1
|
Amin A, Khan IU, Amin M, Fatima M, Sajjad W, Shah TA, Dawoud TM, Wondmie GF. Resurrected microorganisms: a plethora of resting bacteria underway for human interaction. AMB Express 2024; 14:106. [PMID: 39342060 PMCID: PMC11438741 DOI: 10.1186/s13568-024-01750-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/13/2024] [Indexed: 10/01/2024] Open
Abstract
Glaciers, which form due to the accumulation of snow, play a crucial role in providing freshwater resources, supporting river systems, and maintaining ecosystem stability. Pakistan is habitat to over 5000 glaciers, primarily located in the Hindukash, Himalaya, and Karakoram mountain ranges. Understanding the microbial communities thriving in these extreme environments becomes of utmost importance. These glaciers offer a unique perspective on extremophile adaptation, as they harbor microorganisms that are capable of surviving and thriving under harsh conditions. Glacial melting poses a significant threat to ancient microbiomes, potentially leading to the resurgence of epidemics and exposure of life to paleomicrobiota. Mostly glacial microbiome is evenly distributed and shows similar diversity. With the threat of resurrection of ages old microbiome and its incorporation into the waters have raised a major concern for revival of epidemics and exposure of life with paleanmicrobiota again. This has led the scientist to deeply observe the bacterial flora embedded in the cryonite holes of glaciers. This study aims to investigate the bacterial diversity within various glaciers of Pakistan using metagenomic techniques. Kamri, Burzil, Siachin, Baltoro, Shigar Basin, Biafo and Panama Glaciers designated from G1 to G7 respectively were chosen from Pakistan. Through rigorous physicochemical analyses, distinct characteristics among glaciers are revealed, including variations in temperature, depth, electrical conductivity, pH levels, and nutrient concentrations. The exploration of alpha diversity, employing metrics such as Chao1, Shannon, Simpson, and Inverse Simpson indices, offers valuable insights into the richness, evenness, and dominance of species within different samples. Beta diversity was calculated by using R software. The vegan package was used for NMSD, cluster and PCoA analysis based on Bray-Curtis distance. PCA analysis was done by using prcomp package from R software. Based on OTU abundance and environmental factor data, DCA analysis was done to determine the linear model from the gradient value (RDA) and the unimodal model (CCA). results were compiled by drawing cluster dendrogram which predicts the patterns of similarity and dissimilarity between different samples. Notably, phyla Proteobacteria emerge as the dominant phylum, accompanied by Actinobacteria, Firmicutes, and Bacteroidetes. The dendrogram shows five clusters, with close similarity between G1 and G4, glacier samples G3 and G8, and G2 and G7. Seasonal variations in glacier physicochemical properties were also observed, with summer samples having shallower depths, lower temperatures, and slightly acidic pH. In contrast, winter samples have higher electrical conductivity and sulfur content. Ultimately, this research provides a foundational framework for comprehending glacier ecosystems, their resident microbial communities, and their broader ecological significance. The study highlights the potential public health risks linked to the release of ancient microorganisms due to climate change, emphasizing the need for comprehensive monitoring and research to mitigate potential public health threats.
Collapse
Affiliation(s)
- Arshia Amin
- Faculty of Health and Life Sciences, Capital University of Science and Technology, Islamabad, Pakistan.
| | | | - Mehroze Amin
- School of Biological Sciences, University of Punjab, Lahore, Pakistan
| | - Maliha Fatima
- Faculty of Health and Life Sciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Tawaf Ali Shah
- College of agriculture engineering and food science, Shandong University of Technology, Zibo, 255000, China
| | - Turki M Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. BOX 2455, 11451, Riyadh, Saudi Arabia
| | | |
Collapse
|
2
|
Sajjad W, Ali B, Niu H, Ilahi N, Rafiq M, Bahadur A, Banerjee A, Kang S. High prevalence of antibiotic-resistant and metal-tolerant cultivable bacteria in remote glacier environment. ENVIRONMENTAL RESEARCH 2023; 239:117444. [PMID: 37858689 DOI: 10.1016/j.envres.2023.117444] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
Studies of antibiotic-resistant bacteria (ARB) have mainly originated from anthropic-influenced environments, with limited information from pristine environments. Remote cold environments are major reservoirs of ARB and have been determined in polar regions; however, their abundance in non-polar cold habitats is underexplored. This study evaluated antibiotics and metals resistance profiles, prevalence of antibiotic resistance genes (ARGs) and metals tolerance genes (MTGs) in 38 ARB isolated from the glacier debris and meltwater from Baishui Glacier No 1, China. Molecular identification displayed Proteobacteria (39.3%) predominant in debris, while meltwater was dominated by Actinobacteria (30%) and Proteobacteria (30%). Bacterial isolates exhibited multiple antibiotic resistance index values > 0.2. Gram-negative bacteria displayed higher resistance to antibiotics and metals than Gram-positive. PCR amplification exhibited distinct ARGs in bacteria dominated by β-lactam genes blaCTX-M (21.1-71.1%), blaACC (21.1-60.5%), tetracycline-resistant gene tetA (21.1-60.5%), and sulfonamide-resistant gene sulI (18.4-52.6%). Moreover, different MTGs were reported in bacterial isolates, including mercury-resistant merA (21.1-63.2%), copper-resistant copB (18.4-57.9%), chromium-resistant chrA (15.8-44.7%) and arsenic-resistant arsB (10.5-44.7%). This highlights the co-selection and co-occurrence of MTGs and ARGs in remote glacier environments. Different bacteria shared same ARGs, signifying horizontal gene transfer between species. Strong positive correlation among ARGs and MTGs was reported. Metals tolerance range exhibited that Gram-negative and Gram-positive bacteria clustered distinctly. Gram-negative bacteria were significantly tolerant to metals. Amino acid sequences of blaACC,blaCTX-M,blaSHV,blaampC,qnrA, sulI, tetA and blaTEM revealed variations. This study presents promising ARB, harboring ARGs with variations in amino acid sequences, highlighting the need to assess the transcriptome study of glacier bacteria conferring ARGs and MTGs.
