1
|
Chiu CY, Chiang MC, Chiang MH, Lien R, Fu RH, Hsu KH, Chu SM. Metabolomic Analysis Reveals the Association of Severe Bronchopulmonary Dysplasia with Gut Microbiota and Oxidative Response in Extremely Preterm Infants. Metabolites 2024; 14:219. [PMID: 38668347 PMCID: PMC11052141 DOI: 10.3390/metabo14040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease mainly affecting premature infants needing ventilation or oxygen for respiratory distress. This study aimed to evaluate the molecular linkages for BPD in very and extremely preterm infants using a metabolomics-based approach. A case-control study of enrolling preterm infants born before 32 weeks gestational age (GA) was prospectively performed. These preterm infants were subsequently stratified into the following two groups for further analysis: no or mild BPD, and moderate or severe BPD based on the 2019 NICHD criteria. Urinary metabolomic profiling was performed using 1H-Nuclear magnetic resonance (NMR) spectroscopy coupled with partial least squares discriminant analysis (PLS-DA) at a corrected age of 6 months. Metabolites significantly differentially related to GA and BPD severity were performed between groups, and their roles in functional metabolic pathways were also assessed. A total of 89 preterm infants born before 32 weeks gestation and 50 infants born at term age (above 37 completed weeks' gestation) served as controls and were enrolled into the study. There were 21 and 24 urinary metabolites identified to be significantly associated with GA and BPD severity, respectively (p < 0.05). Among them, N-phenylacetylglycine, hippurate, acetylsalicylate, gluconate, and indoxyl sulfate were five metabolites that were significantly higher, with the highest importance in both infants with GA < 28 weeks and those with moderate to severe BPD, whereas betaine and N,N-dimethylglycine were significantly lower (p < 0.05). Furthermore, ribose and a gluconate related pentose phosphate pathway were strongly associated with these infants (p < 0.01). In conclusion, urinary metabolomic analysis highlights the crucial role of gut microbiota dysbiosis in the pathogenesis of BPD in preterm infants, accompanied by metabolites related to diminished antioxidative capacity, prompting an aggressive antioxidation response in extremely preterm infants with severe BPD.
Collapse
Affiliation(s)
- Chih-Yung Chiu
- Division of Pediatric Pulmonology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan;
| | - Ming-Chou Chiang
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan 333, Taiwan; (M.-C.C.); (R.L.); (R.-H.F.); (K.-H.H.)
| | - Meng-Han Chiang
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan;
| | - Reyin Lien
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan 333, Taiwan; (M.-C.C.); (R.L.); (R.-H.F.); (K.-H.H.)
| | - Ren-Huei Fu
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan 333, Taiwan; (M.-C.C.); (R.L.); (R.-H.F.); (K.-H.H.)
| | - Kai-Hsiang Hsu
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan 333, Taiwan; (M.-C.C.); (R.L.); (R.-H.F.); (K.-H.H.)
| | - Shih-Ming Chu
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan 333, Taiwan; (M.-C.C.); (R.L.); (R.-H.F.); (K.-H.H.)
| |
Collapse
|
2
|
Yamasue H. Is the efficacy of oxytocin for autism diminished at higher dosages or repeated doses?: Potential mechanisms and candidate solutions. Peptides 2024; 171:171133. [PMID: 38072084 DOI: 10.1016/j.peptides.2023.171133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
No approved pharmacological intervention currently exists to address the core symptoms of autism spectrum disorder, a prevalent neurodevelopmental condition. However, there is a growing body of empirical evidence highlighting oxytocin's modulatory effects on social and communicative behaviors. Numerous single-dose trials have consistently demonstrated the efficacy of oxytocin in ameliorating behavioral and neural measurements associated with the core symptoms of autism spectrum disorder. Nevertheless, prior investigations involving the repeated administration of oxytocin have yielded disparate findings concerning its effectiveness, particularly in relation to clinical measures of the core symptoms of autism spectrum disorder. Recent studies have also raised the possibility of diminishing efficacy of oxytocin over time, particularly when higher or recurrent dosages of oxytocin are administered. This review article aims to provide an overview of previous studies examining this issue. Furthermore, it aims to discuss the potential mechanisms underlying these effects, including the interaction between oxytocin and vasopressin, as well as potential strategies for addressing the challenges mentioned. This review's overall objective is to provide insights into the potential development of innovative therapeutics to mitigate the core symptoms of autism spectrum disorder, representing potential breakthroughs in the treatment of this complex neurodevelopmental condition.
