1
|
Mhamdi R, Gtari M. Tracking the trajectory of frankia research through bibliometrics: trends and future directions. Can J Microbiol 2024. [PMID: 39255516 DOI: 10.1139/cjm-2024-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Frankia represent a unique group of filamentous, sporangia-forming bacteria, renowned for their exceptional capacity to establish symbiotic partnerships with actinorhizal plants. The objective of this paper is to offer quantitative insights into the current state of frankia research and its future potential. A comprehensive bibliometric analysis covering the years 2000-2022 was conducted using Scopus and SciVal. A steady increase in both annual publication and international collaboration has been observed, particularly since 2013. Research performance metrics for the last 5 years (2018-2022) indicate China and India as leaders with high Field-Weighted Citation Impact scores. This analysis highlighted prominent authors, research groups, and the evolving research landscape, suggesting an increasing focus on molecular and genomic aspects. The genomic era has transformed our understanding of frankia biology, highlighting their significance in diverse ecological and agricultural contexts. This study comprehensively maps the evolving landscape of frankia research, emphasizing key milestones that have catalysed international interest in frankia-actinorhizal research, expanding our perception of frankia's capabilities beyond its traditional symbiotic role. As research in this field progresses, a deeper comprehension of frankia-plant interactions, symbiotic signalling, and the intricacies of metabolic pathways holds the promise of revealing innovative techniques for optimizing nitrogen fixation and broadening the spectrum of host plants.
Collapse
Affiliation(s)
- Ridha Mhamdi
- Centre of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Maher Gtari
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
| |
Collapse
|
2
|
Kucho KI, Asukai K, Nguyen TV. NAD + Synthetase is Required for Free-living and Symbiotic Nitrogen Fixation in the Actinobacterium Frankia casuarinae. Microbes Environ 2023; 38. [PMID: 36858533 PMCID: PMC10037102 DOI: 10.1264/jsme2.me22093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Frankia spp. are multicellular actinobacteria that fix atmospheric dinitrogen (N2) not only in the free-living state, but also in root-nodule symbioses with more than 200 plant species, called actinorhizal plants. To identify novel Frankia genes involved in N2 fixation, we previously isolated mutants of Frankia casuarinae that cannot fix N2. One of these genes, mutant N3H4, did not induce nodulation when inoculated into the host plant Casuarina glauca. Cell lineages that regained the ability to fix N2 as free-living cells were isolated from the mutant cell population. These restored strains also regained the ability to stimulate nodulation. A comparative ana-lysis of the genomes of mutant N3H4 and restored strains revealed that the mutant carried a mutation (Thr584Ile) in the glutamine-dependent NAD+ synthetase gene (Francci3_3146), while restored strains carried an additional suppressor mutation (Asp478Asn) in the same gene. Under nitrogen-depleted conditions, the concentration of NAD(H) was markedly lower in the mutant strain than in the wild type, whereas it was higher in restored strains. These results indicate that glutamine-dependent NAD+ synthetase plays critical roles in both free-living and symbiotic N2 fixation in Frankia.
Collapse
Affiliation(s)
- Ken-Ichi Kucho
- Graduate School of Science and Engineering, Kagoshima University
| | - Koya Asukai
- Graduate School of Science and Engineering, Kagoshima University
| | - Thanh Van Nguyen
- Graduate School of Science and Engineering, Kagoshima University
| |
Collapse
|
3
|
Hay AE, Herrera-Belaroussi A, Rey M, Fournier P, Normand P, Boubakri H. Feedback Regulation of N Fixation in Frankia-Alnus Symbiosis Through Amino Acids Profiling in Field and Greenhouse Nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:499-508. [PMID: 31916486 DOI: 10.1094/mpmi-10-19-0289-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Symbiosis established between actinorhizal plants and Frankia spp., which are nitrogen-fixing actinobacteria, promotes nodule organogenesis, the site of metabolic exchange. The present study aimed to identify amino acid markers involved in Frankia-Alnus interactions by comparing nodules and associated roots from field and greenhouse samples. Our results revealed a high level of citrulline in all samples, followed by arginine (Arg), aspartate (Asp), glutamate (Glu), γ-amino-n-butyric acid (GABA), and alanine (Ala). Interestingly, the field metabolome approach highlighted more contrasted amino acid patterns between nodules and roots compared with greenhouse samples. Indeed, 12 amino acids had a mean relative abundance significantly different between field nodule and root samples, against only four amino acids in greenhouse samples, underlining the importance of developing "ecometabolome" approaches. In order to monitor the effects on Frankia cells (respiration and nitrogen fixation activities) of amino acid with an abundance pattern evocative of a role in symbiosis, in-vitro assays were performed by supplementing them in nitrogen-free cultures. Amino acids had three types of effects: i) those used by Frankia as nitrogen source (Glu, Gln, Asp), ii) amino acids stimulating both nitrogen fixation and respiration (e.g., Cit, GABA, Ala, valine, Asn), and iii) amino acids triggering a toxic effect (Arg, histidine). In this paper, a N-metabolic model was proposed to discuss how the host plant and bacteria modulate amino acids contents in nodules, leading to a fine regulation sustaining high bacterial nitrogen fixation.
