. Therefore, their expression in pigs might be an alternative strategy for replacing antibiotics in the pig production industry. In our study, we produced hLF and hLZ bi-transgenic pigs and assessed the milk's antibacterial ability. Integration of both transgenes was confirmed by PCR and southern blot. Both the hLF and hLZ were expressed in the mammary gland of bi-transgenic pigs, as detected by western blotting. The expression amounts were 6.5 g/L for hLF and 1.1 mg/L for hLZ using ELISA. Interestingly, pig milk containing hLF and hLZ had synergistic antimicrobial activity. Our results suggest an alternative approach for avoiding the use of antibiotics in the pig industry, which would be of great benefit to the commercial swine production.
Collapse
|
5
|
Production of healthy cloned pigs with neural stem cells as nuclear donors. Anim Biotechnol 2014; 25:294-305. [PMID: 24813221 DOI: 10.1080/10495398.2013.872119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The objectives of the present study were to establish a porcine neural stem cell (NSC) line and to determine if these NSCs could be used to produce cloned pigs. NSCs were isolated from the brains of three embryonic day 30 fetal pigs and were induced to differentiate in vitro . NSCs and the differentiated cells were harvested for analysis of markers by immunostaining and reverse-transcription polymerase chain reaction (RT-PCR). The NSCs at passage 10 were used for nuclear transfer, and the cloned embryos at the two-cell stage were transferred into the oviducts of surrogate mothers. The results showed that three NSC lines (2 male and 1 female) were successfully established. All NSCs at passage 17 continued to express nestin and Sox2. NSCs could differentiate into neurons (TUBB3+), astrocytes (GFAP+), and oligodendrocytes (O4+). After NSC nuclear transfer, 2020 two-cell stage embryos formed. After embryo transfer, 6 of 10 surrogates were pregnant, and 40 piglets (18 males and 22 females) were born. Twenty-two of these piglets reached sexual maturity and were found to be fertile. The other piglets died within 45 days post-partum. In conclusion, 3 porcine NSC lines capable of self-renewal and differentiation were established, and the cloned embryos derived from these cells could develop to term. Thus, NSCs could be efficient alternative nuclear donors for pig cloning.
Collapse
|
6
|
Amount of maternal body fat significantly affected the quality of isolated mouse preimplantation embryos and slowed down their development. Theriogenology 2014; 81:187-95. [DOI: 10.1016/j.theriogenology.2013.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 10/03/2013] [Accepted: 10/21/2013] [Indexed: 11/18/2022]
|
7
|
Huang Y, Ouyang H, Yu H, Lai L, Pang D, Li Z. Efficiency of porcine somatic cell nuclear transfer - a retrospective study of factors related to embryo recipient and embryos transferred. Biol Open 2013; 2:1223-8. [PMID: 24244859 PMCID: PMC3828769 DOI: 10.1242/bio.20135983] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/09/2013] [Indexed: 01/22/2023] Open
Abstract
The successful generation of pigs via somatic cell nuclear transfer depends on reducing risk factors in several aspects. To provide an overview of some influencing factors related to embryo transfer, the follow-up data related to cloned pig production collected in our laboratory was examined. (i) Spring showed a higher full-term pregnancy rate compared with winter (33.6% vs 18.6%, P = 0.006). Furthermore, a regression equation can be drawn between full-term pregnancy numbers and pregnancy numbers in different months (y = 0.692x−3.326). (ii) There were no significant differences detected in the number of transferred embryos between surrogate sows exhibiting full-term development compared to those that did not. (iii) Non-ovulating surrogate sows presented a higher percentage of full-term pregnancies compared with ovulating sows (32.0% vs 17.5%, P = 0.004; respectively). (iv) Abortion was most likely to take place between Day 27 to Day 34. (v) Based on Life Table Survival Analysis, delivery in normally fertilized and surrogate sows is expected to be completed before Day 117 or Day 125, respectively. Additionally, the length of pregnancy in surrogate sows was negatively correlated with the average litter size, which was not found for normally fertilized sows. In conclusion, performing embryo transfer in appropriate seasons, improving the quality of embryos transferred, optimizing the timing of embryo transfer, limiting the occurrence of abortion, combined with ameliorating the management of delivery, is expected to result in the harvest of a great number of surviving cloned piglets.