Collapse
Affiliation(s)
- Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| |
Collapse
|
3
|
Lendvai A, Béke G, Hollósi E, Becker M, Völker JM, Schulze Zur Wiesche E, Bácsi A, Bíró T, Mihály J. N,N-Dimethylglycine Sodium Salt Exerts Marked Anti-Inflammatory Effects in Various Dermatitis Models and Activates Human Epidermal Keratinocytes by Increasing Proliferation, Migration, and Growth Factor Release. Int J Mol Sci 2023; 24:11264. [PMID: 37511024 PMCID: PMC10379135 DOI: 10.3390/ijms241411264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
N,N-dimethylglycine (DMG) is a naturally occurring compound being widely used as an oral supplement to improve growth and physical performance. Thus far, its effects on human skin have not been described in the literature. For the first time, we show that N,N-dimethylglycine sodium salt (DMG-Na) promoted the proliferation of cultured human epidermal HaCaT keratinocytes. Even at high doses, DMG-Na did not compromise the cellular viability of these cells. In a scratch wound-closure assay, DMG-Na augmented the rate of wound closure, demonstrating that it promotes keratinocyte migration. Further, DMG-Na treatment of the cells resulted in the upregulation of the synthesis and release of specific growth factors. Intriguingly, DMG-Na also exerted robust anti-inflammatory and antioxidant effects, as assessed in three different models of human keratinocytes, mimicking microbial and allergic contact dermatitis as well as psoriasis and UVB irradiation-induced solar dermatitis. These results identify DMG-Na as a highly promising novel active compound to promote epidermal proliferation, regeneration, and repair, and to exert protective functions. Further preclinical and clinical studies are under investigation to prove the seminal impact of topically applied DMG-Na on relevant conditions of the skin and its appendages.
Collapse
Affiliation(s)
- Alexandra Lendvai
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, University of Debrecen, 4032 Debrecen, Hungary
| | - Gabriella Béke
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Erika Hollósi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Maike Becker
- Dr. Kurt Wolff GmbH & Co. KG, 33611 Bielefeld, Germany
| | | | - Erik Schulze Zur Wiesche
- Dr. Kurt Wolff GmbH & Co. KG, 33611 Bielefeld, Germany
- Dr. August Wolff GmbH & Co. KG Arzneimittel, 33611 Bielefeld, Germany
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Allergology Research Group, 4032 Debrecen, Hungary
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Johanna Mihály
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
4
|
Rezgui R, Walia R, Sharma J, Sidhu D, Alshagadali K, Ray Chaudhuri S, Saeed A, Dey P. Chemically Defined Lactobacillus plantarum Cell-Free Metabolites Demonstrate Cytoprotection in HepG2 Cells through Nrf2-Dependent Mechanism. Antioxidants (Basel) 2023; 12:antiox12040930. [PMID: 37107305 PMCID: PMC10136174 DOI: 10.3390/antiox12040930] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Centering around the concept that metabolites from the gut commensals can exert metabolic health benefits along the gut-liver axis, we tested whether the cell-free global metabolome of probiotic bacteria can exert hepatoprotective benefits against H2O2-induced oxidative stress. Cell-free global metabolites of Lactobacillus plantarum (LPM) were isolated and untargeted metabolomics was performed. The free radical scavenging potentials of LPM were measured. The cytoprotective effects of LPM were tested on HepG2 cells. A total of 66 diverse metabolites were identified in LPM, among which saturated fatty acids, amino acids and dicarboxylic acids were highly enriched. LPM attenuated cell damage, lipid peroxidation and the levels of intracellular cytoprotective enzymes in H2O2-treated cells. LPM also attenuated H2O2-induced increased expressions of TNF-α and IL-6. However, the cytoprotective effects of LPM were diminished in cells that were pretreated with a pharmacological inhibitor of Nrf2. Our data collectively indicate that LPM can significantly attenuate oxidative damage to HepG2 cells. However, the cytoprotective effects of LPM likely depend on an Nrf2-dependent mechanism.
Collapse
Affiliation(s)
- Raja Rezgui
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 55473, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
| | - Ruhi Walia
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Jyoti Sharma
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Dwinder Sidhu
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Khalid Alshagadali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 55473, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
| | - Saumya Ray Chaudhuri
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh 160036, India
| | - Amir Saeed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 55473, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Medical Sciences & Technology, Khartoum 12810, Sudan
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| |
Collapse
|
5
|
Meoni G, Tenori L, Schade S, Licari C, Pirazzini C, Bacalini MG, Garagnani P, Turano P, Trenkwalder C, Franceschi C, Mollenhauer B, Luchinat C. Metabolite and lipoprotein profiles reveal sex-related oxidative stress imbalance in de novo drug-naive Parkinson's disease patients. NPJ Parkinsons Dis 2022; 8:14. [PMID: 35136088 PMCID: PMC8826921 DOI: 10.1038/s41531-021-00274-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is the neurological disorder showing the greatest rise in prevalence from 1990 to 2016. Despite clinical definition criteria and a tremendous effort to develop objective biomarkers, precise diagnosis of PD is still unavailable at early stage. In recent years, an increasing number of studies have used omic methods to unveil the molecular basis of PD, providing a detailed characterization of potentially pathological alterations in various biological specimens. Metabolomics could provide useful insights to deepen our knowledge of PD aetiopathogenesis, to identify signatures that distinguish groups of patients and uncover responsive biomarkers of PD that may be significant in early detection and in tracking the disease progression and drug treatment efficacy. The present work is the first large metabolomic study based on nuclear magnetic resonance (NMR) with an independent validation cohort aiming at the serum characterization of de novo drug-naive PD patients. Here, NMR is applied to sera from large training and independent validation cohorts of German subjects. Multivariate and univariate approaches are used to infer metabolic differences that characterize the metabolite and the lipoprotein profiles of newly diagnosed de novo drug-naive PD patients also in relation to the biological sex of the subjects in the study, evidencing a more pronounced fingerprint of the pathology in male patients. The presence of a validation cohort allowed us to confirm altered levels of acetone and cholesterol in male PD patients. By comparing the metabolites and lipoproteins levels among de novo drug-naive PD patients, age- and sex-matched healthy controls, and a group of advanced PD patients, we detected several descriptors of stronger oxidative stress.
