1
|
Nakamura S, Hira S, Kojima M, Kondo A, Mukai M. Expression of the core promoter factors TATA box binding protein and TATA box binding protein-related factor 2 in Drosophila germ cells and their distinct functions in germline development. Dev Growth Differ 2020; 62:540-553. [PMID: 33219538 DOI: 10.1111/dgd.12701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022]
Abstract
In Drosophila, the expression of germline genes is initiated in primordial germ cells (PGCs) and is known to be associated with germline establishment. However, the transcriptional regulation of germline genes remains elusive. Previously, we found that the BTB/POZ-Zn-finger protein, Mamo, is necessary for the expression of the germline gene, vasa, in PGCs. Moreover, truncated Mamo lacking the BTB/POZ domain (MamoAF) is a potent vasa activator. In this study, we investigated the genetic interaction between MamoAF and specific transcriptional regulators to gain insight into the transcriptional regulation of germline development. We identified a general transcription factor, TATA box binding protein (TBP)-associated factor 3 (TAF3/BIP2), and a member of the TBP-like proteins, TBP-related factor 2 (TRF2), as new genetic modifiers of MamoAF. In contrast to TRF2, TBP was found to show no genetic interaction with MamoAF, suggesting that Trf2 has a selective function. Therefore, we focused on Trf2 expression and investigated its function in germ cells. We found that Trf2 mRNA, rather than Tbp mRNA, was preferentially expressed in PGCs during embryogenesis. Depletion of TRF2 in PGCs resulted in decreased mRNA expression of vasa. RNA interference-mediated knockdown showed that, while Trf2 is required for maintenance of germ cells, Tbp is needed for their differentiation during oogenesis. Therefore, these results suggest that Trf2 and Tbp expression is differentially regulated in germ cells and that these factors have distinct functions in Drosophila germline development.
Collapse
Affiliation(s)
- Shoichi Nakamura
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan.,Graduate School of Natural Science, Konan University, Kobe, Japan.,Institute for Integrative Neurosciences, Hyogo, Japan.,Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo, Japan
| | - Seiji Hira
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan.,Graduate School of Natural Science, Konan University, Kobe, Japan.,Institute for Integrative Neurosciences, Hyogo, Japan
| | - Makoto Kojima
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Akane Kondo
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan.,Graduate School of Natural Science, Konan University, Kobe, Japan
| | - Masanori Mukai
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan.,Graduate School of Natural Science, Konan University, Kobe, Japan.,Institute for Integrative Neurosciences, Hyogo, Japan
| |
Collapse
|
2
|
Diversity in TAF proteomics: consequences for cellular differentiation and migration. Int J Mol Sci 2014; 15:16680-97. [PMID: 25244017 PMCID: PMC4200853 DOI: 10.3390/ijms150916680] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 12/31/2022] Open
Abstract
Development is a highly controlled process of cell proliferation and differentiation driven by mechanisms of dynamic gene regulation. Specific DNA binding factors for establishing cell- and tissue-specific transcriptional programs have been characterised in different cell and animal models. However, much less is known about the role of “core transcription machinery” during cell differentiation, given that general transcription factors and their spatiotemporally patterned activity govern different aspects of cell function. In this review, we focus on the role of TATA-box associated factor 4 (TAF4) and its functional isoforms generated by alternative splicing in controlling lineage-specific differentiation of normal mesenchymal stem cells and cancer stem cells. In the light of our recent findings, induction, control and maintenance of cell differentiation status implies diversification of the transcription initiation apparatus orchestrated by alternative splicing.
Collapse
|
3
|
Variations in intracellular levels of TATA binding protein can affect specific genes by different mechanisms. Mol Cell Biol 2007; 28:83-92. [PMID: 17954564 DOI: 10.1128/mcb.00809-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that reduced intracellular levels of the TATA binding protein (TBP), brought about by tbp heterozygosity in DT40 cells, resulted in a mitotic delay reflecting reduced expression of the mitotic regulator cdc25B but did not significantly affect overall transcription. Here we extend these findings in several ways. We first provide evidence that the decrease in cdc25B expression reflects reduced activity of the cdc25B core promoter in the heterozygous (TBP-het) cells. Strikingly, mutations in a previously described repressor element that overlaps the TATA box restored promoter activity in TBP-het cells, supporting the idea that the sensitivity of this promoter to TBP levels reflects a competition between TBP and the repressor for DNA binding. To determine whether cells might have mechanisms to compensate for fluctuations in TBP levels, we next examined expression of the two known vertebrate TBP homologues, TLP and TBP2. Significantly, mRNAs encoding both were significantly overexpressed relative to levels observed in wild-type cells. In the case of TLP, this was shown to reflect regulation of the core promoter by both TBP and TLP. Together, our results indicate that variations in TBP levels can affect the transcription of specific promoters in distinct ways, but overall transcription may be buffered by corresponding alterations in the expression of TBP homologues.