Collapse
Affiliation(s)
- Anne-Emmanuelle Hay
- Université de Lyon, F-69361, Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
- Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR1418, Ecologie Microbienne, Centre d'Etude des Substances Naturelles
| | - Aude Herrera-Belaroussi
- Université de Lyon, F-69361, Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Marjolaine Rey
- Université de Lyon, F-69361, Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
- Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR1418, Ecologie Microbienne, Centre d'Etude des Substances Naturelles
| | - Pascale Fournier
- Université de Lyon, F-69361, Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Philippe Normand
- Université de Lyon, F-69361, Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Hasna Boubakri
- Université de Lyon, F-69361, Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| |
Collapse
|
4
|
Asukai K, Kucho KI. Characterization of Vesicle Differentiation Mutants of Frankia casuarinae. Microbes Environ 2020; 35:ME19150. [PMID: 32269204 PMCID: PMC7308572 DOI: 10.1264/jsme2.me19150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/27/2020] [Indexed: 11/17/2022] Open
Abstract
The nitrogen-fixing actinobacterium Frankia develops unique multicellular structures called vesicles, which are the site of nitrogen fixation. These vesicles are surrounded by a thick hopanoid lipid envelope that protects nitrogenase against oxygen inactivation. The phenotypes of five mutants that form smaller numbers of vesicles were investigated. The vesicles of these mutants were smaller than those of the wild type and had a phase dark appearance. They induced the expression of a glutamine synthetase gene in hyphae cells in response to ammonium starvation. These results suggest that genes impaired in the mutants do not function in global nitrogen regulation, but specifically function in vesicle differentiation.
Collapse
Affiliation(s)
- Koya Asukai
- Graduate School of Science and Engineering, Kagoshima University, 1–21–35 Korimoto, Kagoshima 890–0065, Japan
| | - Ken-ichi Kucho
- Graduate School of Science and Engineering, Kagoshima University, 1–21–35 Korimoto, Kagoshima 890–0065, Japan
| |
Collapse
|
5
|
Gifford I, Vance S, Nguyen G, Berry AM. A Stable Genetic Transformation System and Implications of the Type IV Restriction System in the Nitrogen-Fixing Plant Endosymbiont Frankia alni ACN14a. Front Microbiol 2019; 10:2230. [PMID: 31608043 PMCID: PMC6769113 DOI: 10.3389/fmicb.2019.02230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022] Open
Abstract
Genus Frankia is comprised primarily of nitrogen-fixing actinobacteria that form root nodule symbioses with a group of hosts known as the actinorhizal plants. These plants are evolutionarily closely related to the legumes that are nodulated by the rhizobia. Both host groups utilize homologs of nodulation genes for root-nodule symbiosis, derived from common plant ancestors. The corresponding endosymbionts, Frankia and the rhizobia, however, are distantly related groups of bacteria, leading to questions about their symbiotic mechanisms and evolutionary history. To date, a stable system of electrotransformation has been lacking in Frankia despite numerous attempts by research groups worldwide. We have identified type IV methyl-directed restriction systems, highly-expressed in a range of actinobacteria, as a likely barrier to Frankia transformation. Here we report the successful electrotransformation of the model strain F. alni ACN14a with an unmethylated, broad host-range replicating plasmid, expressing chloramphenicol-resistance for selection and GFP as a marker of gene expression. This system circumvented the type IV restriction barrier and allowed the stable maintenance of the plasmid. During nitrogen limitation, Frankia differentiates into two cell types: the vegetative hyphae and nitrogen-fixing vesicles. When the expression of egfp under the control of the nif gene cluster promoter was localized using fluorescence imaging, the expression of nitrogen fixation in nitrogen-limited culture was localized in Frankia vesicles but not in hyphae. The ability to separate gene expression patterns between Frankia hyphae and vesicles will enable deeper comparisons of molecular signaling and metabolic exchange between Frankia-actinorhizal and rhizobia-legume symbioses to be made, and may broaden potential applications in agriculture. Further downstream applications are possible, including gene knock-outs and complementation, to open up a range of experiments in Frankia and its symbioses. Additionally, in the transcriptome of F. alni ACN14a, type IV restriction enzymes were highly expressed in nitrogen-replete culture but their expression strongly decreased during symbiosis. The down-regulation of type IV restriction enzymes in symbiosis suggests that horizontal gene transfer may occur more frequently inside the nodule, with possible new implications for the evolution of Frankia.