Collapse
Affiliation(s)
- Gaia Meoni
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Sesto Fiorentino, Florence, Italy
| | - Sebastian Schade
- Department of Clinical Neurophysiology, University Medical Center Goettingen, Goettingen, Germany
| | - Cristina Licari
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy
| | - Chiara Pirazzini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Paolo Garagnani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Sesto Fiorentino, Florence, Italy
| | | | - Claudia Trenkwalder
- University Medical Center Goettingen, Department of Neurology and Paracelsus-Elena-Klinik, Kassel, Germany
| | - Claudio Franceschi
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy. .,Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia.
| | - Brit Mollenhauer
- University Medical Center Goettingen, Department of Neurology and Paracelsus-Elena-Klinik, Kassel, Germany.
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
6
|
Hsieh CP, Chen ST, Lee MY, Huang CM, Chen HH, Chan MH. N, N-dimethylglycine Protects Behavioral Disturbances and Synaptic Deficits Induced by Repeated Ketamine Exposure in Mice. Neuroscience 2021; 472:128-137. [PMID: 34400248 DOI: 10.1016/j.neuroscience.2021.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/31/2022]
Abstract
Ketamine, an N-methyl-d-aspartate receptor (NMDAR) blocker, is gaining ground as a treatment option for depression. The occurrence of persistent psychosis and cognitive impairment after repeated use of ketamine remains a concern. N, N-dimethylglycine (DMG) is a nutrient supplement and acts as an NMDAR glycine site partial agonist. The objective of this study was to assess whether DMG could potentially prevent the behavioral and synaptic deficits in mice after repeated ketamine exposure. Male ICR mice received ketamine (20 mg/kg) from postnatal day (PN) 33-46, twice daily, for 14 days. The locomotor activity, novel location recognition test (NLRT), novel object recognition test (NORT), social interaction test, head twitch response induced by serotonergic hallucinogen, and the basal synaptic transmission and long-term potentiation (LTP) in the hippocampal slices were monitored after repeated ketamine treatment. Furthermore, the protective effects of repeated combined administration of DMG (30 and 100 mg/kg) with ketamine on behavioral abnormalities and synaptic dysfunction were assessed. The results showed that mice exhibited memory impairments, social withdrawal, increased head twitch response, reduced excitatory synaptic transmission, and lower LTP after repeated ketamine exposure. The ketamine-induced behavioral and synaptic deficits were prevented by co-treatment with DMG. In conclusion, these findings may pave a new path forward to developing a combination formula with ketamine and DMG for the treatment of depression and other mood disorders.
Collapse
Affiliation(s)
- Chung-Pin Hsieh
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shao-Tsu Chen
- Department of Psychiatry, Buddhist Tzu Chi General Hospital, Hualien, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Mei-Yi Lee
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chieh-Min Huang
- Animal Behavioral Core, National Health Research Institutes, Miaoli, Taiwan
| | - Hwei-Hsien Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan; Animal Behavioral Core, National Health Research Institutes, Miaoli, Taiwan; Institute of Neuroscience, Research Center for Mind, Brain, and Learning, National Chengchi University, Taipei, Taiwan.