Collapse
|
4
|
Di Pietro C, Ragusa M, Duro L, Guglielmino MR, Barbagallo D, Carnemolla A, Laganà A, Buffa P, Angelica R, Rinaldi A, Calafato MS, Milicia I, Caserta C, Giugno R, Pulvirenti A, Giunta V, Rapisarda A, Di Pietro V, Grillo A, Messina A, Ferro A, Grzeschik KH, Purrello M. Genomics, evolution, and expression of TBPL2, a member of the TBP family. DNA Cell Biol 2007; 26:369-85. [PMID: 17570761 DOI: 10.1089/dna.2006.0527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
TBPL2 is the most recently discovered and less characterized member of the TATA box binding protein (TBP) family that also comprises TBP, TATA box binding protein-like 1 (TBPL1), and Drosophila melanogaster TBP related factor (TRF). In this paper we report our in silico and in vitro data on (i) the genomics of the TBPL2 gene in Homo sapiens, Pan troglodytes, Mus musculus, Rattus norvegicus, Gallus gallus, Xenopus tropicalis, and Takifugu rubripes; (ii) its evolution and phylogenetic relationship with TBP, TBPL1, and TRF; (iii) the structure of the TBPL2 proteins that belong to the recently identified group of the intrinsically unstructured proteins (IUPs); and (iv) TBPL2 expression in different organs and cell types of Homo sapiens and Rattus norvegicus. Similar to TBP, both the TBPL2 gene and protein are bimodular. The 3' region of the gene encoding the DNA binding domain (DBD) was well conserved during evolution. Its high homology to vertebrate TBP suggests that TBPL2 also should bind to the TATA box and interact with the proteins binding to TBP carboxy-terminal domain, such as the TBP associated factors (TAFs). As already demonstrated for TBP, TBPL2 amino-terminal segment is intrinsically unstructured and, even though variable among vertebrates, comprises a highly conserved motif not found in any other known protein. Absence of TBPL2 from the genome of invertebrates and plants demonstrates its specific origin within the subphylum of vertebrates. Our RT-PCR analysis of human and rat RNA shows that, similar to TBP, TBPL2 is ubiquitously synthesized even though at variable levels that are at least two orders of magnitude lower. Higher expression of TBPL2 in the gonads than in other organs suggests that it could perform important functions in gametogenesis. Our genomic and expression data should contribute to clarify why TBP has a general master role within the transcription apparatus (TA), whereas both TBPL1 and TBPL2 perform tissue-specific functions.
Collapse
Affiliation(s)
- Cinzia Di Pietro
- Dipartimento di Scienze Biomediche-Unità di Biologia Genetica e BioInformatica, Università di Catania, Catania, Italy, EU
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Xiao L, Kim M, DeJong J. Developmental and cell type-specific regulation of core promoter transcription factors in germ cells of frogs and mice. Gene Expr Patterns 2006; 6:409-19. [PMID: 16412700 DOI: 10.1016/j.modgep.2005.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 09/09/2005] [Accepted: 09/13/2005] [Indexed: 01/25/2023]
Abstract
This article reports on the comparative cell type-specific expression profiles of selected core promoter-associated transcription factors during gametogenesis and embryogenesis in frogs and mice. In frogs we tested TBP, TRF2/TLF, TRF3, TFIIAalphabeta, and ALF, as well as variant forms of TAFs 4, 5, and 6. Four of these factors, TRF3, TAF4L, TAF5L, and the previously-characterized ALF gene, are preferentially expressed in testis and ovary. In mice we tested TBP, TRF2/TLF, TRF3, TFIIAalphabeta, and ALF. The results showed that while ALF was present in testis and ovary, as expected, TRF3 could only be detected in the ovary. RT-PCR experiments using RNAs from microdissected ovary tissue, together with in situ hybridization analysis, showed that TRF3 and ALF genes are specifically expressed in oocytes in both adult and prepubertal animals, whereas, their somatic counterparts, TBP and TFIIAalphabeta, are present in oocytes and in surrounding somatic cells of the follicle. Furthermore, both mice and frogs displayed a reduction in TRF3 and ALF transcript levels around the time of fertilization. In mice, transcripts from these genes could again be detected at low levels in embryonic reproductive tissues, but only reached maximal levels in adult animals. Finally, the results of protein-DNA interaction assays show that all combinations of core promoter complexes can be formed in vitro using recombinant TBP, TRF3, TFIIA, and ALF, including a TRF3-ALF complex. Overall, the diverse gene regulatory patterns observed here and in earlier reports indicate precise control over which transcription factor complexes can be formed in vivo during gametogenesis and early embryogenesis.