Collapse
Affiliation(s)
- Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Barkat Ali
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Hewen Niu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; National Field Science Observation and Research Station of Yulong Snow Mountain Cryosphere and Sustainable Development, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Nikhat Ilahi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Engineering and Management Sciences, Balochistan University of Information Technology, Quetta, Pakistan
| | - Ali Bahadur
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Abhishek Banerjee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Nawaz S, Rafiq M, Pepper IL, Betancourt WQ, Shah AA, Hasan F. Prevalence and abundance of antibiotic-resistant genes in culturable bacteria inhabiting a non-polar passu glacier, karakorum mountains range, Pakistan. World J Microbiol Biotechnol 2023; 39:94. [PMID: 36754876 DOI: 10.1007/s11274-023-03532-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023]
Abstract
Natural pristine environments including cold habitats are thought to be the potent reservoirs of antibiotic-resistant genes and have been recurrently reported in polar glaciers' native bacteria, nevertheless, their abundance among the non-polar glaciers' inhabitant bacteria is mostly uncharted. Herein we evaluated antibiotic resistance profile, abundance of antibiotic-resistant genes plus class 1, 2, and 3 integron integrases in 65 culturable bacterial isolates retrieved from a non-polar glacier. The 16S rRNA gene sequencing analysis identified predominantly Gram-negative 43 (66.15%) and Gram-positive 22 (33.84%) isolates. Among the Gram-negative bacteria, Gammaproteobacteria were dominant (62.79%), followed by Betaproteobacteria (18.60%) and Alphaproteobacteria (9.30%), whereas Phyla Actinobacteria (50%) and Firmicutes (40.90%) were predominant among Gram-positive. The Kirby Bauer disc diffusion method evaluated significant antibiotic resistance among the isolates. PCR amplification revealed phylum Proteobacteria predominantly carrying 21 disparate antibiotic-resistant genes like; blaAmpC 6 (100%), blaVIM-1, blaSHV and blaDHA 5 (100%) each, blaOXA-1 1 (100%), blaCMY-4 4 (100%), followed by Actinobacteria 14, Firmicutes 13 and Bacteroidetes 11. Tested isolates were negative for blaKPC, qnrA, vanA, ermA, ermB, intl2, and intl3. Predominant Gram-negative isolates had higher MAR index values, compared to Gram-positive. Alignment of protein homology sequences of antibiotic-resistant genes with references revealed amino acid variations in blaNDM-1, blaOXA-1, blaSHV, mecA, aac(6)-Ib3, tetA, tetB, sul2, qnrB, gyrA, and intI1. Promising antibiotic-resistant bacteria, harbored with numerous antibiotic-resistant genes and class 1 integron integrase with some amino acid variations detected, accentuating the mandatory focus to evaluate the intricate transcriptome analysis of glaciated bacteria conferring antibiotic resistance.
Collapse
Affiliation(s)
- Sabir Nawaz
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Rafiq
- Department of Microbiology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan.
| | - Ian L Pepper
- Water & Energy Sustainable Technology (WEST) Center, University of Arizona, 2959 W. Calle Agua Nueva, 85745, Tucson, AZ, USA
| | - Walter Q Betancourt
- Water & Energy Sustainable Technology (WEST) Center, University of Arizona, 2959 W. Calle Agua Nueva, 85745, Tucson, AZ, USA
| | - Aamer Ali Shah
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
4
|
Cultivable bacteria in the supraglacial lake formed after a glacial lake outburst flood in northern Pakistan. Int Microbiol 2022; 26:309-325. [PMID: 36484912 DOI: 10.1007/s10123-022-00306-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Recently, a supraglacial lake formed as a result of a glacial lake outburst flood (GLOF) in the Dook Pal Glacier. Lake debris and meltwater samples were collected from the supraglacial lake to determine bacterial diversity. Geochemical analyses of samples showed free amino acids (FAAs), anions, cations, and heavy metals. Comparable viable bacterial counts were observed in meltwater and debris samples. Using R2A media, a total of 52 bacterial isolates were identified: 40 from debris and 12 from meltwater. The relative abundance of Gram-positive (80.8%) bacteria was greater than Gram-negative (19.2%). Molecular identification of these isolates revealed that meltwater was dominated by Firmicutes (41.6%) and Proteobacteria (41.6%), while lake debris was dominated by Firmicutes (65.0%). The isolates belonged to 14 genera with the greatest relative abundance in Bacillus. Tolerance level of isolates to salts was high. Most of the Gram-positive bacteria were eurypsychrophiles, while most of the Gram-negative bacteria were stenopsychrophiles. Gram-negative bacteria displayed a higher minimum inhibitory concentration of selected heavy metals and antibiotics than Gram-positive. This first-ever study of culturable bacteria from a freshly formed supraglacial lake improves our understanding of the bacterial diversity and antibiotic resistance released from the glaciers as a result of GLOF.