| | - Ming-Huan Chan
- Institute of Neuroscience, Research Center for Mind, Brain, and Learning, National Chengchi University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
7
|
Asayesh G, Mohebbi GH, Nabipour I, Rezaei A, Vazirizadeh A. Secondary Metabolites from the Marine Tunicate “Phallusia nigra” and Some Biological Activities. BIOL BULL+ 2021; 48:263-273. [DOI: 10.1134/s1062359021030031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 12/05/2020] [Accepted: 12/22/2020] [Indexed: 12/08/2023]
|
8
|
Kato Y, Kuwabara H, Okada T, Munesue T, Benner S, Kuroda M, Kojima M, Yassin W, Eriguchi Y, Kameno Y, Murayama C, Nishimura T, Tsuchiya K, Kasai K, Ozaki N, Kosaka H, Yamasue H. Oxytocin-induced increase in N,N-dimethylglycine and time course of changes in oxytocin efficacy for autism social core symptoms. Mol Autism 2021; 12:15. [PMID: 33622389 PMCID: PMC7903697 DOI: 10.1186/s13229-021-00423-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/12/2021] [Indexed: 11/12/2022] Open
Abstract
Background Oxytocin is expected as a novel therapeutic agent for autism spectrum disorder (ASD) core symptoms. However, previous results on the efficacy of repeated administrations of oxytocin are controversial. Recently, we reported time-course changes in the efficacy of the neuropeptide underlying the controversial effects of repeated administration; however, the underlying mechanisms remained unknown. Methods The current study explored metabolites representing the molecular mechanisms of oxytocin’s efficacy using high-throughput metabolomics analysis on plasma collected before and after 6-week repeated intranasal administration of oxytocin (48 IU/day) or placebo in adult males with ASD (N = 106) who participated in a multi-center, parallel-group, double-blind, placebo-controlled, randomized controlled trial. Results Among the 35 metabolites measured, a significant increase in N,N-dimethylglycine was detected in the subjects administered oxytocin compared with those given placebo at a medium effect size (false discovery rate (FDR) corrected P = 0.043, d = 0.74, N = 83). Furthermore, subgroup analyses of the participants displaying a prominent time-course change in oxytocin efficacy revealed a significant effect of oxytocin on N,N-dimethylglycine levels with a large effect size (PFDR = 0.004, d = 1.13, N = 60). The increase in N,N-dimethylglycine was significantly correlated with oxytocin-induced clinical changes, assessed as changes in quantifiable characteristics of autistic facial expression, including both of improvements between baseline and 2 weeks (PFDR = 0.006, r = − 0.485, N = 43) and deteriorations between 2 and 4 weeks (PFDR = 0.032, r = 0.415, N = 37). Limitations The metabolites changes caused by oxytocin administration were quantified using peripheral blood and therefore may not directly reflect central nervous system changes. Conclusion Our findings demonstrate an association of N,N-dimethylglycine upregulation with the time-course change in the efficacy of oxytocin on autistic social deficits. Furthermore, the current findings support the involvement of the N-methyl-D-aspartate receptor and neural plasticity to the time-course change in oxytocin’s efficacy. Trial registration: A multi-center, parallel-group, placebo-controlled, double-blind, confirmatory trial of intranasal oxytocin in participants with autism spectrum disorders (the date registered: 30 October 2014; UMIN Clinical Trials Registry: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000017703) (UMIN000015264).
Collapse
Affiliation(s)
- Yasuhiko Kato
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, 431-3192, Japan
| | - Hitoshi Kuwabara
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, 431-3192, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Toshio Munesue
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Seico Benner
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, 431-3192, Japan
| | - Miho Kuroda
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masaki Kojima
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Walid Yassin
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yosuke Eriguchi
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yosuke Kameno
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, 431-3192, Japan
| | - Chihiro Murayama
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, 431-3192, Japan
| | - Tomoko Nishimura
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka/Kanazawa/Hamamatsu/Chiba/Fukui, Japan
| | - Kenji Tsuchiya
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka/Kanazawa/Hamamatsu/Chiba/Fukui, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, 910-1193, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, 431-3192, Japan. .,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka/Kanazawa/Hamamatsu/Chiba/Fukui, Japan.
| |
Collapse
|
9
|
Gao J, Song J, Ye J, Duan X, Dionysiou DD, Yadav JS, Nadagouda MN, Yang L, Luo S. Comparative toxicity reduction potential of UV/sodium percarbonate and UV/hydrogen peroxide treatments for bisphenol A in water: An integrated analysis using chemical, computational, biological, and metabolomic approaches. WATER RESEARCH 2021; 190:116755. [PMID: 33383346 DOI: 10.1016/j.watres.2020.116755] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a common industrial chemical with significant adverse impacts on biological systems as an environmental contaminant. UV/hydrogen peroxide (UV/H2O2) is a well-established technology for BPA treatment in water while UV/sodium percarbonate (UV/SPC) is an emerging technology with unclear biological impacts of treated effluent. Therefore, in this study, the toxicity evaluation of BPA solution treated with UV/H2O2 and UV/SPC was preformed and compared based on transformation products (TPs) profile, quantitative structure-activity relationship (QSAR), Escherichia coli (E. coli) toxicity assays, and metabolomic analysis. TPs with hydroxylation, double-ring split, and single-ring cleavage were generated from BPA during the treatments with both technologies, but TPs with quinonation were specifically detected in UV/H2O2 treated solution at the UV dose of 1470 mJ cm-2. QSAR prediction based on TPs profile (excluding benzoquinone TPs) suggested that UV/H2O2 and UV/SPC treatments of BPA may increase matrix toxicity due to the formation of multi-hydroxylated TPs; however decreased bioaccumulation potential of all TPs may mitigate the increase of toxicity by reducing the chance of TPs to reach the concentration of toxicity threshold. In vivo assays with E. coli showed inhibited cell growth, arrested cell cycle, and increased cell death in BPA solution treated with UV/H2O2 at the UV dose of 1470 mJ cm-2. Metabolomic analysis indicated that BPA solution treated with UV/H2O2 at UV dose of 1470 mJ cm-2 impacted E. coli metabolism differently than other solutions with unique inhibition on glycerolipid metabolism. Moreover, BPA interfered in various metabolic pathways including alanine, aspartate and glutamate metabolism, starch and sucrose metabolism, pentose phosphate pathway, and lysine degradation, which were mitigated after the treatments. UV/SPC showed advantage over UV/H2O2 of attenuated impact on butanoate metabolism with UV irradiation. This study has generated valuable data for better understanding of biological impacts of BPA and its solutions treated with UV/H2O2 or UV/SPC, thus providing insights for their application prospect for water and wastewater treatment.