Collapse
Affiliation(s)
- Lijuan Xiao
- Department of Molecular and Cell Biology, University of Texas at Dallas, 2601 N. Floyd Road, Richardson, TX 75080, USA
| | | | | |
Collapse
|
6
|
DeJong J. Basic mechanisms for the control of germ cell gene expression. Gene 2006; 366:39-50. [PMID: 16326034 DOI: 10.1016/j.gene.2005.10.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 09/23/2005] [Accepted: 10/10/2005] [Indexed: 11/17/2022]
Abstract
The patterns of gene expression in spermatocytes and oocytes are quite different from those in somatic cells. The messenger RNAs produced by these cells are not only required to support germ cell development but, in the case of oocytes, they are also used for maturation, fertilization, and early embryogenesis. Recent studies have begun to provide an explanation for how germ-cell-specific programs of gene expression are generated. Part of the answer comes from the observation that germ cells express core promoter-associated regulatory factors that are different from those expressed in somatic cells. These factors supplement or replace their somatic counterparts to direct expression during meiosis and gametogenesis. In addition, germ cell transcription involves the recognition and use of specialized core promoter sequences. Finally, transcription must occur on chromosomal DNA templates that are reorganized into new chromatin-packaging configurations using alternate histone subunits. This article will review recent advances in our understanding of the factors and mechanisms that control transcription in ovary and testis and will discuss models for germ cell gene expression.
Collapse
Affiliation(s)
- Jeff DeJong
- Department of Molecular and Cell Biology, University of Texas at Dallas, 2601 N. Floyd Road, Richardson, TX 75080, United States.
| |
Collapse
|
7
|
Osada N, Hirata M, Tanuma R, Kusuda J, Hida M, Suzuki Y, Sugano S, Gojobori T, Shen CKJ, Wu CI, Hashimoto K. Substitution rate and structural divergence of 5'UTR evolution: comparative analysis between human and cynomolgus monkey cDNAs. Mol Biol Evol 2005; 22:1976-82. [PMID: 15944441 DOI: 10.1093/molbev/msi187] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The substitution rate and structural divergence in the 5'-untranslated region (UTR) were investigated by using human and cynomolgus monkey cDNA sequences. Due to the weaker functional constraint in the UTR than in the coding sequence, the divergence between humans and macaques would provide a good estimate of the nucleotide substitution rate and structural divergence in the 5'UTR. We found that the substitution rate in the 5'UTR (K5UTR) averaged approximately 10%-20% lower than the synonymous substitution rate (Ks). However, both the K5UTR and nonsynonymous substitution rate (Ka) were significantly higher in the testicular cDNAs than in the brain cDNAs, whereas the Ks did not differ. Further, an in silico analysis revealed that 27% (169/622) of macaque testicular cDNAs had an altered exon-intron structure in the 5'UTR compared with the human cDNAs. The fraction of cDNAs with an exon alteration was significantly higher in the testicular cDNAs than in the brain cDNAs. We confirmed by using reverse transcriptase-polymerase chain reaction that about one-third (6/16) of in silico "macaque-specific" exons in the 5'UTR were actually macaque specific in the testis. The results imply that positive selection increased K5UTR and structural alteration rate of a certain fraction of genes as well as Ka. We found that both positive and negative selection can act on the 5'UTR sequences.
Collapse
Affiliation(s)
- Naoki Osada
- Division of Genetic Resources, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chong JA, Moran MM, Teichmann M, Kaczmarek JS, Roeder R, Clapham DE. TATA-binding protein (TBP)-like factor (TLF) is a functional regulator of transcription: reciprocal regulation of the neurofibromatosis type 1 and c-fos genes by TLF/TRF2 and TBP. Mol Cell Biol 2005; 25:2632-43. [PMID: 15767669 PMCID: PMC1061635 DOI: 10.1128/mcb.25.7.2632-2643.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lack of direct targets for TATA-binding protein (TBP)-like factors (TLFs) confounds the understanding of their role in gene expression. Here we report that human TLF (also called TBP-related factor 2 [TRF2]) activates a number of different genes, including the neurofibromatosis type 1 (NF1) gene. The overexpression of TLF increases the amount of NF1 mRNA in cells. In vivo, TLF binds to and upregulates transcription from a fragment of the NF1 promoter. In vitro, purified TLF-TFIIA binds directly to the same NF1 promoter fragment that is required for TLF responsiveness in cells. Furthermore, targeted deletion of TLF in mice reduces NF1 levels. In contrast, TLF inhibits transcription driven by a fragment from the TATA-containing c-fos promoter by sequestering TFIIA. TBP affects the NF1 and c-fos promoters in a manner reciprocal to that of TLF, stimulating the c-fos promoter and inhibiting NF1 transcription. We conclude that TLF is a functional regulator of transcription with targets distinct from those of TBP.
