1
|
Douglas GM, Shapiro BJ. Genic Selection Within Prokaryotic Pangenomes. Genome Biol Evol 2021; 13:6402011. [PMID: 34665261 PMCID: PMC8598171 DOI: 10.1093/gbe/evab234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding the evolutionary forces shaping prokaryotic pangenome structure is a major goal of microbial evolution research. Recent work has highlighted that a substantial proportion of accessory genes appear to confer niche-specific adaptations. This work has primarily focused on selection acting at the level of individual cells. Herein, we discuss a lower level of selection that also contributes to pangenome variation: genic selection. This refers to cases where genetic elements, rather than individual cells, are the entities under selection. The clearest examples of this form of selection are selfish mobile genetic elements, which are those that have either a neutral or a deleterious effect on host fitness. We review the major classes of these and other mobile elements and discuss the characteristic features of such elements that could be under genic selection. We also discuss how genetic elements that are beneficial to hosts can also be under genic selection, a scenario that may be more prevalent but not widely appreciated, because disentangling the effects of selection at different levels (i.e., organisms vs. genes) is challenging. Nonetheless, an appreciation for the potential action and implications of genic selection is important to better understand the evolution of prokaryotic pangenomes.
Collapse
Affiliation(s)
- Gavin M Douglas
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - B Jesse Shapiro
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
2
|
Clouet-d'Orval B, Batista M, Bouvier M, Quentin Y, Fichant G, Marchfelder A, Maier LK. Insights into RNA-processing pathways and associated RNA-degrading enzymes in Archaea. FEMS Microbiol Rev 2018; 42:579-613. [PMID: 29684129 DOI: 10.1093/femsre/fuy016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
RNA-processing pathways are at the centre of regulation of gene expression. All RNA transcripts undergo multiple maturation steps in addition to covalent chemical modifications to become functional in the cell. This includes destroying unnecessary or defective cellular RNAs. In Archaea, information on mechanisms by which RNA species reach their mature forms and associated RNA-modifying enzymes are still fragmentary. To date, most archaeal actors and pathways have been proposed in light of information gathered from Bacteria and Eukarya. In this context, this review provides a state of the art overview of archaeal endoribonucleases and exoribonucleases that cleave and trim RNA species and also of the key small archaeal proteins that bind RNAs. Furthermore, synthetic up-to-date views of processing and biogenesis pathways of archaeal transfer and ribosomal RNAs as well as of maturation of stable small non-coding RNAs such as CRISPR RNAs, small C/D and H/ACA box guide RNAs, and other emerging classes of small RNAs are described. Finally, prospective post-transcriptional mechanisms to control archaeal messenger RNA quality and quantity are discussed.
Collapse
Affiliation(s)
- Béatrice Clouet-d'Orval
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Manon Batista
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Marie Bouvier
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Yves Quentin
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Gwennaele Fichant
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | | | | |
Collapse
|
3
|
Jay ZJ, Inskeep WP. The distribution, diversity, and importance of 16S rRNA gene introns in the order Thermoproteales. Biol Direct 2015; 10:35. [PMID: 26156036 PMCID: PMC4496867 DOI: 10.1186/s13062-015-0065-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/29/2015] [Indexed: 11/30/2022] Open
Abstract
Background Intron sequences are common in 16S rRNA genes of specific thermophilic lineages of Archaea, specifically the Thermoproteales (phylum Crenarchaeota). Environmental sequencing (16S rRNA gene and metagenome) from geothermal habitats in Yellowstone National Park (YNP) has expanded the available datasets for investigating 16S rRNA gene introns. The objectives of this study were to characterize and curate archaeal 16S rRNA gene introns from high-temperature habitats, evaluate the conservation and distribution of archaeal 16S rRNA introns in geothermal systems, and determine which “universal” archaeal 16S rRNA gene primers are impacted by the presence of intron sequences. Results Several new introns were identified and their insertion loci were constrained to thirteen locations across the 16S rRNA gene. Many of these introns encode homing endonucleases, although some introns were short or partial sequences. Pyrobaculum, Thermoproteus, and Caldivirga 16S rRNA genes contained the most abundant and diverse intron sequences. Phylogenetic analysis of introns revealed that sequences within the same locus are distributed biogeographically. The most diverse set of introns were observed in a high-temperature, circumneutral (pH 6) sulfur sediment environment, which also contained the greatest diversity of different Thermoproteales phylotypes. Conclusions The widespread presence of introns in the Thermoproteales indicates a high probability of misalignments using different “universal” 16S rRNA primers employed in environmental microbial community analysis. Reviewers This article was reviewed by Dr. Eugene Koonin and Dr. W. Ford Doolittle. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0065-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zackary J Jay
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA.