Collapse
Affiliation(s)
- Jiong Gao
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Jie Song
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jinshao Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Xiaodi Duan
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221, United States.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221, United States.
| | - Jagjit S Yadav
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45324, United States
| | - Lixia Yang
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330036, China
| | - Shenglian Luo
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330036, China
| |
Collapse
|
10
|
Hsieh CP, Chen H, Chan MH, Chen L, Chen HH. N,N-dimethylglycine prevents toluene-induced impairment in recognition memory and synaptic plasticity in mice. Toxicology 2020; 446:152613. [PMID: 33086094 DOI: 10.1016/j.tox.2020.152613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 11/26/2022]
Abstract
Toluene intoxication produces deleterious effects on cognitive function, which has been associated with the inhibition of N-methyl-d-aspartate receptor (NMDAR). The present study determined whether N,N-dimethylglycine (DMG), a nutrient supplement and a partial agonist for NMDAR glycine binding site, could counteract recognition memory deficits and hippocampal synaptic dysfunction after acute toluene exposure. Male ICR mice were treated with toluene (250-750 mg/kg) for monitoring the sociability and social novelty in three-chamber test and long-term potentiation (LTP) of hippocampal synaptic transmission. Moreover, the combined effects of DMG (30-100 mg/kg) pretreatment with toluene (750 mg/kg) on three-chamber test, novel location and object recognition test and synaptic function were determined. Toluene decreased the sociability, preference for social novelty, hippocampal synaptic transmission and LTP in a dose-dependent manner. DMG pretreatment significantly reduced the toluene-induced memory impairment in social recognition, object location and object recognition and synaptic dysfunction. Furthermore, NMDAR glycine binding site antagonist, 7-chlorokynurenic acid, abolished the protective effects of DMG. These results indicate that DMG could prevent toluene-induced recognition memory deficits and synaptic dysfunction and its beneficial effects might be associated with modulation of NMDAR. These findings suggest that DMG supplementation might be an effective approach to prevent memory problems for the workers at risk of high-level toluene exposure or toluene abusers.
Collapse
Affiliation(s)
- Chung-Pin Hsieh
- Center for Neuropsychiatric Research, National Health Research Institutes, 35 Keyan Rd. Zhunan, Miaoli, 35053, Taiwan
| | - Hao Chen
- Institute of Molecular Medicine, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Ming-Huan Chan
- Institute of Neuroscience, 64, Sec. 2, Zhinan Road, Taipei, 11605, Taiwan; Research Center for Mind, Brain, and Learning, National Chengchi University, 64, Sec. 2, Zhinan Road, Taipei, 11605, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan; Department of Medical Science, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Hwei-Hsien Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, 35 Keyan Rd. Zhunan, Miaoli, 35053, Taiwan; Department of Medical Science, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan; Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, 145, Xingda Rd., South Dist, Taichung, 40227, Taiwan.