Collapse
Affiliation(s)
- Jayhong A Chong
- Department of Cardiology, Children's Hospital, Enders 1309, 320 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
9
|
Ongeri EM, Verderame MF, Hammond JM. Follicle-stimulating hormone induction of ovarian insulin-like growth factor-binding protein-3 transcription requires a TATA box-binding protein and the protein kinase A and phosphatidylinositol-3 kinase pathways. Mol Endocrinol 2005; 19:1837-48. [PMID: 15718291 DOI: 10.1210/me.2004-0487] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The current study was done to elucidate the mechanism of the FSH stimulation of IGF-binding protein 3 (IGFBP-3) expression and map the FSH response element on the pig IGFBP-3 promoter. Forskolin induced IGFBP-3 reporter activity in transiently transfected granulosa cells. The protein kinase A (PKA) inhibitor [N-[2-(p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide, 2HCl] (and cotransfection with a PKA inhibitor expression vector), the phosphatidylinositol-3 kinase inhibitor [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one], and the ERK inhibitor [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene], all blocked FSH stimulation. Use of serial deletion constructs and site-directed mutagenesis show that a TATA box-binding protein site is required for FSH stimulation and that a specific protein 1 (Sp1) site is required for basal transcription. Gel shift assays of nuclear protein with a -61/-25 probe detected four protein-DNA complexes, with bands I and II having significantly higher intensities in FSH-treated cells than in controls. Mutation of the Sp1 site prevented formation of bands I and II whereas mutation of the TATA box-binding protein site prevented formation of band IV. Use of specific antibodies showed that Sp1 participates in formation of band I, Sp3 band II, and p300 in both I and II. Band III was nonspecifically competed out. We conclude that FSH stimulation of IGFBP-3 transcription is mediated by cAMP via the PKA pathway and requires the P1-3 kinase and likely the MAPK pathways.
Collapse
Affiliation(s)
- Elimelda Moige Ongeri
- Pennsylvania State University, College of Medicine, Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | | | | |
Collapse
|
10
|
Jin JS, Baek S, Lee H, Oh MY, Koo YE, Shim MS, Kwon SY, Jeon I, Park SY, Baek K, Yoo MA, Hatfield DL, Lee BJ. A DNA replication-related element downstream from the initiation site of Drosophila selenophosphate synthetase 2 gene is essential for its transcription. Nucleic Acids Res 2004; 32:2482-93. [PMID: 15121905 PMCID: PMC419457 DOI: 10.1093/nar/gkh569] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2004] [Revised: 03/27/2004] [Accepted: 04/06/2004] [Indexed: 11/13/2022] Open
Abstract
Selenophosphate synthetase catalyzes the synthesis of selenophosphate which is a selenium donor for Sec biosynthesis. In Drosophila melanogaster, there are two types of selenophosphate synthetases designated dSPS1 and dSPS2, where dSPS2 is a selenoprotein. The mechanism of gene expression of dSPS2 as well as other selenoproteins in Drosophila has not been elucidated. Herein, we report an essential regulator system that regulates the transcription of the dSPS2 gene (dsps2). Through deletion/substitution mutagenesis, the downstream DNA replication-related element (DRE) located at +71 has been identified as an essential element for dsps2 promoter activity. Furthermore, double-stranded RNA interference (dsRNAi) experiments were performed to ablate transcription factors such as TBP, TRF1, TRF2 and DREF in Schneider cells. The dsRNAi experiments showed that dsps2 promoter activities in DREF- and TRF2-depleted cells were significantly decreased by 90% and 50%, respectively. However, the depletion of TBP or TRF1 did not affect the expression level of dsps2 even though there is a putative TATA box at -20. These results strongly suggest that the DRE/DREF system controls the basal level of transcription of dsps2 by interacting with TRF2.
Collapse
Affiliation(s)
- Jing Shun Jin
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|