1
|
Intratesticular injection followed by electroporation allows gene transfer in caprine spermatogenic cells. Sci Rep 2018; 8:3169. [PMID: 29453369 PMCID: PMC5816633 DOI: 10.1038/s41598-018-21558-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/07/2018] [Indexed: 01/09/2023] Open
Abstract
The production of transgenic livestock is constrained due to the limited success of currently available methods for transgenesis. Testis mediated gene transfer (TMGT) is an emerging method that shows a high success rate in generating transgenic mice. In this study, we report a newly developed protocol for electroporation-aided TMGT to produce a transgenic goat. The injectable volume and concentration of the transgene were first standardized, and then electroporation conditions were optimized in vitro. In vivo experiments were performed by injecting a transgenic construct (pIRES2-EGFP; enhanced green fluorescent protein) into the testicular interstitium followed by electroporation. Immunohistochemistry, quantitative real-time PCR (qPCR) and western blotting analyses confirmed the successful transfer of the transgene into seminiferous tubules and testicular cells. Furthermore, chromosomal integration of the transgene and its expression in sperm were evaluated d60 and d120 post-electroporation. Our protocol neither altered the seminal characteristics nor the fertilization capacity of the sperm cells. In vitro fertilization using transgenic sperm generated fluorescent embryos. Finally, natural mating of a pre-founder buck produced a transgenic baby goat. The present study demonstrates the first successful report of an electroporation-aided TMGT method for gene transfer in goats.
Collapse
|
2
|
Sato M, Ohtsuka M, Watanabe S, Gurumurthy CB. Nucleic acids delivery methods for genome editing in zygotes and embryos: the old, the new, and the old-new. Biol Direct 2016; 11:16. [PMID: 27037013 PMCID: PMC4815204 DOI: 10.1186/s13062-016-0115-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/15/2016] [Indexed: 12/31/2022] Open
Abstract
In the recent years, sequence-specific nucleases such as ZFNs, TALENs, and CRISPR/Cas9 have revolutionzed the fields of animal genome editing and transgenesis. However, these new techniques require microinjection to deliver nucleic acids into embryos to generate gene-modified animals. Microinjection is a delicate procedure that requires sophisticated equipment and highly trained and experienced technicians. Though over a dozen alternate approaches for nucleic acid delivery into embryos were attempted during the pre-CRISPR era, none of them became routinely used as microinjection. The addition of CRISPR/Cas9 to the genome editing toolbox has propelled the search for novel delivery approaches that can obviate the need for microinjection. Indeed, some groups have recently developed electroporation-based methods that have the potential to radically change animal transgenesis. This review provides an overview of the old and new delivery methods, and discusses various strategies that were attempted during the last three decades. In addition, several of the methods are re-evaluated with respect to their suitability to deliver genome editing components, particularly CRISPR/Cas9, to embryos.