| |
Collapse
|
11
|
Silva-Reis SC, V. D. dos Santos AC, García-Mera X, Rodríguez-Borges JE, Sampaio-Dias IE. Bioinspired design for the assembly of Glypromate® neuropeptide conjugates with active pharmaceutical ingredients. NEW J CHEM 2020. [DOI: 10.1039/d0nj04851h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A robust and bioinspired methodology for the efficient conjugation of Glypromate® with active pharmaceutical ingredients for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara C. Silva-Reis
- LAQV/REQUIMTE
- Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
| | | | - Xerardo García-Mera
- Department of Organic Chemistry
- Faculty of Pharmacy
- University of Santiago de Compostela
- E-15782 Santiago de Compostela
- Spain
| | - José E. Rodríguez-Borges
- LAQV/REQUIMTE
- Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
| | - Ivo E. Sampaio-Dias
- LAQV/REQUIMTE
- Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
| |
Collapse
|
12
|
Jiang Y, Hansen PJ, Xiao Y, Amaral TF, Vyas D, Adesogan AT. Aflatoxin compromises development of the preimplantation bovine embryo through mechanisms independent of reactive oxygen production. J Dairy Sci 2019; 102:10506-10513. [PMID: 31521360 DOI: 10.3168/jds.2019-16839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 07/11/2019] [Indexed: 01/12/2023]
Abstract
Aflatoxin is a potent carcinogen often found in animal feedstuffs. Although it reportedly impairs development of the preimplantation pig embryo, it is not known whether it adversely affects development of the preimplantation bovine embryo. We conducted 3 experiments to investigate this possibility and determine whether deleterious effects of aflatoxin were caused by increased production of reactive oxygen species (ROS). Experiments were conducted with embryos produced in vitro and cultured after fertilization with various concentrations of aflatoxin. For experiment 1, embryos were treated with 0 (control), 40, 400, or 4,000 µg/L of aflatoxin B1 (AFB1). Treatment at all concentrations of AFB1 tended to reduce cleavage rate, with the 2 highest concentrations having significant effects. As compared with the control, 40 µg/L AFB1 reduced the percentage of oocytes becoming blastocysts and the percentage of cleaved embryos becoming blastocysts (19.7 vs. 8.1% and 30.3 vs. 14.3%, respectively). Complete inhibition of blastocyst formation occurred at concentrations of 400 and 4,000 µg/L of AFB1. Experiments 2 and 3 involved a 2 × 2 factorial design with effects of AFB1 (0 and 40 µg/L), the antioxidant Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid, a water-soluble analog of vitamin E; 0 and 5 µM), and their interaction on production of ROS in putative zygotes (experiment 2) and development to the blastocyst stage (experiment 3). Production of ROS was increased by AFB1, and this effect was reversed by Trolox. However, Trolox did not prevent the reduction in development to the blastocyst stage caused by AFB1. Thus, the anti-developmental effects of AFB1 are not caused solely by increased ROS production. Rather, other underlying mechanisms exist for the adverse effects of aflatoxin on embryonic development. Overall, results indicate the potential for feeding aflatoxin-contaminated feed to cause embryonic loss in cattle.
Collapse
Affiliation(s)
- Y Jiang
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - P J Hansen
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - Y Xiao
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - T F Amaral
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - D Vyas
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - A T Adesogan
- Department of Animal Sciences, University of Florida, Gainesville 32611.
| |
Collapse
|
13
|
Sollecito N, Pereira E, Grázia J, Neves B, Couto B, Andrade V, Miranda M, Silva J, Borges A. Antioxidant activity of oily extract obtained from Lippia origanoides improves the quality of bovine embryos produced in vitro. ARQ BRAS MED VET ZOO 2019. [DOI: 10.1590/1678-4162-10323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT The aim of this study was to evaluate the supplementation of embryo culture medium with antioxidant obtained from oily extract of Lippia origanoides on in vitro blastocyst development and quality. Oocytes collected from slaughterhouse ovaries were matured and fertilized in vitro following standard laboratory procedures. Zygotes were cultured in SOF medium supplemented according to the following treatments: T1 embryo culture medium without antioxidant supplementation; T2)50μM/mL Cysteamine; T3)2.5μg/mL; T4)5.0μg/mL and T5)10.0μg/mL of antioxidant obtained from oily extract of Lippia origanoides. On the seventh day of culture, the blastocysts were fixed and evaluated for apoptosis rates, number of total cell and inner cell mass cells by means of the TUNEL Test. The use of antioxidants during cultivation did not increase (P> 0.05) the final blastocyst production rate. The treatments T2, T3, T4 and T5 had the lowest (P< 0.05) apoptotic indexes (4.5±1.1%, 8.4±2.5%, 3.4±1.1% and 5.5±0.9%, respectively) when compared to T1 treatment (10.0±1.4%). The number of inner cell mass did not differ (P> 0.05) among embryos from different treatments. The addition of antioxidant obtained from oily extract of Lippia origanoides reduces the apoptosis rate and improves the quality without increasing the total in vitro production of bovine embryos.