Collapse
Affiliation(s)
- Yongye Huang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun 130062 , China
| | | | | | | | | | | |
Collapse
|
8
|
Ye J, He J, Li Q, Feng Y, Bai X, Chen X, Zhao Y, Hu X, Yu Z, Li N. Generation of c-Myc transgenic pigs for autosomal dominant polycystic kidney disease. Transgenic Res 2013; 22:1231-9. [PMID: 23543409 DOI: 10.1007/s11248-013-9707-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/22/2013] [Indexed: 01/28/2023]
Abstract
After several decades of research, autosomal dominant polycystic kidney disease (ADPKD) is still incurable and imposes enormous physical, psychological, and economic burdens on patients and their families. Murine models of ADPKD represent invaluable tools for studying this disease. These murine forms of ADPKD can arise spontaneously, or they can be induced via chemical or genetic manipulations. Although these models have improved our understanding of the etiology and pathogenesis of ADPKD, they have not led to effective treatment strategies. The mini-pig represents an effective biomedical model for studying human diseases, as the pig's human-like physiological processes help to understand disease mechanisms and to develop novel therapies. Here, we tried to generate a transgenic model of ADPKD in pigs by overexpressing c-Myc in kidney tissue. Western-blot analysis showed that c-Myc was overexpressed in the kidney, brain, heart, and liver of transgenic pigs. Immunohistochemical staining of kidney tissue showed that exogenous c-Myc predominantly localized to renal tubules. Slightly elevated blood urea nitrogen levels were observed in transgenic pigs 1 month after birth, but no obvious abnormalities were detected after that time. In the future, we plan to subject this model to renal injury in an effort to promote ADPKD progression.
Collapse
Affiliation(s)
- Jianhua Ye
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100193, China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Li J, Wei H, Li Y, Li Q, Li N. Identification of a suitable endogenous control gene in porcine blastocysts for use in quantitative PCR analysis of microRNAs. SCIENCE CHINA-LIFE SCIENCES 2012; 55:126-31. [DOI: 10.1007/s11427-012-4289-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 01/17/2012] [Indexed: 10/28/2022]
|
10
|
Effects of chemically defined medium on early development of porcine embryos derived from parthenogenetic activation and cloning. ZYGOTE 2011; 20:229-36. [PMID: 21473795 DOI: 10.1017/s0967199411000153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study was to investigate if a completely chemically defined medium (PZM-4) could support the early development of porcine embryos derived from parthenogenetic activation (PA) and cloning (somatic cell nuclear transfer, SCNT), and to lay the foundation for determining the physiological roles of certain supplements in this medium. Porcine embryos derived from PA and SCNT were cultured in media: PZM-3 (a chemically semi-defined medium), PZM-4 (a fully defined medium), and PZM-5 (an undefined medium). Early embryo development was observed. We found that the three medium groups (PZM-3, PZM-4 and PZM-5) exhibited no significant differences in cleavage rates of PA embryos (p > 0.05), while the blastocyst rate in PZM-3 was significantly higher than in PZM-4 and PZM-5 (78.9% vs. 36.0% and 52.3%) (p < 0.05). Moreover, total cell number per blastocyst in PZM-3 was clearly higher than in PZM-5 but similar to that in PZM-4. As for SCNT embryos, no significant differences were observed for the cleavage rates or the blastocyst rates among the three groups (p > 0.05). However, total cell number per blastocyst in PZM-3 was notably higher than in PZM-5, but was similar to that in PZM-4. In conclusion, our results suggested that the completely chemically defined medium PZM-4 can be used to efficiently support the early development of porcine PA and SCNT embryos.
Collapse
|
11
|
Schwartz PH. The distinction between parthenotes and embryos is not easily made. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2011; 11:31-32. [PMID: 21400382 DOI: 10.1080/15265161.2010.546474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- Philip H Schwartz
- National Human Neural Stem Cell Resource, Children’s Hospital of Orange County Research Institute, 455 South Main Street, Orange, CA 92868-3874, USA.
| |
Collapse
|