Collapse
|
5
|
Ali B, Sajjad W, Ghimire PS, Shengyun C, Minghui W, Kang S. Culture-dependent diversity of bacteria from Laohugou glacier, Qilian Mts., China and their resistance against metals. J Basic Microbiol 2019; 59:1065-1081. [PMID: 31556143 DOI: 10.1002/jobm.201900385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/23/2019] [Accepted: 09/07/2019] [Indexed: 11/08/2022]
Abstract
In the current study, psychrophilic, endolithic, and epilithic bacterial strains were isolated and characterized from the nonpolar Laohugou glacier (LHG) no. 12, the largest valley glacier in the western Qilian Mts. located on the northeastern edge of the Tibetan Plateau. Five different types of samples, rocks, soil, glacial water, ice/snow, and cryoconite, were collected. A total of 48 bacterial strains were isolated by using the R2A bacterial cultural medium. The findings revealed that the Gram-positive bacteria 41 (85.4%) dominated the Gram-negative bacteria 7 (14.6%) in this extremely harsh environment. Molecular characterization based on 16S ribosomal RNA gene sequencing exhibited that the obtained isolates belong to four phyla, among which the diversity of Firmicutes (58.33%) was higher followed by Actinobacteria (23.0%), Proteobacteria (14.6%), and least diversity was reported in Euryarchaeota (4.2%). The bacterial communities were most dominant in soil samples followed by cryoconite sample and least dominant in the ice and snow samples. Moreover, the obtained bacterial isolates were found resistant to high concentrations of heavy metals (Cr3+ , Cd2+ , Hg2+ , and Ar3+ ) and sodium chloride, and, therefore, exhibited polyextremophilic characteristics. LHG no. 12 is rich in bacterial and archaeal diversities and provides a potentially curious site for further in-depth exploration of microbial diversity and their biotechnological applications.
Collapse
Affiliation(s)
- Barkat Ali
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, University of Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wasim Sajjad
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, University of Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Prakriti Sharma Ghimire
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, University of Chinese Academy of Sciences, Lanzhou, China.,Himalayan Environment Research Institute (HERI), Kathmandu, Nepal
| | - Chen Shengyun
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, University of Chinese Academy of Sciences, Lanzhou, China
| | - Wu Minghui
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, University of Chinese Academy of Sciences, Lanzhou, China
| | - Shichang Kang
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, University of Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
| |
Collapse
|
6
|
Panwar AS, Molpa D, Joshi GK. Biotechnological Potential of Some Cold-Adapted Bacteria Isolated from North-Western Himalaya. Microbiology (Reading) 2019. [DOI: 10.1134/s002626171903007x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Murakami T, Segawa T, Dial R, Takeuchi N, Kohshima S, Hongoh Y. Bacterial Microbiota Associated with the Glacier Ice Worm Is Dominated by Both Worm-Specific and Glacier-Derived Facultative Lineages. Microbes Environ 2017; 32:32-39. [PMID: 28302989 PMCID: PMC5371072 DOI: 10.1264/jsme2.me16158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The community structure of bacteria associated with the glacier ice worm Mesenchytraeus solifugus was analyzed by amplicon sequencing of 16S rRNA genes and their transcripts. Ice worms were collected from two distinct glaciers in Alaska, Harding Icefield and Byron Glacier, and glacier surfaces were also sampled for comparison. Marked differences were observed in bacterial community structures between the ice worm and glacier surface samples. Several bacterial phylotypes were detected almost exclusively in the ice worms, and these bacteria were phylogenetically affiliated with either animal-associated lineages or, interestingly, clades mostly consisting of glacier-indigenous species. The former included bacteria that belong to Mollicutes, Chlamydiae, Rickettsiales, and Lachnospiraceae, while the latter included Arcicella and Herminiimonas phylotypes. Among these bacteria enriched in ice worm samples, Mollicutes, Arcicella, and Herminiimonas phylotypes were abundantly and consistently detected in the ice worm samples; these phylotypes constituted the core microbiota associated with the ice worm. A fluorescence in situ hybridization analysis showed that Arcicella cells specifically colonized the epidermis of the ice worms. Other bacterial phylotypes detected in the ice worm samples were also abundantly recovered from the respective habitat glaciers; these bacteria may be food for ice worms to digest or temporary residents. Nevertheless, some were overrepresented in the ice worm RNA samples; they may also function as facultative gut bacteria. Our results indicate that the community structure of bacteria associated with ice worms is distinct from that in the associated glacier and includes worm-specific and facultative, glacier-indigenous lineages.
Collapse
Affiliation(s)
- Takumi Murakami
- Department of Biological Sciences, Tokyo Institute of Technology
| | | | | | | | | | | |
Collapse
|
8
|
Yang GL, Hou SG, Le Baoge R, Li ZG, Xu H, Liu YP, Du WT, Liu YQ. Differences in Bacterial Diversity and Communities Between Glacial Snow and Glacial Soil on the Chongce Ice Cap, West Kunlun Mountains. Sci Rep 2016; 6:36548. [PMID: 27811967 PMCID: PMC5109912 DOI: 10.1038/srep36548] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/18/2016] [Indexed: 11/09/2022] Open
Abstract
A detailed understanding of microbial ecology in different supraglacial habitats is important due to the unprecedented speed of glacier retreat. Differences in bacterial diversity and community structure between glacial snow and glacial soil on the Chongce Ice Cap were assessed using 454 pyrosequencing. Based on rarefaction curves, Chao1, ACE, and Shannon indices, we found that bacterial diversity in glacial snow was lower than that in glacial soil. Principal coordinate analysis (PCoA) and heatmap analysis indicated that there were major differences in bacterial communities between glacial snow and glacial soil. Most bacteria were different between the two habitats; however, there were some common bacteria shared between glacial snow and glacial soil. Some rare or functional bacterial resources were also present in the Chongce Ice Cap. These findings provide a preliminary understanding of the shifts in bacterial diversity and communities from glacial snow to glacial soil after the melting and inflow of glacial snow into glacial soil.
