1
|
Wang N, Yang M, He D, Li X, Zhang X, Han B, Liu C, Hai C, Li G, Zhao Y. TMT-based quantitative N-glycoproteomic analysis reveals glycoprotein protection can improve the quality of frozen bovine sperm. Int J Biol Macromol 2022; 218:168-180. [PMID: 35870621 DOI: 10.1016/j.ijbiomac.2022.07.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022]
Abstract
Cryopreservation of bovine semen plays a vital role in accelerating genetic improvement and elite breeding, but it has a detrimental effect on sperm quality, resulting in the decline of the reproductive efficiency. The glycosylation modification of protein has irreplaceable roles in spermatozoa. Herein, the effect of cryopreservation on glycoproteins of bovine spermatozoa has been studied for the first time using a tandem mass tag (TMT)-labeled quantitative glycoproteome. A total of 2598 proteins and 492 glycoproteins were identified, including 83 different expression proteins (DEPs) and 44 different expression glycosylated proteins (DEGPs) between fresh and frozen spermatozoa. Thirty-three DEPs are glycoproteins, which demonstrates that glycoproteins of bovine sperm were seriously affected by cryopreservation. Moreover, the effects include glycoprotein expression, glycosylation modification, and substructure localization for proteins such as glycoproteins TEX101, ACRBP, and IZOMU4. The biologic functions of the 115 changed proteins are mainly involved in sperm capacitation, migration in female genitalia, and sperm-egg interaction. Mostly key regulators were identified to be glycoproteins, which confirms that glycosylated proteins played important roles in bovine sperm. This comprehensive study of sperm glycoproteins helps to unravel the cryoinjury mechanisms, thus implying that glycoprotein protection should be an effective way to improve the quality of frozen sperm.
Collapse
Affiliation(s)
- Na Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Ming Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Dingbo He
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Xin Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Xueli Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Biying Han
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Chunli Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Chao Hai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Yuefang Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China.
| |
Collapse
|
2
|
Fu J, Yingying Ge, Qingmei Zhang, Lin Y, Liu C, Nong W, Luo X, Xiao S, Xie X, Luo B. Immunohistochemistry Study of OY-TES-1 Location in Fetal and Adult Human Tissues. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7052830. [PMID: 35463688 PMCID: PMC9020931 DOI: 10.1155/2022/7052830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/18/2022]
Abstract
OY-TES-1 is reportedly involved in carcinogenesis and spermatogenesis. However, the tissue distribution of OY-TES-1 in the normal human body remains elusive. This study detected OY-TES-1 expression in human fetal and adult normal tissues by immunohistochemistry. We identified a general principle of OY-TES-1 expression. The expression of OY-TES-1 was found in neurons, smooth muscle cells, and cardiac muscle cells from both fetuses and adults. The connective tissue showed no specific staining throughout the fetal and adult samples. With OY-TES-1-positive staining of the epithelium irregular, OY-TES-1 was strongly expressed in the epithelium of the skin and bladder, as well as hepatocytes, pancreatic islets, and acinous cells during the fetal stage but was not detected in the postnatal period. In contrast to the epithelium of blood vessels, the fetal and adult central hepatic vein and glomeruli showed negative expression of the OY-TES-1 protein. Sex-dimorphism was observed in the distribution of OY-TES-1 in male and female germ cells. Collectively, our results indicate that OY-TES-1 is a member of the cancer-testis antigen and autoantigen, with tissue-specific and period-specific expression patterns, revealing potential contributions of OY-TES-1 to the diagnosis and therapeutic treatment for neoplasms and infertility.
Collapse
Affiliation(s)
- Jun Fu
- Department of Histology & Embryology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Yingying Ge
- Department of Histology & Embryology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Qingmei Zhang
- Guangxi Colleges and Universities Key Laboratory Research of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Yongda Lin
- Department of Histology & Embryology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Chang Liu
- Department of Neurosurgery, First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Weixia Nong
- Department of Histology & Embryology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Xin Luo
- Department of Histology & Embryology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Shaowen Xiao
- Department of Neurosurgery, First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Xiaoxun Xie
- Guangxi Colleges and Universities Key Laboratory Research of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Bin Luo
- Guangxi Colleges and Universities Key Laboratory Research of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
3
|
Wang N, Zhang X, Li X, Liu C, Yang M, Han B, Hai C, Su G, Li G, Zhao Y. Cysteine is highly enriched in the canonical N-linked glycosylation motif of bovine spermatozoa N-Glycoproteome. Theriogenology 2022; 184:1-12. [DOI: 10.1016/j.theriogenology.2022.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022]
|
4
|
Chen B, Wang S, Inglis BM, Ding H, Suo A, Qiu S, Duan Y, Li X, Li S, Sun WQ, Si W. Improving Sperm Cryopreservation With Type III Antifreeze Protein: Proteomic Profiling of Cynomolgus Macaque ( Macaca fascicularis) Sperm. Front Physiol 2021; 12:719346. [PMID: 34671271 PMCID: PMC8521148 DOI: 10.3389/fphys.2021.719346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/02/2021] [Indexed: 12/04/2022] Open
Abstract
Antifreeze protein III (AFP III) is used for the cryopreservation of germ cells in various animal species. However, the exact mechanism of its cryoprotection is largely unknown at the molecular level. In this study, we investigated the motility, acrosomal integrity, and mitochondrial membrane potential (MMP), as well as proteomic change, of cynomolgus macaque sperm after cryopreservation. Sperm motility, acrosomal integrity, and MMP were lower after cryopreservation (p < 0.001), but significant differences in sperm motility and MMP were observed between the AFP-treated sperm sample (Cryo+AFP) and the non-treated sample (Cryo-AFP) (p < 0.01). A total of 141 and 32 differentially expressed proteins were, respectively, identified in cynomolgus macaque sperm cryopreserved without and with 0.1 μg/ml AFP III compared with fresh sperm. These proteins were mainly involved in the mitochondrial production of reactive oxygen species (ROS), glutathione (GSH) synthesis, and cell apoptosis. The addition of AFP III in the sperm freezing medium resulted in significant stabilization of cellular molecular functions and/or biological processes in sperm, as illustrated by the extent of proteomic changes after freezing and thawing. According to the proteomic change of differentially expressed proteins, we hypothesized a novel molecular mechanism for cryoprotection that AFP III may reduce the release of cytochrome c and thereby reduce sperm apoptosis by modulating the production of ROS in mitochondria. The molecular mechanism that AFP III acts with sperm proteins for cellular protection against cryoinjuries needs further study.
Collapse
Affiliation(s)
- Bingbing Chen
- Institute of Biothermal Science and Technology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Shengnan Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Briauna Marie Inglis
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Hao Ding
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Angbaji Suo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Shuai Qiu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yanchao Duan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Xi Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Shanshan Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Wendell Q. Sun
- Institute of Biothermal Science and Technology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|