| | - William P Inskeep
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
4
|
Pyrobaculum yellowstonensis Strain WP30 Respires on Elemental Sulfur and/or Arsenate in Circumneutral Sulfidic Geothermal Sediments of Yellowstone National Park. Appl Environ Microbiol 2015; 81:5907-16. [PMID: 26092468 DOI: 10.1128/aem.01095-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/16/2015] [Indexed: 11/20/2022] Open
Abstract
Thermoproteales (phylum Crenarchaeota) populations are abundant in high-temperature (>70°C) environments of Yellowstone National Park (YNP) and are important in mediating the biogeochemical cycles of sulfur, arsenic, and carbon. The objectives of this study were to determine the specific physiological attributes of the isolate Pyrobaculum yellowstonensis strain WP30, which was obtained from an elemental sulfur sediment (Joseph's Coat Hot Spring [JCHS], 80°C, pH 6.1, 135 μM As) and relate this organism to geochemical processes occurring in situ. Strain WP30 is a chemoorganoheterotroph and requires elemental sulfur and/or arsenate as an electron acceptor. Growth in the presence of elemental sulfur and arsenate resulted in the formation of thioarsenates and polysulfides. The complete genome of this organism was sequenced (1.99 Mb, 58% G+C content), revealing numerous metabolic pathways for the degradation of carbohydrates, amino acids, and lipids. Multiple dimethyl sulfoxide-molybdopterin (DMSO-MPT) oxidoreductase genes, which are implicated in the reduction of sulfur and arsenic, were identified. Pathways for the de novo synthesis of nearly all required cofactors and metabolites were identified. The comparative genomics of P. yellowstonensis and the assembled metagenome sequence from JCHS showed that this organism is highly related (∼95% average nucleotide sequence identity) to in situ populations. The physiological attributes and metabolic capabilities of P. yellowstonensis provide an important foundation for developing an understanding of the distribution and function of these populations in YNP.
Collapse
|
5
|
Hausner G, Hafez M, Edgell DR. Bacterial group I introns: mobile RNA catalysts. Mob DNA 2014; 5:8. [PMID: 24612670 PMCID: PMC3984707 DOI: 10.1186/1759-8753-5-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/24/2014] [Indexed: 12/02/2022] Open
Abstract
Group I introns are intervening sequences that have invaded tRNA, rRNA and protein coding genes in bacteria and their phages. The ability of group I introns to self-splice from their host transcripts, by acting as ribozymes, potentially renders their insertion into genes phenotypically neutral. Some group I introns are mobile genetic elements due to encoded homing endonuclease genes that function in DNA-based mobility pathways to promote spread to intronless alleles. Group I introns have a limited distribution among bacteria and the current assumption is that they are benign selfish elements, although some introns and homing endonucleases are a source of genetic novelty as they have been co-opted by host genomes to provide regulatory functions. Questions regarding the origin and maintenance of group I introns among the bacteria and phages are also addressed.
Collapse
Affiliation(s)
- Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2 N2, Canada
| | - Mohamed Hafez
- Department of Biochemistry, Faculty of Medicine, University of Montreal, Montréal, QC H3C 3 J7, Canada
- Department of Botany, Faculty of Science, Suez University, Suez, Egypt
| | - David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
6
|
Abstract
The self-splicing group I introns are removed by an autocatalytic mechanism that involves a series of transesterification reactions. They require RNA binding proteins to act as chaperones to correctly fold the RNA into an active intermediate structure in vivo. Pre-tRNA introns in Bacteria and in higher eukaryote plastids are typical examples of self-splicing group I introns. By contrast, two striking features characterize RNA splicing in the archaeal world. First, self-splicing group I introns cannot be found, to this date, in that kingdom. Second, the RNA splicing scenario in Archaea is uniform: All introns, whether in pre-tRNA or elsewhere, are removed by tRNA splicing endonucleases. We suggest that in Archaea, the protein recruited for splicing is the preexisting tRNA splicing endonuclease and that this enzyme, together with the ligase, takes over the task of intron removal in a more efficient fashion than the ribozyme. The extinction of group I introns in Archaea would then be a consequence of recruitment of the tRNA splicing endonuclease. We deal here with comparative genome analysis, focusing specifically on the integration of introns into genes coding for 23S rRNA molecules, and how this newly acquired intron has to be removed to regenerate a functional RNA molecule. We show that all known oligomeric structures of the endonuclease can recognize and cleave a ribosomal intron, even when the endonuclease derives from a strain lacking rRNA introns. The persistence of group I introns in mitochondria and chloroplasts would be explained by the inaccessibility of these introns to the endonuclease.