Collapse
Affiliation(s)
- Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544 Japan
| | - Masato Ohtsuka
- Division of Basic Molecular Science and Molecular Medicine, School of Medicine, Tokai University, Kanagawa, 259 1193 Japan
| | - Satoshi Watanabe
- Animal Genome Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Ibaraki, 305-8602 Japan
| | - Channabasavaiah B. Gurumurthy
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE 68198 USA
| |
Collapse
|
3
|
Chen X, Zhang Z, Chang X, Niu Y, Cui H. Production of transgenic mice expressing tumor virus A under ovarian‑specific promoter 1 control using testis‑mediated gene transfer. Mol Med Rep 2013; 9:955-60. [PMID: 24366307 DOI: 10.3892/mmr.2013.1876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 11/21/2013] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to produce transgenic mice expressing tumor virus A (TVA) in the ovary under ovarian specific promoter 1 (OSP1) control. A transgenic mouse model was established in which TVA, an avian retroviral receptor gene driven by OSP1, was selectively expressed in the ovary. A recombinant plasmid containing TVA cDNA and an OSP1 promoter was constructed. The DNA fragment was repeatedly injected into male mouse testes at multiple sites. At 4‑7, 7‑10 and 10‑13 weeks following the final injection, two DNA‑injected male mice were mated with four wild‑type female mice to produce transgenic mice. The transgenic positive rate in mouse F1 offspring was 39.69%. When the positive F1 individuals were mated with wild‑type Imprinting Control Region mice (PxW) or with positive F1 individuals (PxP), the F2 individuals had a transgenic rate of 12.44%. The transgenic rates in the F1 offspring, produced following mating at the three time intervals, were 55.71 (39/70), 30.77 (4/13) and 18.75% (9/48), respectively. The transgenic rates of the F2 offspring decreased with the age of the F1 offspring, from 26.67% when PxP were mated at 6‑8 weeks of age to 6.52% when PxW were mated at 5‑6 months of age. The results indicate a high efficiency of gene transfer to F1 offspring using testis‑mediated gene transfer (TMGT). The transgenic rate in the F2 offspring was lower than that in the F1 offspring. The results reveal that TMGT is suitable for creating transgenic animals among F1 offspring. Semi‑quantitative reverse transcription-polymerase chain reaction results showed that TVA was expressed in the mice ovaries. The results demonstrate the importance of using the replication‑competent avian sarcoma‑leukosis virus long terminal repeat with a splice acceptor‑TVA system in ovarian tumorigenesis research.
Collapse
Affiliation(s)
- Xinhua Chen
- Gynecologic Oncology Center, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Zujuan Zhang
- Gynecologic Oncology Center, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Xiaohong Chang
- Gynecologic Oncology Center, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Yidong Niu
- Laboratory Animal Center, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Heng Cui
- Gynecologic Oncology Center, Peking University People's Hospital, Beijing 100044, P.R. China
| |
Collapse
|
4
|
Abstract
Assisted reproductive technologies (ART) have revolutionized the treatment of infertility. However, many types of infertility may still not be addressable by ART. With recent successes in identifying many of the genetic factors responsible for male infertility and the future prospect of whole individual human genome sequencing to identify disease causing genes, the possible use of gene therapy for treating infertility deserves serious consideration. Gene therapy in the sperm and testis offers both opportunities and obstacles. The opportunities stem from the fact that numerous different approaches have been developed for introducing transgenes into the sperm and testis, mainly because of the interest in using sperm mediated gene transfer and testis mediated gene transfer as ways to generate transgenic animals. The obstacles arise from the fact that it may be very difficult to carry out gene therapy of the testis and sperm without also affecting the germline. Here we consider new developments in both sperm and testis mediated gene transfer, including the use of viral vectors, as well as the technical and ethical challenges facing those who would seek to use these approaches for gene therapy as a way to treat male infertility.
Collapse
Affiliation(s)
- John Parrington
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom.
| | | | | |
Collapse
|
5
|
Bugos O, Bhide M, Zilka N. Beyond the rat models of human neurodegenerative disorders. Cell Mol Neurobiol 2009; 29:859-69. [PMID: 19263215 DOI: 10.1007/s10571-009-9367-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 02/11/2009] [Indexed: 12/30/2022]
Abstract
The rat is a model of choice in biomedical research for over a century. Currently, the rat presents the best "functionally" characterized mammalian model system. Despite this fact, the transgenic rats have lagged behind the transgenic mice as an experimental model of human neurodegenerative disorders. The number of transgenic rat models recapitulating key pathological hallmarks of Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, or human tauopathies is still limited. The reason is that the transgenic rats remain more difficult to produce than transgenic mice. The gene targeting technology is not yet established in rats due to the lack of truly totipotent embryonic stem cells and cloning technology. This extremely powerful technique has given the mouse a clear advantage over the rat in generation of new transgenic models. Despite these limitations, transgenic rats have greatly expanded the range of potential experimental approaches. The large size of rats permits intrathecal administration of drugs, stem cell transplantation, serial sampling of the cerebrospinal fluid, microsurgical techniques, in vivo nerve recordings, and neuroimaging procedures. Moreover, the rat is routinely employed to demonstrate therapeutic efficacy and to assess toxicity of novel therapeutic compounds in drug development. Here we suggest that the rat constitutes a slightly underestimated but perspective animal model well-suited for understanding the mechanisms and pathways underlying the human neurodegenerative disorders.