Collapse
Affiliation(s)
- Isaac Gifford
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | | | | | | |
Collapse
|
6
|
Stable Transformation of the Actinobacteria Frankia spp. Appl Environ Microbiol 2019; 85:AEM.00957-19. [PMID: 31152017 DOI: 10.1128/aem.00957-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/24/2019] [Indexed: 11/20/2022] Open
Abstract
A stable and efficient plasmid transfer system was developed for nitrogen-fixing symbiotic actinobacteria of the genus Frankia, a key first step in developing a genetic system. Four derivatives of the broad-host-range cloning vector pBBR1MCS were successfully introduced into different Frankia strains by a filter mating with Escherichia coli strain BW29427. Initially, plasmid pHKT1 that expresses green fluorescent protein (GFP) was introduced into Frankia casuarinae strain CcI3 at a frequency of 4.0 × 10-3, resulting in transformants that were tetracycline resistant and exhibited GFP fluorescence. The presence of the plasmid was confirmed by molecular approaches, including visualization on agarose gel and PCR. Several other pBBR1MCS plasmids were also introduced into F. casuarinae strain CcI3 and other Frankia strains at frequencies ranging from 10-2 to 10-4, and the presence of the plasmids was confirmed by PCR. The plasmids were stably maintained for over 2 years and through passage in a plant host. As a proof of concept, a salt tolerance candidate gene from the highly salt-tolerant Frankia sp. strain CcI6 was cloned into pBBR1MCS-3. The resulting construct was introduced into the salt-sensitive F. casuarinae strain CcI3. Endpoint reverse transcriptase PCR (RT-PCR) showed that the gene was expressed in F. casuarinae strain CcI3. The expression provided an increased level of salt tolerance for the transformant. These results represent stable plasmid transfer and exogenous gene expression in Frankia spp., overcoming a major hurdle in the field. This step in the development of genetic tools in Frankia spp. will open up new avenues for research on actinorhizal symbiosis.IMPORTANCE The absence of genetic tools for Frankia research has been a major hindrance to the associated field of actinorhizal symbiosis and the use of the nitrogen-fixing actinobacteria. This study reports on the introduction of plasmids into Frankia spp. and their functional expression of green fluorescent protein and a cloned gene. As the first step in developing genetic tools, this technique opens up the field to a wide array of approaches in an organism with great importance to and potential in the environment.
Collapse
|
7
|
Cissoko M, Hocher V, Gherbi H, Gully D, Carré-Mlouka A, Sane S, Pignoly S, Champion A, Ngom M, Pujic P, Fournier P, Gtari M, Swanson E, Pesce C, Tisa LS, Sy MO, Svistoonoff S. Actinorhizal Signaling Molecules: Frankia Root Hair Deforming Factor Shares Properties With NIN Inducing Factor. FRONTIERS IN PLANT SCIENCE 2018; 9:1494. [PMID: 30405656 PMCID: PMC6201211 DOI: 10.3389/fpls.2018.01494] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/25/2018] [Indexed: 05/22/2023]
Abstract
Actinorhizal plants are able to establish a symbiotic relationship with Frankia bacteria leading to the formation of root nodules. The symbiotic interaction starts with the exchange of symbiotic signals in the soil between the plant and the bacteria. This molecular dialog involves signaling molecules that are responsible for the specific recognition of the plant host and its endosymbiont. Here we studied two factors potentially involved in signaling between Frankia casuarinae and its actinorhizal host Casuarina glauca: (1) the Root Hair Deforming Factor (CgRHDF) detected using a test based on the characteristic deformation of C. glauca root hairs inoculated with F. casuarinae and (2) a NIN activating factor (CgNINA) which is able to activate the expression of CgNIN, a symbiotic gene expressed during preinfection stages of root hair development. We showed that CgRHDF and CgNINA corresponded to small thermoresistant molecules. Both factors were also hydrophilic and resistant to a chitinase digestion indicating structural differences from rhizobial Nod factors (NFs) or mycorrhizal Myc-LCOs. We also investigated the presence of CgNINA and CgRHDF in 16 Frankia strains representative of Frankia diversity. High levels of root hair deformation (RHD) and activation of ProCgNIN were detected for Casuarina-infective strains from clade Ic and closely related strains from clade Ia unable to nodulate C. glauca. Lower levels were present for distantly related strains belonging to clade III. No CgRHDF or CgNINA could be detected for Frankia coriariae (Clade II) or for uninfective strains from clade IV.