Collapse
Affiliation(s)
- Guang Li Yang
- Department of Life Science, Shangqiu Normal University, Shangqiu 476000, China
| | - Shu Gui Hou
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
| | - Ri Le Baoge
- Department of Life Science, Shangqiu Normal University, Shangqiu 476000, China
| | - Zhi Guo Li
- Department of Environment and Planning, Shangqiu Normal University, Shangqiu 476000, China
| | - Hao Xu
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
| | - Ya Ping Liu
- Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wen Tao Du
- Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yong Qin Liu
- Key Laboratory of Tibetan Environmental Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
9
|
Uetake J, Tanaka S, Segawa T, Takeuchi N, Nagatsuka N, Motoyama H, Aoki T. Microbial community variation in cryoconite granules on Qaanaaq Glacier, NW Greenland. FEMS Microbiol Ecol 2016; 92:fiw127. [PMID: 27306554 DOI: 10.1093/femsec/fiw127] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2016] [Indexed: 12/23/2022] Open
Abstract
Cryoconite granules are aggregations of microorganisms with mineral particles that form on glacier surfaces. To understand the processes by which the granules develop, this study focused on the altitudinal distribution of the granules and photosynthetic microorganisms on the glacier, bacterial community variation with granules size and environmental factors affecting the growth of the granules. Size-sorted cryoconite granules collected from five different sites on Qaanaaq Glacier were analyzed. C and N contents were significantly higher in large (diameter greater than 250 μm) granules than in smaller (diameter 30-249 μm) granules. Bacterial community structures, based on 16S rRNA gene amplicon sequencing, were different between the smaller and larger granules. The filamentous cyanobacterium Phormidesmis priestleyi was the dominant bacterial species in larger granules. Multivariate analysis suggests that the abundance of mineral particles on the glacier surface is the main factor controlling growth of these cyanobacteria. These results show that the supply of mineral particles on the glacier enhances granule development, that P. priestleyi is likely the key species for primary production and the formation of the granules and that the bacterial community in the granules changes over the course of the granule development.
Collapse
Affiliation(s)
- Jun Uetake
- Transdisciplinary Research Integration Center, Minatoku, Tokyo 105-0001, Japan National Institute of Polar Research, Tachikawa, Tokyo 190-8518, Japan
| | - Sota Tanaka
- Graduate School of Science, Chiba University, Inageku, Chiba 263-8522, Japan
| | - Takahiro Segawa
- Transdisciplinary Research Integration Center, Minatoku, Tokyo 105-0001, Japan National Institute of Polar Research, Tachikawa, Tokyo 190-8518, Japan Center for Life Science Research, University of Yamanashi, Yamanashi, Japan
| | - Nozomu Takeuchi
- Graduate School of Science, Chiba University, Inageku, Chiba 263-8522, Japan
| | - Naoko Nagatsuka
- National Institute of Polar Research, Tachikawa, Tokyo 190-8518, Japan
| | - Hideaki Motoyama
- National Institute of Polar Research, Tachikawa, Tokyo 190-8518, Japan
| | - Teruo Aoki
- Climate Research Department, Meteorological Research Institute, Tsukuba, Ibaraki 305-0052, Japan
| |
Collapse
|
10
|
Wunderlin T, Ferrari B, Power M. Global and local-scale variation in bacterial community structure of snow from the Swiss and Australian Alps. FEMS Microbiol Ecol 2016; 92:fiw132. [PMID: 27297721 DOI: 10.1093/femsec/fiw132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 11/13/2022] Open
Abstract
Seasonally, snow environments cover up to 50% of the land's surface, yet the microbial diversity and ecosystem functioning within snow, particularly from alpine regions are not well described. This study explores the bacterial diversity in snow using next-generation sequencing technology. Our data expand the global inventory of snow microbiomes by focusing on two understudied regions, the Swiss Alps and the Australian Alps. A total biomass similar to cell numbers in polar snow was detected, with 5.2 to 10.5 × 10(3) cells mL(-1) of snow. We found that microbial community structure of surface snow varied by country and site and along the altitudinal range (alpine and sub-alpine). The bacterial communities present were diverse, spanning 25 distinct phyla, but the six phyla Proteobacteria (Alpha- and Betaproteobacteria), Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria and Firmicutes, accounted for 72%-98% of the total relative abundance. Taxa such as Acidobacteriaceae and Methylocystaceae, associated with cold soils, may be part of the atmospherically sourced snow community, while families like Sphingomonadaceae were detected in every snow sample and are likely part of the common snow biome.