Collapse
Affiliation(s)
- Ondrej Bugos
- Institute of Neuroimmunology, Slovak Academy of Sciences, AD Centre, 845 10 Bratislava, Slovak Republic
| | | | | |
Collapse
|
6
|
Coward K, Kubota H, Parrington J. In vivoGene Transfer into Testis and Sperm: Developments and Future Application. ACTA ACUST UNITED AC 2009; 53:187-97. [PMID: 17852043 DOI: 10.1080/01485010701426455] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Despite significant advances in the treatment of infertility via assisted reproductive technology (ART), the underlying causes of idiopathic male infertility still remain unclear. Accumulating evidence suggests that disorders associated with testicular gene expression may play an important role in male infertility. To be able to fully study the molecular mechanisms underlying spermatogenesis and fertilization, it is necessary to manipulate gene expression in male germ cells. Since there is still no reliable method of recapitulating spermatogenesis culture, the development of alternative transgenic approaches is paramount in the study of gene function in testis and sperm. Established methods of creating transgenic animals rely heavily upon injection of DNA into the pronucleus or the injection of transfected embryonic stem cells into blastocysts to form chimeras. Despite the success of these two approaches for making transgenic and knockout animals, concerns remain over costs and the efficiency of transgene integration. Consequently, efforts are in hand to evaluate alternative methodologies. At present, there is much interest in developing approaches that utilize spermatozoa as vectors for gene transfer. These approaches, including testis mediated gene transfer (TMGT) and sperm mediated gene transfer (SMGT), have great potential as tools for infertility research and in the creation of transgenic animals. The aim of this short review is to briefly describe developments in this field and discuss how these gene transfer methods might be used effectively in future research and clinical arenas.
Collapse
Affiliation(s)
- Kevin Coward
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
7
|
Niu Y, Liang S. Progress in gene transfer by germ cells in mammals. J Genet Genomics 2009; 35:701-14. [PMID: 19103425 DOI: 10.1016/s1673-8527(08)60225-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 10/21/2008] [Accepted: 10/30/2008] [Indexed: 11/24/2022]
Abstract
Use of germ cells as vectors for transgenesis in mammals has been well developed and offers exciting prospects for experimental and applied biology, agricultural and medical sciences. Such approach is referred to as either male germ cell mediated gene transfer (MGCMGT) or female germ cell mediated gene transfer (FGCMGT) technique. Sperm-mediated gene transfer (SMGT), including its alternative method, testis-mediated gene transfer (TMGT), becomes an established and reliable method for transgenesis. They have been extensively used for producing transgenic animals. The newly developed approach of FGCMGT, ovary-mediated gene transfer (OMGT) is also a novel and useful tool for efficient transgenesis. This review highlights an overview of the recent progress in germ cell mediated gene transfer techniques, methods developed and mechanisms of nucleic acid uptake by germ cells.
Collapse
Affiliation(s)
- Yidong Niu
- Laboratory Animal Center, Peking University People's Hospital, Beijing 100044, China.
| | | |
Collapse
|
8
|
Efficient generation of transgenic chickens using the spermatogonial stem cells in vivo and ex vivo transfection. ACTA ACUST UNITED AC 2008; 51:734-42. [DOI: 10.1007/s11427-008-0100-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2007] [Accepted: 05/23/2008] [Indexed: 11/25/2022]
|
9
|
Dhup S, Majumdar SS. Transgenesis via permanent integration of genes in repopulating spermatogonial cells in vivo. Nat Methods 2008; 5:601-3. [PMID: 18552853 DOI: 10.1038/nmeth.1225] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 05/07/2008] [Indexed: 11/09/2022]
Abstract
Current techniques for making transgenic mice are cumbersome, requiring trained personnel, costly infrastructure and collection of many zygotes from mice that are then killed. We developed a reproducible nonterminal technique for transfecting genes in undifferentiated spermatogonia through in vivo electroporation of the testis; about 94% of male mice electroporated with different transgenes successfully sired transgenic pups. Such electroporated males provide a valuable resource for continuous production of transgenic founders for more than a year.