Collapse
Affiliation(s)
| | | | | | - B.P. Neves
- Universidade Federal de Minas Gerais, Brazil
| | | | | | | | | | - A.M. Borges
- Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
14
|
Wang Z, Xu R, Shen G, Feng J. Metabolic Response in Rabbit Urine to Occurrence and Relief of Unilateral Ureteral Obstruction. J Proteome Res 2018; 17:3184-3194. [PMID: 30024170 DOI: 10.1021/acs.jproteome.8b00304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ureteral obstruction will lead clinically to hydronephrosis, which may further develop into partial or complete loss of kidney function and even cause permanent histological damage. However, there is little knowledge of metabolic responses during the obstructed process and its recoverability. In this study, a complete unilateral ureteral obstruction (CUUO) model was established in the rabbit, and 1H NMR-based metabolomic analysis of urine was used to reveal the metabolic perturbations in rabbits caused by CUUO and the metabolic recovery after the CUUO was relieved. Univariate and multivariate statistical analyses were used to identify metabolic characteristics. The gradually decreased levels of 3-hydroxykynurenine, 3-methylhistidine, creatinine, guanidoacetate, meta- and para-hydroxyphenylacetate, and phenylacetylglycine and the gradually increased levels of acetate, alanine, citrate, glycine, lactate, and methionine in urine could be regarded as potential biomarkers for the occurrence and severity of ureteral obstruction. And the reduced levels of 3-methylhistidine, creatinine, guanidoacetate, hippurate, meta-hydroxyphenylacetate, and methylguanidine and the elevated levels of 2-aminoisobutyrate, acetylcholine, citrate, lactate, lysine, valine, and α-ketoglutarate in urine compared with the obstructed level could characterize the metabolic recovery of ureteral obstruction. Our results depicted the disturbed biochemical pathways involved in ureteral obstruction and demonstrated the practicability of recovering renal functions for the patients with severe hydronephrosis in clinical practice by removing causes for obstruction.
Collapse
Affiliation(s)
- Zhenzhao Wang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance , Xiamen University , Xiamen , 361005 , China
| | - Rui Xu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance , Xiamen University , Xiamen , 361005 , China
| | - Guiping Shen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance , Xiamen University , Xiamen , 361005 , China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance , Xiamen University , Xiamen , 361005 , China
| |
Collapse
|
15
|
Chen C, Gao J, Wang TS, Guo C, Yan YJ, Mao CY, Gu LW, Yang Y, Li ZF, Liu A. NMR-based Metabolomic Techniques Identify the Toxicity of Emodin in HepG2 Cells. Sci Rep 2018; 8:9379. [PMID: 29925852 PMCID: PMC6010407 DOI: 10.1038/s41598-018-27359-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/01/2018] [Indexed: 01/24/2023] Open
Abstract
Emodin is a natural anthraquinone derivative that is present in various herbal preparations. The pharmacological effects of emodin include anticancer, hepatoprotective, anti-inflammatory, antioxidant and even antimicrobial activities. However, emodin also has been reported to induce hepatotoxicity, nephrotoxicity, genotoxicity and reproductive toxicity. The mechanism of emodin's adverse effects is complicated and currently not well understood. This study aimed to establish a cell metabonomic method to investigate the toxicity of emodin and explore its potential mechanism and relevant targets. In the present study, metabonomic profiles of cell extracts and cell culture media obtained using the 1H NMR technique were used to assess emodin toxicity in HepG2 cells. Multivariate statistical analyses such as partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were used to characterize the metabolites that differed between the control and emodin groups. The results indicated that emodin resulted in differences in 33 metabolites, including acetate, arginine, aspartate, creatine, isoleucine, leucine and histidine in the cell extract samples and 23 metabolites, including alanine, formate, glutamate, succinate and isoleucine, in the cell culture media samples. Approximately 8 pathways associated with these metabolites were disrupted in the emodin groups. These results demonstrated the potential for using cell metabonomics approaches to clarify the toxicological effects of emodin, the underlying mechanisms and potential biomarkers. Our findings may help with the development of novel strategies to discover targets for drug toxicity, elucidate the changes in regulatory signal networks and explore its potential mechanism of action.
Collapse
Affiliation(s)
- Chang Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Tie-Shan Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Cong Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Jing Yan
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Chao-Yi Mao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Wei Gu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Yang
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhong-Feng Li
- Department of Chemistry, Capital Normal University, Beijing, China.
| | - An Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
16
|
Stoessel D, Schulte C, Teixeira dos Santos MC, Scheller D, Rebollo-Mesa I, Deuschle C, Walther D, Schauer N, Berg D, Nogueira da Costa A, Maetzler W. Promising Metabolite Profiles in the Plasma and CSF of Early Clinical Parkinson's Disease. Front Aging Neurosci 2018; 10:51. [PMID: 29556190 PMCID: PMC5844983 DOI: 10.3389/fnagi.2018.00051] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/15/2018] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) shows high heterogeneity with regard to the underlying molecular pathogenesis involving multiple pathways and mechanisms. Diagnosis is still challenging and rests entirely on clinical features. Thus, there is an urgent need for robust diagnostic biofluid markers. Untargeted metabolomics allows establishing low-molecular compound biomarkers in a wide range of complex diseases by the measurement of various molecular classes in biofluids such as blood plasma, serum, and cerebrospinal fluid (CSF). Here, we applied untargeted high-resolution mass spectrometry to determine plasma and CSF metabolite profiles. We semiquantitatively determined small-molecule levels (≤1.5 kDa) in the plasma and CSF from early PD patients (disease duration 0-4 years; n = 80 and 40, respectively), and sex- and age-matched controls (n = 76 and 38, respectively). We performed statistical analyses utilizing partial least square and random forest analysis with a 70/30 training and testing split approach, leading to the identification of 20 promising plasma and 14 CSF metabolites. These metabolites differentiated the test set with an AUC of 0.8 (plasma) and 0.9 (CSF). Characteristics of the metabolites indicate perturbations in the glycerophospholipid, sphingolipid, and amino acid metabolism in PD, which underscores the high power of metabolomic approaches. Further studies will enable to develop a potential metabolite-based biomarker panel specific for PD.