Collapse
Affiliation(s)
- Maimouna Cissoko
- Laboratoire Commun de Microbiologie, Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta Diop, Centre de Recherche de Bel Air, Dakar, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés Aux Stress Environnementaux, Centre de Recherche de Bel Air, Dakar, Senegal
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Institut de Recherche pour le Développement/INRA/CIRAD, Université Montpellier/SupAgro, Montpellier, France
| | - Valérie Hocher
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Institut de Recherche pour le Développement/INRA/CIRAD, Université Montpellier/SupAgro, Montpellier, France
| | - Hassen Gherbi
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Institut de Recherche pour le Développement/INRA/CIRAD, Université Montpellier/SupAgro, Montpellier, France
| | - Djamel Gully
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Institut de Recherche pour le Développement/INRA/CIRAD, Université Montpellier/SupAgro, Montpellier, France
| | - Alyssa Carré-Mlouka
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Institut de Recherche pour le Développement/INRA/CIRAD, Université Montpellier/SupAgro, Montpellier, France
- UMR 7245, Molécules de Communication et Adaptation des Microorganismes, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités, Paris, France
| | - Seyni Sane
- Laboratoire de Botanique et de Biodiversité Végétale, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Sarah Pignoly
- Laboratoire Commun de Microbiologie, Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta Diop, Centre de Recherche de Bel Air, Dakar, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés Aux Stress Environnementaux, Centre de Recherche de Bel Air, Dakar, Senegal
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Institut de Recherche pour le Développement/INRA/CIRAD, Université Montpellier/SupAgro, Montpellier, France
| | - Antony Champion
- Laboratoire Commun de Microbiologie, Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta Diop, Centre de Recherche de Bel Air, Dakar, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés Aux Stress Environnementaux, Centre de Recherche de Bel Air, Dakar, Senegal
- UMR Diversité Adaptation et Développement des Plantes (DIADE), Institut de Recherche pour le Développement, Montpellier, France
| | - Mariama Ngom
- Laboratoire Commun de Microbiologie, Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta Diop, Centre de Recherche de Bel Air, Dakar, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés Aux Stress Environnementaux, Centre de Recherche de Bel Air, Dakar, Senegal
| | - Petar Pujic
- Ecologie Microbienne, UMR 5557 CNRS, Université Lyon 1, Villeurbanne, France
| | - Pascale Fournier
- Ecologie Microbienne, UMR 5557 CNRS, Université Lyon 1, Villeurbanne, France
| | - Maher Gtari
- Institut National des Sciences Appliquées et de Technologie, Université Carthage, Tunis, Tunisia
| | - Erik Swanson
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Céline Pesce
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Louis S. Tisa
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Mame Oureye Sy
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Sergio Svistoonoff
- Laboratoire Commun de Microbiologie, Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta Diop, Centre de Recherche de Bel Air, Dakar, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés Aux Stress Environnementaux, Centre de Recherche de Bel Air, Dakar, Senegal
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Institut de Recherche pour le Développement/INRA/CIRAD, Université Montpellier/SupAgro, Montpellier, France
| |
Collapse
|
8
|
Pesce C, Kleiner VA, Tisa LS. Simple colony PCR procedure for the filamentous actinobacteria Frankia. Antonie van Leeuwenhoek 2018; 112:109-114. [PMID: 30187230 DOI: 10.1007/s10482-018-1155-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/28/2018] [Indexed: 11/27/2022]
Abstract
Molecular analysis of the filamentous actinobacteria Frankia is laborious because of the slow growth rate and required biomass needed for these techniques. An efficient and simple colony PCR protocol for Frankia was developed that saved time for analysis of any Frankia strains growing on a plate. Previously, it took 5-6 weeks to get the correct size Frankia colonies on plates and then a minimum of 5 weeks of growth in liquid culture for DNA extraction. With this technique, these colonies could be screened after 5-6 weeks of growth by colony PCR. The procedure used a combination of mechanical and heat treatments and required no added buffers or chemicals. Our results demonstrate rapid and efficient PCR.
