1
|
Ma J, Yang G, Qin X, Mo L, Xiong X, Xiong Y, He H, Lan D, Fu W, Li J, Yin S. Molecular characterization of MSX2 gene and its role in regulating steroidogenesis in yak (Bos grunniens) cumulus granulosa cells. Theriogenology 2024; 231:101-110. [PMID: 39427591 DOI: 10.1016/j.theriogenology.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Cumulus granulosa cells (CGCs) are somatic cells surrounding the oocyte that play an important role in oocyte growth, meiotic maturation, ovulation, and fertilization in mammals. Therefore, revealing the molecular mechanisms related to the development and function of CGCs is essential for further understanding the regulatory network in female reproduction. MSX2 belongs to the highly conserved msh homeobox gene family and plays diverse roles in different biological processes. This study cloned the coding sequence (CDS) of the yak MSX2 gene and detected the abundance and localization of MSX2 in the major female reproductive organs. The results indicated that the CDS of this gene included 747 base pairs and encoded 248 amino acids. The abundance of MSX2 mRNA was highly expressed in the luteal phase of the yak ovary during the estrous cycle, and MSX2 protein was widely expressed in different female reproductive organs, including the ovary, corpus luteum, uterus, and oviduct. Repressing MSX2 abundance in yak CGCs declined the cell viability and defective steroidogenesis. Several genes abundances related to cell proliferation, apoptosis, and sterogenesis also changed after MSX2 knockdown. MSX2 overexpression had the opposite effect on cell viability in yak CGCs. These results reveal the specific mechanism by which MSX2 regulates the development and function of yak CGCs and give novel and valuable insights into the mechanisms involved in yak reproduction.
Collapse
Affiliation(s)
- Jun Ma
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Gan Yang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Xuan Qin
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Luoyu Mo
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Xianrong Xiong
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Yan Xiong
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Honghong He
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Daoliang Lan
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Wei Fu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Jian Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Shi Yin
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China; Key Laboratory of Modem Technology (Southwest Minzu University), State Ethnic Affairs Commission, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
Fan W, Yuan Z, Li M, Zhang Y, Nan F. Decreased oocyte quality in patients with endometriosis is closely related to abnormal granulosa cells. Front Endocrinol (Lausanne) 2023; 14:1226687. [PMID: 37664845 PMCID: PMC10469306 DOI: 10.3389/fendo.2023.1226687] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Infertility and menstrual abnormalities in endometriosis patients are frequently caused by aberrant follicular growth or a reduced ovarian reserve. Endometriosis typically does not directly harm the oocyte, but rather inhibits the function of granulosa cells, resulting in a decrease in oocyte quality. Granulosa cells, as oocyte nanny cells, can regulate meiosis, provide the most basic resources required for oocyte development, and influence ovulation. Endometriosis affects oocyte development and quality by causing granulosa cells apoptosis, inflammation, oxidative stress, steroid synthesis obstacle, and aberrant mitochondrial energy metabolism. These aberrant states frequently interact with one another, however there is currently relatively little research in this field to understand the mechanism of linkage between abnormal states.
Collapse
Affiliation(s)
- Weisen Fan
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zheng Yuan
- Department of Gynecology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Muzhen Li
- College of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yingjie Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Fengjuan Nan
- Department of Gynecology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
3
|
Yang D, Lu Q, Peng S, Hua J. Ubiquitin C-terminal hydrolase L1 (UCHL1), a double-edged sword in mammalian oocyte maturation and spermatogenesis. Cell Prolif 2023; 56:e13347. [PMID: 36218038 PMCID: PMC9890544 DOI: 10.1111/cpr.13347] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Recent studies have shown that ubiquitin-mediated cell apoptosis can modulate protein interaction and involve in the progress of oocyte maturation and spermatogenesis. As one of the key regulators involved in ubiquitin signal, ubiquitin C-terminal hydrolase L1 (UCHL1) is considered a molecular marker associated with spermatogonia stem cells. However, the function of UCHL1 was wildly reported to regulate various bioecological processes, such as Parkinson's disease, lung cancer, breast cancer and colon cancer, how UCHL1 affects the mammalian reproductive system remains an open question. METHODS We identified papers through electronic searches of PubMed database from inception to July 2022. RESULTS Here, we summarize the important function of UCHL1 in controlling mammalian oocyte development, regulating spermatogenesis and inhibiting polyspermy, and we posit the balance of UCHL1 was essential to maintaining reproductive cellular and tissue homeostasis. CONCLUSION This study considers the 'double-edged sword' role of UCHL1 during gametogenesis and presents new insights into UCHL1 in germ cells.
