1
|
Fujikura M, Fujinoki M. Progesterone and estradiol regulate sperm hyperactivation and in vitro fertilization success in mice. J Reprod Dev 2024; 70:96-103. [PMID: 38346725 PMCID: PMC11017098 DOI: 10.1262/jrd.2023-080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/13/2024] [Indexed: 04/05/2024] Open
Abstract
Progesterone (P) and 17β-estradiol (Eβ) form the well-known hormone pair that regulates sperm capacitation. Here, we examined the regulatory effects of P and Eβ on sperm hyperactivation in mice and evaluated the in vitro fertilization (IVF) success. Although P enhanced hyperactivation, Eβ dose-dependently suppressed the P-enhanced hyperactivation. Moreover, P increased IVF success, whereas Eβ suppressed the P-induced increase in IVF success in a dose-dependent manner. Thus, P and Eβ competitively regulate hyperactivation and IVF success in mice. Since P and Eβ concentrations generally change during the estrous cycle, sperm are speculated to capacitate in response to the oviductal environment and fertilize the oocyte.
Collapse
Affiliation(s)
- Miyu Fujikura
- Research Laboratory of Laboratory Animals, Research Center for Laboratory Animals, Comprehensive Research Facilities for Advanced Medical Science, School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Masakatsu Fujinoki
- Research Laboratory of Laboratory Animals, Research Center for Laboratory Animals, Comprehensive Research Facilities for Advanced Medical Science, School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| |
Collapse
|
2
|
Miyazawa Y, Fujinoki M. Enhancement of rat spermatozoal hyperactivation by progesterone. J Reprod Dev 2023; 69:279-290. [PMID: 37690839 PMCID: PMC10602764 DOI: 10.1262/jrd.2023-040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/19/2023] [Indexed: 09/12/2023] Open
Abstract
Progesterone (P) is a well-known enhancer of hyperactivation which is associated with the success of in vitro fertilization (IVF). In this study, we examined whether P-enhanced hyperactivation affected IVF success in rats. When rat spermatozoa were exposed to 10, 20, and 40 ng/ml P, 20 ng/ml P enhanced hyperactivation via the membrane progesterone receptor. In addition, the enhancement of hyperactivation by 20 ng/ml P was regulated by phospholipase C, transmembrane adenylate cyclase, and protein kinase A. However, 20 ng/ml P did not affect IVF success. These results suggest that 20 ng/ml P enhances rat spermatozoal hyperactivation through non-genomic pathways. Because the concentration of P changes during the estrous cycle, it seems that rat spermatozoa are hyperactivated in response to the oviductal environment. However, the effect of 20 ng/ml P does not seem to fully capacitate spermatozoa.
Collapse
Affiliation(s)
- Yuki Miyazawa
- Research Laboratory of Laboratory Animals, Research Center for Laboratory Animals, Comprehensive Research Facilities for Advanced Medical Science, School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Masakatsu Fujinoki
- Research Laboratory of Laboratory Animals, Research Center for Laboratory Animals, Comprehensive Research Facilities for Advanced Medical Science, School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| |
Collapse
|
3
|
Ke S, Luo T. The Chemosensing Role of CatSper in Mammalian Sperm: An Updated Review. Curr Issues Mol Biol 2023; 45:6995-7010. [PMID: 37754226 PMCID: PMC10528052 DOI: 10.3390/cimb45090442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
After sperm enter the female reproductive tract, the physicochemical and biochemical microenvironment undergoes significant changes. In particular, the large changes in various ions encountered by sperm may alter the physiology of sperm, ultimately compromising capacitation and fertilization. Thus, the rapid response to environmental variations is vital for sperm functions. For example, Calcium, the most crucial ion for sperm functions, enters into sperm via Ca2+ permeable ion channels. The cation channel of sperm (CatSper) is a sperm-specific, pH-sensitive, and Ca2+-permeable ion channel. It is responsible for the predominant Ca2+ entry in mammalian sperm and is involved in nearly every event of sperm to acquire fertilizing capability. In addition, CatSper also serves as a pivotal polymodal chemosensor in mammalian sperm by responding to multiple chemical cues. Physiological chemicals (such as progesterone, prostaglandins, β-defensins, and odorants) provoke Ca2+ entry into sperm by activating CatSper and thus triggering sperm functions. Additionally, synthetic and natural chemicals (such as medicines, endocrine disrupting chemicals, drugs of abuse, and antioxidants) affect sperm functions by regulating CatSper-dependent Ca2+ signaling. Therefore, understanding the interactions between CatSper and extracellular ligands sheds light on the mechanisms underlying male infertility and offers innovative diagnostic and treatment approaches. This underscores the importance of CatSper as a crucial regulatory target in male reproduction, linking sperm function with the extracellular environment. In conclusion, this review comprehensively summarizes the relevant studies describing the environmental factors that affect CatSper in humans and rodents.