Collapse
Affiliation(s)
- Suveera Dhup
- Division of Embryo Biotechnology, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110 067, India
| | | |
Collapse
|
10
|
Sato M. Direct gene delivery to murine testis as a possible means of transfection of mature sperm and epithelial cells lining epididymal ducts. Reprod Med Biol 2006; 5:1-7. [PMID: 29699231 DOI: 10.1111/j.1447-0578.2006.00117.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The use of a sperm cell to introduce exogenous DNA into an oocyte at the time of fertilization is of interest for the simple production of transgenic mice, and is now called 'sperm-mediated gene transfer (SMGT)'. In vivo transfection of sperm cells has been developed as an alternative method for SMGT and can be carried out by direct gene delivery into an interstitial space in a testis (now called 'testis-mediated gene transfer [TMGT]'), into the vas deferens, or into seminiferous tubules. This review summarizes what has been achieved in the field of in vivo gene transfer using sperm cells. (Reprod Med Biol 2006; 5: 1-7).
Collapse
Affiliation(s)
- Masahiro Sato
- Division of Basic Molecular Science and Molecular Medicine, School of Medicine, Tokai University, Kanagawa, Japan
| |
Collapse
|
11
|
Tesson L, Cozzi J, Ménoret S, Rémy S, Usal C, Fraichard A, Anegon I. Transgenic modifications of the rat genome. Transgenic Res 2006; 14:531-46. [PMID: 16245144 DOI: 10.1007/s11248-005-5077-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 03/29/2005] [Indexed: 11/28/2022]
Abstract
The laboratory rat (R. norvegicus) is a very important experimental animal in several fields of biomedical research. This review describes the various techniques that have been used to generate transgenic rats: classical DNA microinjection and more recently described techniques such as lentiviral vector-mediated DNA transfer into early embryos, sperm-mediated transgenesis, embryo cloning by nuclear transfer and germline mutagenesis. It will also cover techniques associated to transgenesis such as sperm cryopreservation, embryo freezing and determination of zygosity. The availability of several technologies allowing genetic manipulation in the rat coupled to genomic data will allow biomedical research to fully benefit from the rat as an experimental animal.
Collapse
Affiliation(s)
- Laurent Tesson
- Institut de Transplantation et de Recherche en Transplantation (ITERT), F-44093, Nantes, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Shen W, Li L, Pan Q, Min L, Dong H, Deng J. Efficient and simple production of transgenic mice and rabbits using the new DMSO-sperm mediated exogenous DNA transfer method. Mol Reprod Dev 2006; 73:589-94. [PMID: 16450410 DOI: 10.1002/mrd.20401] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A high efficient and simple transgenic technology on mice and rabbits to transfect spermatozoa with exogenous DNA/DMSO complex to obtain transgenic offspring, which is namely called DMSO-sperm mediated gene transfer (SMGT). Mouse sperm could be either directly transfected via injection into testis or cultured in vitro with the plasmed DNA containing the enhanced green fluorescent protein (EGFP) that could be expressed in the embryos and offspring. Then, 36 living transgenic rabbits were produced using the same technology, and the transgenic ratio of 56.3% was detected using PCR and Southern blot. As the controls, the transgenic ratios of 39.6% and 47.8% have also been tested using the liposomes mediated technology of Tfx-50 Reagent or Lipefectamin-2000, respectively. The results show that the female transgenic rabbits, as the mammary gland bioreactor models, could express the human tissue plasminogen activator mutant (htPAm) in their mammary cells when they are adult.