Collapse
|
7
|
Nakayama H, Shimamura T, Imagawa T, Shirai N, Itoh T, Sako Y, Miyano M, Sakuraba H, Ohshima T, Nomura N, Tsuge H. Structure of a Hyperthermophilic Archaeal Homing Endonuclease, I-Tsp061I: Contribution of Cross-domain Polar Networks to Thermostability. J Mol Biol 2007; 365:362-78. [PMID: 17069851 DOI: 10.1016/j.jmb.2006.09.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 09/22/2006] [Accepted: 09/25/2006] [Indexed: 11/28/2022]
Abstract
A novel LAGLIDADG-type homing endonuclease (HEase), I-Tsp061I, from the hyperthermophilic archaeon Thermoproteus sp. IC-061 16 S rRNA gene (rDNA) intron was characterized with respect to its structure, catalytic properties and thermostability. It was found that I-Tsp061I is a HEase isoschizomer of the previously described I-PogI and exhibits the highest thermostability among the known LAGLIDADG-type HEases. Determination of the crystal structure of I-Tsp061I at 2.1 A resolution using the multiple isomorphous replacement and anomalous scattering method revealed that the overall fold is similar to that of other known LAGLIDADG-type HEases, despite little sequence similarity between I-Tsp061I and those HEases. However, I-Tsp061I contains important cross-domain polar networks, unlike its mesophilic counterparts. Notably, the polar network Tyr6-Asp104-His180-107O-HOH12-104O-Asn177 exists across the two packed alpha-helices containing both the LAGLIDADG catalytic motif and the GxxxG hydrophobic helix bundle motif. Another important structural feature is the salt-bridge network Asp29-Arg31-Glu182 across N and C-terminal domain interface, which appears to contribute to the stability of the domain/domain packing. On the basis of these structural analyses and extensive mutational studies, we conclude that such cross-domain polar networks play key roles in stabilizing the catalytic center and domain packing, and underlie the hyperthermostability of I-Tsp061I.
Collapse
Affiliation(s)
- Hitoshi Nakayama
- Structural Biophysics Laboratory, RIKEN SPring-8 Center, Harima Institute, Kouto, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nakayama H, Morinaga Y, Nomura N, Nunoura T, Sako Y, Uchida A. An archaeal homing endonuclease I-PogI cleaves at the insertion site of the neighboring intron, which has no nested open reading frame. FEBS Lett 2003; 544:165-70. [PMID: 12782309 DOI: 10.1016/s0014-5793(03)00497-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Homing endonucleases (HEs) of the LAGLIDADG family cleave intron/inteinless cognate DNA at, or near, the insertion site (IS) of their own intron/intein. Here, we describe a notable exception to this rule. Two introns, Pog.S1205 (length 32 bp) and Pog.S1213 (664 bp), whose ISs are 8 bp apart, exist within the 16S rRNA gene of the archaeon Pyrobaculum oguniense. Pog.S1213 harbors a nested open reading frame (ORF) encoding a 22 kDa monomeric protein, I-PogI, which contains two LAGLIDADG motifs and has optimal DNA cleavage activity at 90 degrees C. Intriguingly, I-PogI cleaves the Pog.S1205-less substrate DNA in the presence or absence of Pog.S1213. The cleavage site (CS) of I-PogI does not coincide with the IS of Pog.S1213 but with that of Pog.S1205. Thus, I-PogI activity both promotes the homing of its own intron, Pog.S1213, and guarantees co-conversion of the ORF-less intron Pog.S1205.
Collapse
Affiliation(s)
- Hitoshi Nakayama
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|