Collapse
Affiliation(s)
- Sulun Ke
- Institute of Life Science, Nanchang University, Nanchang 330031, China;
- Queen Mary School, Medical College, Nanchang University, Nanchang 330031, China
| | - Tao Luo
- Institute of Life Science, Nanchang University, Nanchang 330031, China;
- Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang University, Nanchang 330006, China
| |
Collapse
|
4
|
Rodríguez-Martínez EA, Rivas CU, Ayala ME, Blanco-Rodríguez R, Juarez N, Hernandez-Vargas EA, Aragón A. A new computational approach, based on images trajectories, to identify the subjacent heterogeneity of sperm to the effects of ketanserin. Cytometry A 2023; 103:655-663. [PMID: 36974731 DOI: 10.1002/cyto.a.24732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/20/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
The identification of kinematic subpopulations is of paramount importance to understanding the biological nature of the sperm heterogeneity. Nowadays, the data of motility parameters obtained by a computer-assisted sperm analysis (CASA) system has been used as input to distinct algorithms to identify kinematic subpopulations. In contrast, the images of the trajectories were depicted only as examples of the patterns of motility in each subpopulation. Here, python code was written to reconstruct the images of trajectories, from their coordinates, then the images of trajectories were used as input to a machine learning clustering algorithm of classification, and the subpopulations were described statistically by the motility parameters. Finally, the images of trajectories in each subpopulation were displayed in a way we called Pollock plots. Semen samples of boar sperm were treated with distinct concentrations of ketanserin (an antagonist of the 5-HT2 receptor of serotonin) and untreated samples were used as a control. The motility of sperm in each sample was analyzed at 0 and 30 min of incubation. Six subpopulations were found. The subpopulation 2 presented the highest values of velocities at 0 or 30 min. After 30 min of incubation, the ketanserin increased the values of the curvilinear velocity at high concentrations, whereas the linearity and the straight velocity decreased. Our computational model permits better identification of the kinematic subpopulations than the traditional approach and provides insights onto the heterogeneity of the response to ketanserin; thus, it could significantly impact the research on the relationship between sperm heterogeneity-fertility.