Collapse
Affiliation(s)
- Donghui Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| | - Qizhong Lu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Collaborative Innovation Center of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
4
|
Turathum B, Gao EM, Chian RC. The Function of Cumulus Cells in Oocyte Growth and Maturation and in Subsequent Ovulation and Fertilization. Cells 2021; 10:cells10092292. [PMID: 34571941 PMCID: PMC8470117 DOI: 10.3390/cells10092292] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Cumulus cells (CCs) originating from undifferentiated granulosa cells (GCs) differentiate in mural granulosa cells (MGCs) and CCs during antrum formation in the follicle by the distribution of location. CCs are supporting cells of the oocyte that protect the oocyte from the microenvironment, which helps oocyte growth and maturation in the follicles. Bi-directional communications between an oocyte and CCs are necessary for the oocyte for the acquisition of maturation and early embryonic developmental competence following fertilization. Follicle-stimulation hormone (FSH) and luteinizing hormone (LH) surges lead to the synthesis of an extracellular matrix in CCs, and CCs undergo expansion to assist meiotic resumption of the oocyte. The function of CCs is involved in the completion of oocyte meiotic maturation and ovulation, fertilization, and subsequent early embryo development. Therefore, understanding the function of CCs during follicular development may be helpful for predicting oocyte quality and subsequent embryonic development competence, as well as pregnancy outcomes in the field of reproductive medicine and assisted reproductive technology (ART) for infertility treatment.
Collapse
Affiliation(s)
- Bongkoch Turathum
- Centre for Reproductive Medicine, Shanghai 10th People Hospital of Tongji University, Shanghai 200072, China;
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
| | - Er-Meng Gao
- Shanghai Clinical College, Anhui Medical University, Hefei 230032, China;
| | - Ri-Cheng Chian
- Centre for Reproductive Medicine, Shanghai 10th People Hospital of Tongji University, Shanghai 200072, China;
- Shanghai Clinical College, Anhui Medical University, Hefei 230032, China;
- Correspondence: ; Tel.: +86-18917687092
| |
Collapse
|
5
|
Mammalian spermatozoa and cumulus cells bind to a 3D model generated by recombinant zona pellucida protein-coated beads. Sci Rep 2019; 9:17989. [PMID: 31784633 PMCID: PMC6884566 DOI: 10.1038/s41598-019-54501-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
The egg is a spherical cell encapsulated by the zona pellucida (ZP) which forms a filamentous matrix composed of several glycoproteins that mediate gamete recognition at fertilization. Studies on molecular mechanisms of sperm-egg binding are limited in many mammalian species by the scarcity of eggs, by ethical concerns in harvesting eggs, and by the high cost of producing genetically modified animals. To address these limitations, we have reproduced a three-dimensional (3D) model mimicking the oocyte's shape, by means of magnetic sepharose beads coated with recombinant ZP glycoproteins (BZP) and cumulus cells. Three preparations composed of either ZP2 (C and N-termini; BZP2), ZP3 (BZP3) or ZP4 (BZP4) were obtained and characterized by protein SDS-PAGE, immunoblot and imaging with confocal and electron microscopy. The functionality of the model was validated by adhesion of cumulus cells, the ability of the glycoprotein-beads to support spermatozoa binding and induce acrosome exocytosis. Thus, our findings document that ZP-beads provide a novel 3D tool to investigate the role of specific proteins on egg-sperm interactions becoming a relevant tool as a diagnostic predictor of mammalian sperm function once transferred to the industry.