Collapse
Affiliation(s)
- Céline Pesce
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 46 College Rd., Durham, NH, 03824-2617, USA.
| | - Victoria A Kleiner
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 46 College Rd., Durham, NH, 03824-2617, USA
| | - Louis S Tisa
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 46 College Rd., Durham, NH, 03824-2617, USA
| |
Collapse
|
9
|
Lurthy T, Alloisio N, Fournier P, Anchisi S, Ponsero A, Normand P, Pujic P, Boubakri H. Molecular response to nitrogen starvation by Frankia alni ACN14a revealed by transcriptomics and functional analysis with a fosmid library in Escherichia coli. Res Microbiol 2018; 169:90-100. [PMID: 29378337 DOI: 10.1016/j.resmic.2017.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 12/20/2022]
Abstract
The transcriptome of Frankia alni strain ACN14a was compared between in vitro ammonium-replete (N-replete) and ammonium-free dinitrogen-fixing (N-fixing) conditions using DNA arrays. A Welch-test (p < 0.05) revealed significant upregulation of 252 genes under N-fixing vs. N-replete (fold-change (FC) ≥ 2), as well as significant downregulation of 48 other genes (FC ≤ 0.5). Interestingly, there were 104 Frankia genes upregulated in vitro that were also significantly upregulated in symbiosis with Alnus glutinosa, while the other 148 genes were not, showing that the physiology of in vitro fixation is markedly different from that under symbiotic conditions. In particular,in vitro fixing cells were seen to upregulate genes identified as coding for a nitrite reductase, and amidases that were not upregulated in symbiosis. Confirmatory assays for nitrite reductase showed that Frankia indeed reduced nitrite and used it as a nitrogen source. An Escherichia coli fosmid clone carrying the nirB region was able to grow better in the presence of 5 mM nitrite than without it, confirming the function of the genome region. The physiological pattern that emerges shows that Frankia undergoes nitrogen starvation that induces a molecular response different from that seen in symbiosis.
Collapse
Affiliation(s)
- Tristan Lurthy
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| | - Nicole Alloisio
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| | - Pascale Fournier
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| | - Stéphanie Anchisi
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| | - Alise Ponsero
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| | - Philippe Normand
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| | - Petar Pujic
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| | - Hasna Boubakri
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France.
| |
Collapse
|
10
|
Kucho KI, Tamari D, Matsuyama S, Nabekura T, Tisa LS. Nitrogen Fixation Mutants of the Actinobacterium Frankia Casuarinae CcI3. Microbes Environ 2017; 32:344-351. [PMID: 29151446 PMCID: PMC5745019 DOI: 10.1264/jsme2.me17099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/07/2017] [Indexed: 11/12/2022] Open
Abstract
Frankia is a representative genus of nitrogen-fixing (N2-fixing) actinobacteria; however, the molecular mechanisms underlying various phenomena such as the differentiation of a N2 fixation-specific structure (vesicle) and the regulation of N2 fixation (nif) genes, have yet to be elucidated in detail. In the present study, we screened hyphal fragments of Frankia casuarinae that were mutagenized by 1-methyl-3-nitro-1-nitrosoguanidine or gamma rays, and isolated 49 candidate N2 fixation mutants. Twelve of these mutants were selected for further study, and their abilities to grow in NH3-deficient (N-) liquid media and their rates of acetylene reduction activities were evaluated. Eleven mutant strains were confirmed to lack the ability to fix N2. Five mutant strains formed significantly reduced numbers of vesicles, while some failed to form large mature vesicles. These vesicle mutants also exhibited an aberrant hyphal morphology, suggesting a relationship between vesicle differentiation and hyphal branching. Ten mutants showed significant reductions in the expression of nifE, nifH, and nifV genes under N- conditions. The genome sequencing of eight mutants identified 20 to 400 mutations. Although mutant strains N3H4 and N6F4 shared a large number of mutations (108), most were unique to each strain. Mutant strain N7C9 had 3 mutations in the nifD and nifH genes that may result in the inability to fix N2. The other mutant strains did not have any mutations in any known N2 fixation-related genes, indicating that they are novel N2 fixation mutants.