Collapse
Affiliation(s)
- Wei Shen
- Department of Life Science, Peking University, Beijing, China.
| | | | | | | | | | | |
Collapse
|
13
|
Li L, Shen W, Min L, Dong H, Sun Y, Pan Q. Human lactoferrin transgenic rabbits produced efficiently using dimethylsulfoxide - sperm-mediated gene transfer. Reprod Fertil Dev 2006; 18:689-95. [PMID: 16930515 DOI: 10.1071/rd06001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2006] [Accepted: 05/02/2006] [Indexed: 11/23/2022] Open
Abstract
Transgenic animal mammary gland bioreactors are used to produce recombinant proteins. However, it is difficult to validate whether these transgenic domestic animals are able to express the recombinant protein efficiently in their mammary glands before the birth of transgenic offspring. In the present study, a simple and efficient method was established to evaluate the functionality of animal mammary gland tissue-expressed cassettes. The gene transfer vector pGBC2LF was constructed, and the expression of human lactoferrin (LF) gene was controlled by the goat β-casein gene 5′ flanking sequence. To obtain the most efficient transfection, the influence of DNA concentration, dimethylsulfoxide (DMSO) concentration, and the ratio of linear-to-circular DNA required for associating DNA with spermatozoa were evaluated. Transfection of exogenous DNA into rabbit spermatozoa was found to be efficient using 30 μg mL–1 DNA, DMSO at a final concentration of 3%, and a 3 : 1 ratio of linear-to-circular DNA, with 29 of 85 (34.1%) in vitro-fertilised embryos being transgenic. Using DMSO–sperm-mediated gene transfer (DMSO-SMGT), 89 rabbit offspring were produced, with 46 of these (57.1%) being transgenic. As mammary gland bioreactor models, 17 of 21 (81%) transgenic female rabbits could express human LF protein in their glands. During lactation of the transgenic rabbits, the highest level of human LF protein expressed was 153 ± 31 μg mL–1, and the mean expression level in all of the transgenic rabbits was 103 ± 20 μg mL–1 in the third week, declining gradually after this time. Our results demonstrate that transgenic rabbits produced by DMSO–SMGT were able to express human LF protein in the correct tissue.
Collapse
Affiliation(s)
- Lan Li
- Institute of Animal Reproduction, Development and Genetic Engineering, Department of Animal Sciences and Technology, Laiyang Agricultural University, Chengyang, Qingdao 266109, China
| | | | | | | | | | | |
Collapse
|
14
|
Sato M, Ishikawa A, Kimura M. Direct injection of foreign DNA into mouse testis as a possible in vivo gene transfer system via epididymal spermatozoa. Mol Reprod Dev 2002; 61:49-56. [PMID: 11774375 DOI: 10.1002/mrd.1130] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have attempted to transfect testicular spermatozoa with plasmid DNA by direct injection into testes to obtain transgenic animals [this technique was thus termed "testis-mediated gene transfer (TMGT)"]. When injected males were mated with superovulated females 2 and 3 days after injection, (i) high efficiencies (more than 50%) of gene transmission were achieved in the mid-gestational F0 fetuses, (ii) the copy number of plasmid DNA in the fetuses was estimated to be less than 1 copy per diploid cell, and (iii) overt gene expression was not found in these fetuses. These findings suggest the possibility that plasmid DNA introduced into a testis is rapidly transported to the epididymis and then incorporated by epididymal spermatozoa. The purpose of this study was to elucidate the mechanism of TMGT by introducing trypan blue (TB) or Hoechst 33342 directly into testis. We found that TB is transported to the ducts of the caput epididymis via rete testis within 1 min after testis injection, and TB reached the corpus and cauda epididymis within 2-4 days after injection. Staining of spermatozoa isolated from any portion of epididymis was observed 4 days after injection of a solution containing Hoechst 33342. Injection of enhanced green fluorescent protein (EGFP) expression vector/liposome complex into testis resulted in transfection of epithelial cells of epididymal ducts facing the lumen, although the transfection efficiency appeared to be low. In vivo electroporation toward the caput epididymis immediately after injection of EGFP expression vector into a testis greatly improved the uptake of foreign DNA by the epididymal epithelial cells. PCR analysis using spermatozoa isolated from corpus and cauda epididymis 4 days after injection of a DNA/liposome complex into testis revealed exogenous DNA in these spermatozoa even after treatment with DNase I. These findings indicate that exogenous DNA introduced into tesits is rapidly transported to epididymal ducts via the rete testis and efferent ducts, and then incorporated by epithelial cells of epididymis and epididymal spermatozoa.