Collapse
Affiliation(s)
- Tina Wunderlin
- Department of Biological Sciences, Macquarie University, Sydney 2109, NSW, Australia Molecular Ecology, Institute for Sustainability Sciences, Agroscope, Zurich, Switzerland
| | - Belinda Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Australia, Randwick, Sydney 2052, NSW, Australia
| | - Michelle Power
- Department of Biological Sciences, Macquarie University, Sydney 2109, NSW, Australia
| |
Collapse
|
11
|
González-Toril E, Santofimia E, Blanco Y, López-Pamo E, Gómez MJ, Bobadilla M, Cruz R, Palomino EJ, Aguilera Á. Pyrosequencing-Based Assessment of the Microbial Community Structure of Pastoruri Glacier Area (Huascarán National Park, Perú), a Natural Extreme Acidic Environment. MICROBIAL ECOLOGY 2015; 70:936-47. [PMID: 26045157 DOI: 10.1007/s00248-015-0634-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/21/2015] [Indexed: 05/07/2023]
Abstract
The exposure of fresh sulfide-rich lithologies by the retracement of the Nevado Pastoruri glacier (Central Andes, Perú) is increasing the presence of heavy metals in the water as well as decreasing the pH, producing an acid rock drainage (ARD) process in the area. We describe the microbial communities of an extreme ARD site in Huascarán National Park as well as their correlation with the water physicochemistry. Microbial biodiversity was analyzed by FLX 454 sequencing of the 16S rRNA gene. The suggested geomicrobiological model of the area distinguishes three different zones. The proglacial zone is located in the upper part of the valley, where the ARD process is not evident yet. Most of the OTUs detected in this area were related to sequences associated with cold environments (i.e., psychrotolerant species of Cyanobacteria or Bacteroidetes). After the proglacial area, an ARD-influenced zone appeared, characterized by the presence of phylotypes related to acidophiles (Acidiphilium) as well as other species related to acidic and cold environments (i.e., acidophilic species of Chloroflexi, Clostridium and Verrumicrobia). Sulfur- and iron-oxidizing acidophilic bacteria (Acidithiobacillus) were also identified. The post-ARD area was characterized by the presence of OTUs related to microorganisms detected in soils, permafrost, high mountain environments, and deglaciation areas (Sphingomonadales, Caulobacter or Comamonadaceae).
Collapse
Affiliation(s)
- Elena González-Toril
- Centro de Astrobiología (INTA-CSIC), Instituto Nacional de Técnica Aeroespacial, Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Esther Santofimia
- Instituto Geológico y Minero de España, Rios Rosas 23, 28003, Madrid, Spain
| | - Yolanda Blanco
- Centro de Astrobiología (INTA-CSIC), Instituto Nacional de Técnica Aeroespacial, Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Enrique López-Pamo
- Instituto Geológico y Minero de España, Rios Rosas 23, 28003, Madrid, Spain
| | - Manuel J Gómez
- Centro de Astrobiología (INTA-CSIC), Instituto Nacional de Técnica Aeroespacial, Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Miguel Bobadilla
- Departamento Académico de Ciencias Ambientales. Facultad de Recursos Naturales Renovables, Universidad Nacional Agraria de la Selva, Avenida Universitaria S/N. Tingo María, Huánuco, Perú
| | - Rolando Cruz
- Facultad de Ciencias Ambientales, Universidad Nacional Santiago Antúnez de Mayolo, Avenida Centenario N 200, Huaraz, Ancash, Perú
| | - Edwin Julio Palomino
- Facultad de Ciencias Ambientales, Universidad Nacional Santiago Antúnez de Mayolo, Avenida Centenario N 200, Huaraz, Ancash, Perú
| | - Ángeles Aguilera
- Centro de Astrobiología (INTA-CSIC), Instituto Nacional de Técnica Aeroespacial, Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850, Madrid, Spain.
| |
Collapse
|
12
|
Microbial community changes along the Ecology Glacier ablation zone (King George Island, Antarctica). Polar Biol 2015. [DOI: 10.1007/s00300-015-1767-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Stibal M, Schostag M, Cameron KA, Hansen LH, Chandler DM, Wadham JL, Jacobsen CS. Different bulk and active bacterial communities in cryoconite from the margin and interior of the Greenland ice sheet. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:293-300. [PMID: 25405749 DOI: 10.1111/1758-2229.12246] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/19/2014] [Indexed: 06/04/2023]
Abstract
Biological processes in the supraglacial ecosystem, including cryoconite, contribute to nutrient cycling within the cryosphere and may affect surface melting, yet little is known of the diversity of the active microbes in these environments. We examined the bacterial abundance and community composition of cryoconite over a melt season at two contrasting sites at the margin and in the interior of the Greenland ice sheet, using sequence analysis and quantitative polymerase chain reaction of coextracted 16S rDNA and rRNA. Significant differences were found between bulk (rDNA) and potentially active (rRNA) communities, and between communities sampled from the two sites. Higher concentrations of rRNA than rDNA were detected at the interior site, whereas at the margin several orders of magnitude less rRNA was found compared with rDNA, which may be explained by a lower proportion of active bacteria at the margin site. The rRNA communities at both sites were dominated by a few taxa of Cyanobacteria and Alpha- and/or Betaproteobacteria. The bulk alpha diversity was higher in the margin site community, suggesting that local sources may be contributing towards the gene pool in addition to long distance transport.
Collapse
Affiliation(s)
- Marek Stibal
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark; Center for Permafrost (CENPERM), University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
14
|
Murakami T, Segawa T, Bodington D, Dial R, Takeuchi N, Kohshima S, Hongoh Y. Census of bacterial microbiota associated with the glacier ice worm Mesenchytraeus solifugus. FEMS Microbiol Ecol 2015; 91:fiv003. [PMID: 25764456 DOI: 10.1093/femsec/fiv003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2014] [Indexed: 11/14/2022] Open
Abstract
The glacier ice worm, Mesenchytraeus solifugus, is a unique annelid, inhabiting only snow and ice in North American glaciers. Here, we analyzed the taxonomic composition of bacteria associated with M. solifugus based on the 16S rRNA gene. We analyzed four fixed-on-site and 10 starved ice worm individuals, along with glacier surface samples. In total, 1341 clones of 16S rRNA genes were analyzed for the ice worm samples, from which 65 bacterial phylotypes (99.0% cut-off) were identified. Of these, 35 phylotypes were closely related to sequences obtained from their habitat glacier and/or other components of cryosphere; whereas three dominant phylotypes were affiliated with animal-associated lineages of the class Mollicutes. Among the three, phylotype Ms-13 shared less than 89% similarity with database sequences and was closest to a gut symbiont of a terrestrial earthworm. Using fluorescence in situ hybridization, Ms-13 was located on the gut wall surface of the ice worms. We propose a novel genus and species, 'Candidatus Vermiplasma glacialis', for this bacterium. Our results raise the possibility that the ice worm has exploited indigenous glacier bacteria, while several symbiotic bacterial lineages have maintained their association with the ice worm during the course of adaptive evolution to the permanently cold environment.