Collapse
Affiliation(s)
- Ken-ichi Kucho
- Graduate School of Science and Engineering, Kagoshima University1–21–35 Korimoto, Kagoshima 890–0065Japan
| | - Daiki Tamari
- Graduate School of Science and Engineering, Kagoshima University1–21–35 Korimoto, Kagoshima 890–0065Japan
| | - Shintaro Matsuyama
- Graduate School of Science and Engineering, Kagoshima University1–21–35 Korimoto, Kagoshima 890–0065Japan
| | - Takeshi Nabekura
- Faculty of Science, Kagoshima University1–21–35 Korimoto, Kagoshima 890–0065Japan
| | - Louis S. Tisa
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire289 Rudman Hall, 46 College Road, Durham, NH 03824–2617USA
| |
Collapse
|
11
|
|
12
|
Kucho KI, Kakoi K, Yamaura M, Iwashita M, Abe M, Uchiumi T. Codon-optimized antibiotic resistance gene improves efficiency of transient transformation in Frankia. J Biosci 2014; 38:713-7. [PMID: 24287650 DOI: 10.1007/s12038-013-9361-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Frankia is a unique actinobacterium having abilities to fix atmospheric dinitrogen and to establish endosymbiosis with trees, but molecular bases underlying these interesting characteristics are poorly understood because of a lack of stable transformation system. Extremely high GC content of Frankia genome (more than 70 percent) can be a hindrance to successful transformation. We generated a synthetic gentamicin resistance gene whose codon usage is optimized to Frankia (fgmR) and evaluated its usefulness as a selection marker using a transient transformation system. Success rate of transient transformation and cell growth in selective culture were significantly increased by use of fgmR instead of a native gentamicin resistance gene, suggesting that codon optimization improved translation efficiency of the marker gene and increased antibiotic resistance. Our result shows that similarity in codon usage pattern is an important factor to be taken into account when exogenous transgenes are expressed in Frankia cells.
Collapse
Affiliation(s)
- Ken-Ichi Kucho
- Graduate School of Science and Engineering, Kagoshima University, Korimoto 1-21-35, Kagoshima 890-0065, Japan,
| | | | | | | | | | | |
Collapse
|
13
|
Kucho KI, Yamanaka T, Sasakawa H, Mansour SR, Uchiumi T. Different dynamics of genome content shuffling among host-specificity groups of the symbiotic actinobacterium Frankia. BMC Genomics 2014; 15:609. [PMID: 25038796 PMCID: PMC4117964 DOI: 10.1186/1471-2164-15-609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 07/09/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Frankia is a genus of soil actinobacteria forming nitrogen-fixing root-nodule symbiotic relationships with non-leguminous woody plant species, collectively called actinorhizals, from eight dicotyledonous families. Frankia strains are classified into four host-specificity groups (HSGs), each of which exhibits a distinct host range. Genome sizes of representative strains of Alnus, Casuarina, and Elaeagnus HSGs are highly diverged and are positively correlated with the size of their host ranges. RESULTS The content and size of 12 Frankia genomes were investigated by in silico comparative genome hybridization and pulsed-field gel electrophoresis, respectively. Data were collected from four query strains of each HSG and compared with those of reference strains possessing completely sequenced genomes. The degree of difference in genome content between query and reference strains varied depending on HSG. Elaeagnus query strains were missing the greatest number (22-32%) of genes compared with the corresponding reference genome; Casuarina query strains lacked the fewest (0-4%), with Alnus query strains intermediate (14-18%). In spite of the remarkable gene loss, genome sizes of Alnus and Elaeagnus query strains were larger than would be expected based on total length of the absent genes. In contrast, Casuarina query strains had smaller genomes than expected. CONCLUSIONS The positive correlation between genome size and host range held true across all investigated strains, supporting the hypothesis that size and genome content differences are responsible for observed diversity in host plants and host plant biogeography among Frankia strains. In addition, our results suggest that different dynamics of shuffling of genome content have contributed to these symbiotic and biogeographic adaptations. Elaeagnus strains, and to a lesser extent Alnus strains, have gained and lost many genes to adapt to a wide range of environments and host plants. Conversely, rather than acquiring new genes, Casuarina strains have discarded genes to reduce genome size, suggesting an evolutionary orientation towards existence as specialist symbionts.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Cluster Analysis
- Comparative Genomic Hybridization
- DNA/chemistry
- DNA/metabolism
- DNA Gyrase/genetics
- DNA Gyrase/metabolism
- Electrophoresis, Gel, Pulsed-Field
- Frankia/genetics
- Genome, Bacterial
- High-Throughput Nucleotide Sequencing
- Nitrogen Fixation/genetics
- Phylogeny
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/classification
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Symbiosis/genetics
Collapse
Affiliation(s)