Collapse
Affiliation(s)
- Masahiro Sato
- The Institute of Medical Sciences, Tokai University, Bohseidai, Isehara, Kanagawa, Japan.
| | | | | |
Collapse
|
15
|
YONEZAWA T, FURUHATA Y, HIRABAYASHI K, SUZUKI M, YAMANOUCHI K, NISHIHARA M. Protamine-Derived Synthetic Peptide Enhances the Efficiency of Sperm-Mediated Gene Transfer Using Liposome-Peptide-DNA Complex. J Reprod Dev 2002. [DOI: 10.1262/jrd.48.281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Tomohiro YONEZAWA
- Department of Veterinary Physiology, Veterinary Medical Science, The University of Tokyo
| | - Yasufumi FURUHATA
- Department of Veterinary Physiology, Veterinary Medical Science, The University of Tokyo
- Ajinomoto Central Research Laboratories, Ajinomoto Co., Inc
| | - Keiji HIRABAYASHI
- Department of Veterinary Physiology, Veterinary Medical Science, The University of Tokyo
| | - Masatoshi SUZUKI
- Department of Veterinary Physiology, Veterinary Medical Science, The University of Tokyo
| | - Keitaro YAMANOUCHI
- Department of Veterinary Physiology, Veterinary Medical Science, The University of Tokyo
| | - Masugi NISHIHARA
- Department of Veterinary Physiology, Veterinary Medical Science, The University of Tokyo
| |
Collapse
|
16
|
Yonezawa T, Furuhata Y, Hirabayashi K, Suzuki M, Takahashi M, Nishihara M. Detection of transgene in progeny at different developmental stages following testis-mediated gene transfer. Mol Reprod Dev 2001; 60:196-201. [PMID: 11553918 DOI: 10.1002/mrd.1077] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We recently reported that exogenous DNA injected into testis as a liposome complex can be transferred into the egg via sperm by natural mating and integrated in the genome (testis-mediated gene transfer: TMGT). Here, we studied the efficiency of each of the several liposomes in associating foreign DNA with sperm, the expression of an introduced gene in early embryos, and the presence of the DNA in fetuses and pups at different ages. The CMV/beta-actin/EGFP fusion gene, encapsulated with different liposomes, was injected into rat testis, and spermatozoa in the cauda epididymis were obtained 1, 4, and 14 days after injection. We tested each of the 8 liposomes, and found that only 2, DMRIE-C and SuperFect, led to the detection of foreign DNA on all of the days examined, with relatively higher ratios of rats having positive sperm. By means of TMGT using either of those two liposomes, more than 80% of morula-stage embryos expressed EGFP, as observed by fluorescence microscopy. Then we detected introduced DNA in the progeny by PCR and Southern dot blot, and found that the ratio of animals carrying the foreign DNA decreased as they developed, and that only a part of postpartum progeny were foreign-DNA-positive with high incidence of mosaicism. These results suggest that, although, the success rate is still limited, foreign DNA could be integrated into the genome of the progeny by TMGT at least under specific experimental conditions, the efficiency of which depends largely on the characteristics of the liposome. The results also suggest that TMGT could be applicable to fetal gene therapy as well as to the generation of transgenic animals.
Collapse
Affiliation(s)
- T Yonezawa
- Department of Veterinary Physiology, Veterinary Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Arima T, Ebara F, Fujihara N. Intra-Testicular Injection of Foreign DNA as a Possible Method for the Production of Transgenic Chicken. JOURNAL OF APPLIED ANIMAL RESEARCH 2001. [DOI: 10.1080/09712119.2001.9706738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|