Collapse
Affiliation(s)
- Takumi Murakami
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Takahiro Segawa
- National Institute of Polar Research, Tokyo 190-8518, Japan Transdisciplinary Research Integration Center, Tokyo 190-8518, Japan
| | - Dylan Bodington
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Roman Dial
- Department of Environmental Science, Alaska Pacific University, Alaska 99508, USA
| | - Nozomu Takeuchi
- Department of Earth Sciences, Chiba University, Chiba 263-8522, Japan
| | - Shiro Kohshima
- Wildlife Research Center, Kyoto University, Kyoto 606-8203, Japan
| | - Yuichi Hongoh
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
15
|
Uetake J, Tanaka S, Hara K, Tanabe Y, Samyn D, Motoyama H, Imura S, Kohshima S. Novel biogenic aggregation of moss gemmae on a disappearing African glacier. PLoS One 2014; 9:e112510. [PMID: 25401789 PMCID: PMC4234412 DOI: 10.1371/journal.pone.0112510] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 10/18/2014] [Indexed: 11/18/2022] Open
Abstract
Tropical regions are not well represented in glacier biology, yet many tropical glaciers are under threat of disappearance due to climate change. Here we report a novel biogenic aggregation at the terminus of a glacier in the Rwenzori Mountains, Uganda. The material was formed by uniseriate protonemal moss gemmae and protonema. Molecular analysis of five genetic markers determined the taxon as Ceratodon purpureus, a cosmopolitan species that is widespread in tropical to polar region. Given optimal growing temperatures of isolate is 20-30 °C, the cold glacier surface might seem unsuitable for this species. However, the cluster of protonema growth reached approximately 10 °C in daytime, suggesting that diurnal increase in temperature may contribute to the moss's ability to inhabit the glacier surface. The aggregation is also a habitat for microorganisms, and the disappearance of this glacier will lead to the loss of this unique ecosystem.
Collapse
Affiliation(s)
- Jun Uetake
- Transdisciplinary Research Integration Center, Minato-ku, Tokyo, Japan
- National Institute of Polar Research, Tachikawa, Tokyo, Japan
- * E-mail:
| | - Sota Tanaka
- Faculty of Science, Chiba University, Chiba, Chiba, Japan
| | - Kosuke Hara
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yukiko Tanabe
- Institute for Advanced Study, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Denis Samyn
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Nigata, Japan
| | | | - Satoshi Imura
- Faculty of Science, Chiba University, Chiba, Chiba, Japan
| | - Shiro Kohshima
- Wildlife Research Center, Kyoto University, Kyoto, Kyoto, Japan
| |
Collapse
|
16
|
Cappa F, Suciu N, Trevisan M, Ferrari S, Puglisi E, Cocconcelli PS. Bacterial diversity in a contaminated Alpine glacier as determined by culture-based and molecular approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 497-498:50-59. [PMID: 25117971 DOI: 10.1016/j.scitotenv.2014.07.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/24/2014] [Accepted: 07/24/2014] [Indexed: 06/03/2023]
Abstract
Glaciers are important ecosystems, hosting bacterial communities that are adapted to cold conditions and scarcity of available nutrients. Several works focused on the composition of bacterial communities in glaciers and on the long-range atmospheric deposition of pollutants in glaciers, but it is not clear yet if ski resorts can represent a source of point pollution in near-by glaciers, and if these pollutants can influence the residing bacterial communities. To test these hypotheses, 12 samples were analyzed in Madaccio Glacier, in a 3200 ma.s.l. from two areas, one undisturbed and one close to a summer ski resort that is active since the 1930s. Chemical analyses found concentrations up to 43 ng L(-1) for PCBs and up to 168 μg L(-1) for PAHs in the contaminated area: these values are significantly higher than the ones found in undisturbed glaciers because of long-range atmospheric deposition events, and can be explained as being related to the near-by ski resort activities. Isolation of strains on rich medium plates and PCR-DGGE analyses followed by sequencing of bands allowed the identification of a bacterial community with phylogenetic patterns close to other glacier environments, with Proteobacteria and Actinobacteria the mostly abundant phyla, with Acidobacteria, Firmicutes and Cyanobacteria also represented in the culture-independent analyses. A number of isolates were identified by molecular and biochemical methods as phylogenetic related to known xenobiotic-degrading strains: glaciers subjected to chemical contamination can be important reservoirs of bacterial strains with potential applications in bioremediation.