Collapse
|
6
|
Kohata-Ono C, Wakai T, Funahashi H. The autophagic inducer and inhibitor display different activities on the meiotic and developmental competencies of porcine oocytes derived from small and medium follicles. J Reprod Dev 2019; 65:527-532. [PMID: 31685760 PMCID: PMC6923152 DOI: 10.1262/jrd.2019-112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study aimed to examine the effect of rapamycin (autophagy inducer) and 3-methyladenine (3-MA, autophagy inhibitor) on the meiotic and developmental competencies of porcine oocytes derived from medium follicles (MF, 3-6 mm in diameter) and small follicles (SF, 1-2 mm in diameter) during in vitro maturation (IVM) process. The presence of 1 nM but not 10 nM rapamycin significantly increased the maturation rate of MF-derived oocytes (P < 0.05). However, the maturation rate of SF-derived oocytes was not affected by rapamycin at both concentrations (1 nM and 10 nM). The maturation rate of MF-derived oocytes decreased significantly (P < 0.05) in the presence of 0.2 mM but not 2 mM 3-MA than non-supplemented control. In contrast, in SF-derived oocytes, 3-MA at both 0.2 and 2 mM concentrations did not affect the maturation rates. The presence of 1 nM rapamycin significantly increased the blastocyst formation rate of MF-derived mature oocytes following parthenogenetic activation (P < 0.05). However, the blastocyst formation rate of SF-derived mature oocytes was not affected by the presence of rapamycin. The presence of 3-MA significantly reduced the blastocyst formation rate of MF-derived mature oocytes but did not change that of SF-derived oocytes. In conclusion, our study results show differences in activity of the autophagy inducer and inhibitor on the meiotic and developmental competencies of MF- and SF-derived porcine oocytes.
Collapse
Affiliation(s)
- Chiyuki Kohata-Ono
- Department of Animal Science, Graduate of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Takuya Wakai
- Department of Animal Science, Graduate of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Hiroaki Funahashi
- Department of Animal Science, Graduate of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
7
|
Ferré-Pujol P, Nguyen XK, Nagahara T, Bui TTM, Wakai T, Funahashi H. Removal of cumulus cells around 20 h after the start of in vitro maturation improves the meiotic competence of porcine oocytes via reduction in cAMP and cGMP levels. J Reprod Dev 2019; 65:177-182. [PMID: 30745497 PMCID: PMC6473111 DOI: 10.1262/jrd.2018-130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We examined the effect of the timing of removing cumulus cells surrounding porcine oocytes from small follicles (SFs, < 3 mm in diameter) and medium follicles (MFs; 3–6 mm in diameter)
on the meiotic and developmental competence of the oocytes. Cumulus-oocyte complexes (COCs) were collected from SFs and MFs, and the oocytes were denuded at 0, 20, and 44 h after the start
of in vitro maturation (IVM), and the meiotic progression of the oocytes was assessed at the end of the IVM period. The incidence of mature oocytes was significantly
affected by both the origin of the COCs and the time when the oocytes were denuded. Although the percentage of mature oocytes was always higher when the COCs were collected from MFs than
that when the COCs were collected from SFs, the maturation rate was significantly higher when the oocytes were denuded at 20 h than when they were denuded at 44 h after the start of IVM.
When the mature oocytes were activated electrically, the developmental competence of the oocytes denuded at 20 and 44 h to reach the blastocyst stage did not differ, whereas the competence
of the MF-derived oocytes was significantly higher than that of SF-derived oocytes. When the intracellular cAMP and cGMP levels in SF-derived oocytes were examined at 24 h of IVM, the levels
of both were significantly decreased only in the oocytes denuded at 20 h. In conclusion, denuding oocytes at 20 h of IVM caused a significant reduction in ooplasmic cAMP and cGMP levels and
increased the meiotic competence of the oocytes without any reduction in blastocyst formation, even in the case of SF-derived oocytes.
Collapse
Affiliation(s)
- Pilar Ferré-Pujol
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Xuan Khanh Nguyen
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.,Department of Veterinary and Animal Science, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Tomoki Nagahara
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Thi Tra Mi Bui
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.,Department of Veterinary and Animal Science, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Takuya Wakai
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Hiroaki Funahashi
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|