Collapse
Affiliation(s)
| | - Cindy U Rivas
- Laboratorio de Gametos y Desarrollo Tecnológico, Facultad de Estudios Superiores Iztacala, UNAM, 54090, Tlalnepantla, Estado de México, Mexico
| | - María E Ayala
- Unidad de Biología de la Reproducción, Laboratorio de pubertad, Facultad de Estudios Superiores Zaragoza, UNAM, Ciudad de México, 15000, Mexico
| | - Rodolfo Blanco-Rodríguez
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, Idaho, USA
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, USA
| | - Nancy Juarez
- Laboratorio de Gametos y Desarrollo Tecnológico, Facultad de Estudios Superiores Iztacala, UNAM, 54090, Tlalnepantla, Estado de México, Mexico
| | - Esteban A Hernandez-Vargas
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, Idaho, USA
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, USA
| | - Andrés Aragón
- Laboratorio de Gametos y Desarrollo Tecnológico, Facultad de Estudios Superiores Iztacala, UNAM, 54090, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
5
|
Tourmente M, Sanchez-Rodriguez A, Roldan ERS. Effect of Motility Factors D-Penicillamine, Hypotaurine and Epinephrine on the Performance of Spermatozoa from Five Hamster Species. BIOLOGY 2022; 11:526. [PMID: 35453725 PMCID: PMC9032960 DOI: 10.3390/biology11040526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022]
Abstract
Assessments of sperm performance are valuable tools for the analysis of sperm fertilizing potential and to understand determinants of male fertility. Hamster species constitute important animal models because they produce sperm cells in high quantities and of high quality. Sexual selection over evolutionary time in these species seems to have resulted in the largest mammalian spermatozoa, and high swimming and bioenergetic performances. Earlier studies showed that golden hamster sperm requires motility factors such as D-penicillamine, hypotaurine and epinephrine (PHE) to sustain survival over time, but it is unknown how they affect swimming kinetics or ATP levels and if other hamster species also require them. The objective of the present study was to examine the effect of PHE on spermatozoa of five hamster species (Mesocricetus auratus, Cricetulus griseus, Phodopus campbelli, P. sungorus, P. roborovskii). In sperm incubated for up to 4 h without or with PHE, we assessed motility, viability, acrosome integrity, sperm velocity and trajectory, and ATP content. The results showed differences in the effect of PHE among species. They had a significant positive effect on the maintenance of sperm quality in M. auratus and C. griseus, whereas there was no consistent effect on spermatozoa of the Phodopus species. Differences between species may be the result of varying underlying regulatory mechanisms of sperm performance and may be important to understand how they relate to successful fertilization.
Collapse
Affiliation(s)
- Maximiliano Tourmente
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Spanish Research Council (CSIC), 28006 Madrid, Spain;
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Cordoba X5016GCA, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Consejo Nacional de Investigaciones Científica y Técnicas (CONICET), Cordoba X5016GCA, Argentina
| | - Ana Sanchez-Rodriguez
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Spanish Research Council (CSIC), 28006 Madrid, Spain;
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Spanish Research Council (CSIC), 28006 Madrid, Spain;
| |
Collapse
|
6
|
Miyashita M, Fujinoki M. Effects of aging and oviductal hormones on testes, epididymides, and sperm of hamster. Reprod Med Biol 2022; 21:e12474. [PMID: 35795382 PMCID: PMC9250758 DOI: 10.1002/rmb2.12474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Aging is a major cause of decreased fertility. Using hamster, we examined the effects of aging on testes, epididymides, and sperm. Additionally, we examined whether progesterone (P4), melatonin (Mel) and 5-hydroxytryptamine (5-HT) mitigated effects of aging on sperm. Methods Young (10-16 weeks), Adult (5-7 months), Aged (13-15 months), and Old (19-22 months) hamsters were used. Weights of bodies, testes, and epididymides were measured. Testes and epididymides were studied by histological microscopy. Sera were obtained to determine testosterone concentrations. Sperm were analyzed by video-microscopy. Results By aging, body weights increased but weights of testes and epididymides decreased. Most hamsters were normozoospermia, although several old hamsters were azoospermia. In testes and epididymides, desquamation and structures resembling residual bodies (SRRBs) were observed. Although desquamation was not always related to aging, SRRBs occurred by aging. Testosterone concentrations were not changed in normozoospermic hamsters, but it was significantly reduced in old azoospermic hamster. Aging significantly reduced sperm ability to exhibit hyperactivation. Additionally, aging significantly increased the straight-line velocity (VSL). P4, Mel, and 5-HT lessened the reduction in sperm hyperactivation and the increasing of VSL. Conclusion Aging reduces qualities of testes, epididymides, and sperm, and P4, Mel, and 5-HT recover reduced quality of sperm.
Collapse
Affiliation(s)
- Manami Miyashita
- Research Lab. of Laboratory Animals, Research Center for Laboratory Animals, Comprehensive Research Facilities for Advanced Medical Science, School of MedicineDokkyo Medical UniversityTochigiJapan
| | - Masakatsu Fujinoki
- Research Lab. of Laboratory Animals, Research Center for Laboratory Animals, Comprehensive Research Facilities for Advanced Medical Science, School of MedicineDokkyo Medical UniversityTochigiJapan
| |
Collapse
|