Collapse
Affiliation(s)
- Fabrizio Cappa
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Nicoleta Suciu
- Istituto di Chimica Agraria ed Ambientale, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Marco Trevisan
- Istituto di Chimica Agraria ed Ambientale, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Susanna Ferrari
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Via Milano 24, 26100 Cremona, Italy
| | - Edoardo Puglisi
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Pier Sandro Cocconcelli
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
17
|
Shabarova T, Villiger J, Morenkov O, Niggemann J, Dittmar T, Pernthaler J. Bacterial community structure and dissolved organic matter in repeatedly flooded subsurface karst water pools. FEMS Microbiol Ecol 2014; 89:111-26. [PMID: 24716603 DOI: 10.1111/1574-6941.12339] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/21/2014] [Accepted: 03/28/2014] [Indexed: 12/30/2022] Open
Abstract
Bacterial diversity, community assembly, and the composition of the dissolved organic matter (DOM) were studied in three temporary subsurface karst pools with different flooding regimes. We tested the hypothesis that microorganisms introduced to the pools during floods faced environmental filtering toward a 'typical' karst water community, and we investigated whether DOM composition was related to floodings and the residence time of water in stagnant pools. As predicted, longer water residence consistently led to a decline of bacterial diversity. The microbial assemblages in the influx water harbored more 'exotic' lineages with large distances to known genotypes, yet these initial communities already appeared to be shaped by selective processes. β-Proteobacterial operational taxonomic units (OTUs) closely related to microbes from subsurface or surface aquatic environments were mainly responsible for the clustering of samples according to water residence time in the pools. By contrast, several Cytophagaceae and Flavobacteriaceae OTUs were related to different floodings, which were also the main determinants of DOM composition. A subset of compounds distinguishable by molecular mass and O/C content were characteristic for individual floods. Moreover, there was a transformation of DOM in stagnant pools toward smaller and more aromatic compounds, potentially also reflecting microbial utilization.
Collapse
Affiliation(s)
- Tanja Shabarova
- Limnological Station, Institute of Plant Biology, University of Zurich, Kilchberg, Switzerland
| | | | | | | | | | | |
Collapse
|
18
|
Lopatina A, Krylenkov V, Severinov K. Activity and bacterial diversity of snow around Russian Antarctic stations. Res Microbiol 2013; 164:949-58. [PMID: 24012540 DOI: 10.1016/j.resmic.2013.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/25/2013] [Indexed: 10/26/2022]
Abstract
The diversity and temporal dynamics of bacterial communities in pristine snow around two Russian Antarctic stations was investigated. Taxonomic analysis of rDNA libraries revealed that snow communities were dominated by bacteria from a small number of operational taxonomic units (OTUs) that underwent dramatic swings in abundance between the 54th (2008-2009) and 55th (2009-2010) Russian Antarctic expeditions. Moreover, analysis of the 55th expedition samples indicated that there was very little, if any, correspondence in abundance of clones belonging to the same OTU present in rDNA and rRNA libraries. The latter result suggests that most rDNA clones originate from bacteria that are not alive and/or active and may have been deposited on the snow surface from the atmosphere. In contrast, clones most abundant in rRNA libraries (mostly belonging to Variovorax, Janthinobacterium, Pseudomonas, and Sphingomonas genera) may be considered as endogenous Antarctic snow inhabitants.
Collapse
Affiliation(s)
- Anna Lopatina
- Institutes of Molecular Genetics and Gene Biology of the Russian Academy of Sciences, Moscow, Russia.
| | | | | |
Collapse
|
19
|
Everroad RC, Otaki H, Matsuura K, Haruta S. Diversification of bacterial community composition along a temperature gradient at a thermal spring. Microbes Environ 2012; 27:374-81. [PMID: 22673306 PMCID: PMC4103544 DOI: 10.1264/jsme2.me11350] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
To better understand the biogeography and relationship between temperature and community structure within microbial mats, the bacterial diversity of mats at a slightly alkaline, sulfide-containing hot spring was explored. Microbial mats that developed at temperatures between 75-52°C were collected from an area of approximately 1 m(2) in Nakabusa, Nagano, Japan. Bacterial 16S rRNA genes from these samples were examined by terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis. T-RFLP profiles revealed 66 unique fragments (T-RFs). Based on total T-RFs observed in environmental profiles and clone libraries, a temperature effect on diversity was determined, with complexity in the community increasing as temperature decreased. The T-RF pattern indicated four distinct community assemblages related to temperature. Members of the Aquificales and particularly the sulfur-oxidizing bacterium Sulfurihydrogenibium were present at all temperatures and were the dominant component of mats taken at 75-67°C. Sulfide oxidation, which persisted throughout the temperature gradient, was the presumed dominant pathway of primary production above 67°C. As temperature decreased, successive additions of anoxygenic and oxygenic phototrophs increased primary productivity, allowing for diversification of the community.
Collapse
Affiliation(s)
- R Craig Everroad
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1–1 Minami-Osawa, Hachioji-shi, Tokyo 192–0397, Japan
| | | | | | | |
Collapse
|
20
|
Uetake J, Yoshimura Y, Nagatsuka N, Kanda H. Isolation of oligotrophic yeasts from supraglacial environments of different altitude on the Gulkana Glacier (Alaska). FEMS Microbiol Ecol 2012; 82:279-86. [PMID: 22304437 DOI: 10.1111/j.1574-6941.2012.01323.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 01/23/2012] [Accepted: 01/26/2012] [Indexed: 11/29/2022] Open
Abstract
Psychrophilic yeasts have been isolated from supra- and subglacial ice at many sites worldwide. To understand the ecology of psychrophilic yeasts on glaciers, we focused on their adaptation to wide range of nutrient concentrations and their distribution with altitude on the Gulkana Glacier in Alaska. We found various culturable psychrophilic yeasts on the ice surfaces of the glacier, and 11 species were isolated with incubation at 4 °C in four different dilutions of agar medium. Some of our isolated species (Rhodotorula psychrophenolica, Rhodotorula aff. psychrophenolica, Rhodotorula glacialis, and Basidiomycota sp. 1) can grow on the low dissolved organic matter (DOC) concentrations medium (7.6 mg L(-1)) which is close to the typical level of supraglacial melt water, suggesting that these species can inhabit in any supraglacial meltwater. Otherwise, most of other species were isolated only from higher DOC concentration medium (183 mg L(-1) -18.3 g L(-1)), suggesting that these are inhabitant around the cryoconite, because DOC concentrations in melted surface-ice contained cryoconite is much higher than in melted water. Similarity of altitudinal distribution between culturable yeast and algal biomass suggests that the ecological role played by the cold-adapted yeasts is as organic matter decomposers and nutrient cyclers in glacier ecosystem.