- Ken-ichi Kucho
- />Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065 Japan
| | - Takashi Yamanaka
- />Department of Forest Microbiology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki, 305-8687 Japan
| | - Hideo Sasakawa
- />Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka, Okayama, 700-8530 Japan
| | - Samira R Mansour
- />Botany Department, Faculty of Science, Suez Canal University, Ismailia, 41522 Egypt
| | - Toshiki Uchiumi
- />Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065 Japan
| |
Collapse
|
14
|
Kakoi K, Yamaura M, Kamiharai T, Tamari D, Abe M, Uchiumi T, Kucho KI. Isolation of mutants of the nitrogen-fixing actinomycete Frankia. Microbes Environ 2014; 29:31-7. [PMID: 24389412 PMCID: PMC4041240 DOI: 10.1264/jsme2.me13126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Frankia is a nitrogen (N)-fixing multicellular actinomycete which establishes root-nodule symbiosis with actinorhizal plants. Several aspects of Frankia N fixation and symbiosis are distinct, but genes involved in the specific features are largely unknown because of the lack of an efficient mutant screening method. In this study, we isolated mutants of Frankia sp. strain CcI3 using hyphae fragments mutagenized by chemical mutagens. Firstly, we isolated uracil auxotrophs as gain-of-function mutants resistant to 5-fluoroorotic acid (5-FOA). We obtained seven 5-FOA resistant mutants, all of which required uracil for growth. Five strains carried a frame shift mutation in orotidine-5′-phosphate decarboxylase gene and two carried an amino acid substitution in the orotate phosphoribosyltransferase gene. Secondly, we isolated mutants showing loss-of-function phenotypes. Mutagenized hyphae were fragmented by ultrasound and allowed to multiply at their tips. Hyphae were fragmented again and short fragments were enriched by filtration through 5 μm pores filters. Next-generation and Sanger sequencing revealed that colonies formed from the short hyphae fragments consisted of cells with an identical genotype. From the mutagenized colony population, we isolated three pigmentation mutants and a mutant with reduced N-fixation activity. These results indicate that our procedure is useful for the isolation of loss-of-function mutants using hyphae of Frankia.
Collapse
Affiliation(s)
- Kentaro Kakoi
- Graduate School of Science and Engineering, Kagoshima University
| | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Santi C, Bogusz D, Franche C. Biological nitrogen fixation in non-legume plants. ANNALS OF BOTANY 2013; 111:743-67. [PMID: 23478942 PMCID: PMC3631332 DOI: 10.1093/aob/mct048] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/23/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. SCOPE Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. CONCLUSIONS Understanding the molecular mechanism of BNF outside the legume-rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops.
Collapse
Affiliation(s)
- Carole Santi
- Université de Perpignan, Via Domitia, Avenue Paul Alduy, 66100 Perpignan, France
| | - Didier Bogusz
- Equipe Rhizogenèse, UMR DIADE (IRD/UM2), Institut de Recherche pour le Développement, 911 Avenue Agropolis, BP64501, 34394 Montpellier Cedex 5, France
| | - Claudine Franche
- Equipe Rhizogenèse, UMR DIADE (IRD/UM2), Institut de Recherche pour le Développement, 911 Avenue Agropolis, BP64501, 34394 Montpellier Cedex 5, France
| |
Collapse
|
17
|
Benson DR, Brooks JM, Huang Y, Bickhart DM, Mastronunzio JE. The biology of Frankia sp. strains in the post-genome era. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1310-1316. [PMID: 21848398 DOI: 10.1094/mpmi-06-11-0150] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Progress in understanding symbiotic determinants involved in the N(2)-fixing actinorhizal plant symbioses has been slow but steady. Problems persist with studying the bacterial contributions to the symbiosis using traditional microbiological techniques. However, recent years have seen the emergence of several genomes from Frankia sp. strains and the development of techniques for manipulating plant gene expression. Approaches to understanding the bacterial side of the symbiosis have employed a range of techniques that reveal the proteomes and transcriptomes from both cultured and symbiotic frankiae. The picture beginning to emerge provides some perspective on the heterogeneity of frankial populations in both conditions. In general, frankial populations in root nodules seem to maintain a rather robust metabolism that includes nitrogen fixation and substantial biosynthesis and energy-generating pathways, along with a modified ammonium assimilation program. To date, particular bacterial genes have not been implicated in root nodule formation but some hypotheses are emerging with regard to how the plant and microorganism manage to coexist. In particular, frankiae seem to present a nonpathogenic presence to the plant that may have the effect of minimizing some plant defense responses. Future studies using high-throughput approaches will likely clarify the range of bacterial responses to symbiosis that will need to be understood in light of the more rapidly advancing work on the plant host.