Collapse
Affiliation(s)
- Daniel Stoessel
- Metabolomic Discoveries GmbH, Potsdam, Germany
- Department of Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
- Max Planck Institute für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Claudia Schulte
- Department of Neurodegeneration, German Center for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | | | | | - Irene Rebollo-Mesa
- Exploratory Statistics, Global Exploratory Development, UCB Pharma SA, Slough, United Kingdom
| | - Christian Deuschle
- Department of Neurodegeneration, German Center for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Dirk Walther
- Department of Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
- Max Planck Institute für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | | | - Daniela Berg
- Department of Neurodegeneration, German Center for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
- Department of Neurology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Andre Nogueira da Costa
- Experimental Medicine and Diagnostics, Global Exploratory Development, UCB Biopharma SPRL, Brussels, Belgium
| | - Walter Maetzler
- Department of Neurodegeneration, German Center for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
- Department of Neurology, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
17
|
Lee MY, Lin YR, Tu YS, Tseng YJ, Chan MH, Chen HH. Effects of sarcosine and N, N-dimethylglycine on NMDA receptor-mediated excitatory field potentials. J Biomed Sci 2017; 24:18. [PMID: 28245819 PMCID: PMC5331637 DOI: 10.1186/s12929-016-0314-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/25/2016] [Indexed: 11/22/2022] Open
Abstract
Background Sarcosine, a glycine transporter type 1 inhibitor and an N-methyl-D-aspartate (NMDA) receptor co-agonist at the glycine binding site, potentiates NMDA receptor function. Structurally similar to sarcosine, N,N-dimethylglycine (DMG) is also N-methyl glycine-derivative amino acid and commonly used as a dietary supplement. The present study compared the effects of sarcosine and DMG on NMDA receptor-mediated excitatory field potentials (EFPs) in mouse medial prefrontal cortex brain slices using a multi-electrode array system. Results Glycine, sarcosine and DMG alone did not alter the NMDA receptor-mediated EFPs, but in combination with glutamate, glycine and its N-methyl derivatives significantly increased the frequency and amplitude of EFPs. The enhancing effects of glycine analogs in combination with glutamate on EFPs were remarkably reduced by the glycine binding site antagonist 7-chlorokynurenate (7-CK). However, DMG, but not sarcosine, reduced the frequency and amplitude of EFPs elicited by co-application of glutamate plus glycine. D-cycloserine, a partial agonist at the glycine binding site on NMDA receptors, affected EFPs in a similar manner to DMG. Furthermore, DMG, but not sarcosine, reduced the frequencies and amplitudes of EFPs elicited by glutamate plus D-serine, another endogenous ligand for glycine binding site. Conclusions These findings suggest that sarcosine acts as a full agonist, yet DMG is a partial agonist at glycine binding site of NMDA receptors. The molecular docking analysis indicated that the interactions of glycine, sarcosine, and DMG to NMDA receptors are highly similar, supporting that the glycine binding site of NMDA receptors is a critical target site for sarcosine and DMG. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0314-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mei-Yi Lee
- Master/PhD Program in Pharmacology and Toxicology, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien, 97004, Taiwan
| | - Yi-Ruu Lin
- Master/PhD Program in Pharmacology and Toxicology, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien, 97004, Taiwan
| | - Yi-Shu Tu
- Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Yufeng Jane Tseng
- Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan.,Department of Computer Science and Information Engineering, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Ming-Huan Chan
- Institute of Neuroscience, National Chengchi University, 64, Sec. 2, ZhiNan Road, Wenshan District, Taipei City, 11605, Taiwan. .,Research Center for Mind, Brain, and Learning, National Chengchi University, 64, Sec. 2, ZhiNan Road, Wenshan District, Taipei City, 11605, Taiwan.
| | - Hwei-Hsien Chen
- Master/PhD Program in Pharmacology and Toxicology, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien, 97004, Taiwan. .,Institute of Neuroscience, National Chengchi University, 64, Sec. 2, ZhiNan Road, Wenshan District, Taipei City, 11605, Taiwan. .,Center for Neuropsychiatric Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan.
| |
Collapse
|