Collapse
Affiliation(s)
- Jun Uetake
- Transdisciplinary Research Integration Center, Tokyo, Japan.
| | | | | | | |
Collapse
|
21
|
Yan P, Hou S, Chen T, Ma X, Zhang S. Culturable bacteria isolated from snow cores along the 1300 km traverse from Zhongshan Station to Dome A, East Antarctica. Extremophiles 2012; 16:345-354. [PMID: 22297697 DOI: 10.1007/s00792-012-0434-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 01/18/2012] [Indexed: 11/27/2022]
Abstract
The abundance and community composition of culturable bacteria in four snow cores along the 1300 km traverse from Zhongshan Station to Dome A, East Antarctica, were investigated through the combination of liquid and solid media and small subunit 16S rRNA sequences. Under aerobic cultivation conditions, the average concentrations of bacterial colonies from each snow core varied from 0.008 to 0.32 CFU mL(-1). A total of 37 and 15 isolates with different morphologic characteristics were recovered from solid and liquid media PYGV, respectively. The phylogenetic analysis of 14 representatives with different ARDRA patterns from RFLP showed that all the isolates were affiliated with five phylogenetic groups: Firmicutes, Actinobacteria, Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes. Actinobacteria represented the largest cluster with 43% of strains, and these strains exhibited unique phenotypic properties. The community compositions of culturable bacteria in the four snow cores were distinctly different from each other and the concentrations and community sizes of culturable bacteria along the traverse decreased with increases of latitude, altitude and distance from coast, which likely reflected the different bacterial sources and biogeographies under the different regional climate conditions in the snow cover of East Antarctica.
Collapse
Affiliation(s)
- Peiying Yan
- State Key Laboratory of Cryospheric Science, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China
| | | | | | | | | |
Collapse
|
22
|
Lin YT, Whitman WB, Coleman DC, Chih-Yu C. Molecular characterization of soil bacterial community in a perhumid, low mountain forest. Microbes Environ 2011; 26:325-31. [PMID: 21727759 DOI: 10.1264/jsme2.me11114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Forest disturbance often results in changes in soil properties and microbial communities. In the present study, we characterized a soil bacterial community subjected to disturbance using 16S rRNA gene clone libraries. The community was from a disturbed broad-leaved, low mountain forest ecosystem at Huoshaoliao (HSL) located in northern Taiwan. This locality receives more than 4,000 mm annual precipitation, one of the highest precipitations in Taiwan. Based on the Shannon diversity index, Chao1 estimator, richness and rarefaction curve analysis, the bacterial community in HSL forest soils was more diverse than those previously investigated in natural and disturbed forest soils with colder or less humid weather conditions. Analysis of molecular variance also revealed that the bacterial community in disturbed soils significantly differed from natural forest soils. Most of the abundant operational taxonomic units (OTUs) in the disturbed soil community at HSL were less abundant or absent in other soils. The disturbances influenced the composition of bacterial communities in natural and disturbed forests and increased the diversity of the disturbed forest soil community. Furthermore, the warmer and humid weather conditions could also increase community diversity in HSL soils.
Collapse
Affiliation(s)
- Yu-Te Lin
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| | | | | | | |
Collapse
|
23
|
Anda M, Ikeda S, Eda S, Okubo T, Sato S, Tabata S, Mitsui H, Minamisawa K. Isolation and genetic characterization of Aurantimonas and Methylobacterium strains from stems of hypernodulated soybeans. Microbes Environ 2011; 26:172-80. [PMID: 21512309 DOI: 10.1264/jsme2.me10203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aims of this study were to isolate Aurantimonas and Methylobacterium strains that responded to soybean nodulation phenotypes and nitrogen fertilization rates in a previous culture-independent analysis (Ikeda et al. ISME J. 4:315-326, 2010). Two strategies were adopted for isolation from enriched bacterial cells prepared from stems of field-grown, hypernodulated soybeans: PCR-assisted isolation for Aurantimonas and selective cultivation for Methylobacterium. Thirteen of 768 isolates cultivated on Nutrient Agar medium were identified as Aurantimonas by colony PCR specific for Aurantimonas and 16S rRNA gene sequencing. Meanwhile, among 187 isolates on methanol-containing agar media, 126 were identified by 16S rRNA gene sequences as Methylobacterium. A clustering analysis (>99% identity) of the 16S rRNA gene sequences for the combined datasets of the present and previous studies revealed 4 and 8 operational taxonomic units (OTUs) for Aurantimonas and Methylobacterium, respectively, and showed the successful isolation of target bacteria for these two groups. ERIC- and BOX-PCR showed the genomic uniformity of the target isolates. In addition, phylogenetic analyses of Aurantimonas revealed a phyllosphere-specific cluster in the genus. The isolates obtained in the present study will be useful for revealing unknown legume-microbe interactions in relation to the autoregulation of nodulation.
Collapse
Affiliation(s)
- Mizue Anda
- Graduate School of Life Sciences, Tohoku University, Sendai 980–8577, Japan
| | | | | | | | | | | | | | | |
Collapse
|