Collapse
Affiliation(s)
- David R Benson
- Department of Molecular and Cell Biology, University of Connecticut, Stors, CT, USA.
| | | | | | | | | |
Collapse
|
18
|
Kucho KI, Hay AE, Normand P. The determinants of the actinorhizal symbiosis. Microbes Environ 2011; 25:241-52. [PMID: 21576879 DOI: 10.1264/jsme2.me10143] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The actinorhizal symbiosis is a major contributor to the global nitrogen budget, playing a dominant role in ecological successions following disturbances. The mechanisms involved are still poorly known but there emerges the vision that on the plant side, the kinases that transmit the symbiotic signal are conserved with those involved in the transmission of the Rhizobium Nod signal in legumes. However, on the microbial side, complementation with Frankia DNA of Rhizobium nod mutants failed to permit identification of symbiotic genes. Furthermore, analysis of three Frankia genomes failed to permit identification of canonical nod genes and revealed symbiosis-associated genes such as nif, hup, suf and shc to be spread around the genomes. The present review explores some recently published approaches aimed at identifying bacterial symbiotic determinants.
Collapse
Affiliation(s)
- Ken-Ichi Kucho
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima UniversityKorimoto1–21–35, Kagoshima 890–0065, Japan
| | | | | |
Collapse
|
19
|
Alloisio N, Queiroux C, Fournier P, Pujic P, Normand P, Vallenet D, Médigue C, Yamaura M, Kakoi K, Kucho KI. The Frankia alni symbiotic transcriptome. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:593-607. [PMID: 20367468 DOI: 10.1094/mpmi-23-5-0593] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The actinobacteria Frankia spp. are able to induce the formation of nodules on the roots of a large spectrum of actinorhizal plants, where they convert dinitrogen to ammonia in exchange for plant photosynthates. In the present study, transcriptional analyses were performed on nitrogen-replete free-living Frankia alni cells and on Alnus glutinosa nodule bacteria, using whole-genome microarrays. Distribution of nodule-induced genes on the genome was found to be mostly over regions with high synteny between three Frankia spp. genomes, while nodule-repressed genes, which were mostly hypothetical and not conserved, were spread around the genome. Genes known to be related to nitrogen fixation were highly induced, nif (nitrogenase), hup2 (hydrogenase uptake), suf (sulfur-iron cluster), and shc (hopanoids synthesis). The expression of genes involved in ammonium assimilation and transport was strongly modified, suggesting that bacteria ammonium assimilation was limited. Genes involved in particular in transcriptional regulation, signaling processes, protein drug export, protein secretion, lipopolysaccharide, and peptidoglycan biosynthesis that may play a role in symbiosis were also identified. We also showed that this Frankia symbiotic transcriptome was highly similar among phylogenetically distant plant families Betulaceae and Myricaceae. Finally, comparison with rhizobia transcriptome suggested that F. alni is metabolically more active in symbiosis than rhizobia.
Collapse
|
20
|
Yamaura M, Uchiumi T, Higashi S, Abe M, Kucho KI. Identification by suppression subtractive hybridization of Frankia genes induced under nitrogen-fixing conditions. Appl Environ Microbiol 2010; 76:1692-4. [PMID: 20048062 PMCID: PMC2832394 DOI: 10.1128/aem.01813-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 12/23/2009] [Indexed: 11/20/2022] Open
Abstract
Frankia is an actinobacterium that fixes nitrogen under both symbiotic and free-living conditions. We identified genes upregulated in free-living nitrogen-fixing cells by using suppression subtractive hybridization. They included genes with predicted functions related to nitrogen fixation, as well as with unknown function. Their upregulation was a novel finding in Frankia.
Collapse
Affiliation(s)
- Masatoshi Yamaura
- Graduate School of Science and Engineering, Kagoshima University, Korimoto 1-21-35, Kagoshima 890-0065, Japan
| | - Toshiki Uchiumi
- Graduate School of Science and Engineering, Kagoshima University, Korimoto 1-21-35, Kagoshima 890-0065, Japan
| | - Shiro Higashi
- Graduate School of Science and Engineering, Kagoshima University, Korimoto 1-21-35, Kagoshima 890-0065, Japan
| | - Mikiko Abe
- Graduate School of Science and Engineering, Kagoshima University, Korimoto 1-21-35, Kagoshima 890-0065, Japan
| | - Ken-ichi Kucho
- Graduate School of Science and Engineering, Kagoshima University, Korimoto 1-21-35, Kagoshima 890-0065, Japan
| |
Collapse
|