1
|
Patel A, Sahu KP, Mehta S, Javed M, Balamurugan A, Ashajyothi M, Sheoran N, Ganesan P, Kundu A, Gopalakrishnan S, Gogoi R, Kumar A. New Insights on Endophytic Microbacterium-Assisted Blast Disease Suppression and Growth Promotion in Rice: Revelation by Polyphasic Functional Characterization and Transcriptomics. Microorganisms 2023; 11:microorganisms11020362. [PMID: 36838327 PMCID: PMC9963279 DOI: 10.3390/microorganisms11020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/24/2022] [Accepted: 01/01/2023] [Indexed: 02/05/2023] Open
Abstract
Plant growth-promoting endophytic microbes have drawn the attention of researchers owing to their ability to confer fitness benefits in many plant species. Here, we report agriculturally beneficial traits of rice-leaf-adapted endophytic Microbacterium testaceum. Our polyphasic taxonomic investigations revealed its identity as M. testaceum. The bacterium displayed typical endophytism in rice leaves, indicated by the green fluorescence of GFP-tagged M. testaceum in confocal laser scanning microscopy. Furthermore, the bacterium showed mineral solubilization and production of IAA, ammonia, and hydrolytic enzymes. Tobacco leaf infiltration assay confirmed its non-pathogenic nature on plants. The bacterium showed antifungal activity on Magnaporthe oryzae, as exemplified by secreted and volatile organic metabolome-mediated mycelial growth inhibition. GC-MS analysis of the volatilome of M. testaceum indicated the abundance of antimicrobial compounds. Bacterization of rice seedlings showed phenotypic traits of MAMP-triggered immunity (MTI), over-expression of OsNPR1 and OsCERK, and the consequent blast suppressive activity. Strikingly, M. testaceum induced the transcriptional tradeoff between physiological growth and host defense pathways as indicated by up- and downregulated DEGs. Coupled with its plant probiotic features and the defense elicitation activity, the present study paves the way for developing Microbacterium testaceum-mediated bioformulation for sustainably managing rice blast disease.
Collapse
|
2
|
Wang H, Liu R, You MP, Barbetti MJ, Chen Y. Pathogen Biocontrol Using Plant Growth-Promoting Bacteria (PGPR): Role of Bacterial Diversity. Microorganisms 2021; 9:microorganisms9091988. [PMID: 34576883 PMCID: PMC8470069 DOI: 10.3390/microorganisms9091988] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
A vast microbial community inhabits in the rhizosphere, among which, specialized bacteria known as Plant Growth-Promoting Rhizobacteria (PGPR) confer benefits to host plants including growth promotion and disease suppression. PGPR taxa vary in the ways whereby they curtail the negative effects of invading plant pathogens. However, a cumulative or synergistic effect does not always ensue when a bacterial consortium is used. In this review, we reassess the disease-suppressive mechanisms of PGPR and present explanations and illustrations for functional diversity and/or stability among PGPR taxa regarding these mechanisms. We also provide evidence of benefits when PGPR mixtures, rather than individuals, are used for protecting crops from various diseases, and underscore the critical determinant factors for successful use of PGPR mixtures. Then, we evaluate the challenges of and limitations to achieving the desired outcomes from strain/species-rich bacterial assemblages, particularly in relation to their role for plant disease management. In addition, towards locating additive or synergistic outcomes, we highlight why and how the benefits conferred need to be categorized and quantified when different strains/species of PGPR are used in combinations. Finally, we highlight the critical approaches needed for developing PGPR mixtures with improved efficacy and stability as biocontrols for utilization in agricultural fields.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences, Xianyang 712100, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runjin Liu
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao 266109, China;
| | - Ming Pei You
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, LB 5005, Perth, WA 6009, Australia; (M.P.Y.); (M.J.B.)
| | - Martin J. Barbetti
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, LB 5005, Perth, WA 6009, Australia; (M.P.Y.); (M.J.B.)
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, LB 5005, Perth, WA 6009, Australia; (M.P.Y.); (M.J.B.)
- Correspondence:
| |
Collapse
|
3
|
Ryu DH, Lee SW, Mikolaityte V, Kim YW, Jeong H, Lee SJ, Lee CH, Lee JK. Identification of a Second Type of AHL-lactonase from Rhodococcus sp. BH4, belonging to the α/β Hydrolase Superfamily. J Microbiol Biotechnol 2020; 30:937-945. [PMID: 32160697 PMCID: PMC9728292 DOI: 10.4014/jmb.2001.01006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/06/2020] [Indexed: 12/15/2022]
Abstract
N-acyl-homoserine lactone (AHL)-mediated quorum sensing (QS) plays a major role in development of biofilms, which contribute to rise in infections and biofouling in water-related industries. Interference in QS, called quorum quenching (QQ), has recieved a lot of attention in recent years. Rhodococcus spp. are known to have prominent quorum quenching activity and in previous reports it was suggested that this genus possesses multiple QQ enzymes, but only one gene, qsdA, which encodes an AHL-lactonase belonging to phosphotriesterase family, has been identified. Therefore, we conducted a whole genome sequencing and analysis of Rhodococcus sp. BH4 isolated from a wastewater treatment plant. The sequencing revealed another gene encoding a QQ enzyme (named jydB) that exhibited a high AHL degrading activity. This QQ enzyme had a 46% amino acid sequence similarity with the AHL-lactonase (AidH) of Ochrobactrum sp. T63. HPLC analysis and AHL restoration experiments by acidification revealed that the jydB gene encodes an AHL-lactonase which shares the known characteristics of the α/β hydrolase family. Purified recombinant JydB demonstrated a high hydrolytic activity against various AHLs. Kinetic analysis of JydB revealed a high catalytic efficiency (kcat/KM) against C4-HSL and 3-oxo-C6 HSL, ranging from 1.88 × 106 to 1.45 × 106 M-1 s-1, with distinctly low KM values (0.16 - 0.24 mM). This study affirms that the AHL degrading activity and biofilm inhibition ability of Rhodococcus sp. BH4 may be due to the presence of multiple quorum quenching enzymes, including two types of AHL-lactonases, in addition to AHL-acylase and oxidoreductase, for which the genes have yet to be described.
Collapse
Affiliation(s)
- Du-Hwan Ryu
- Department of Biomedicinal Science and Biotechnology, Paichai University, Daejeon 35345, Republic of Korea
| | - Sang-Won Lee
- Department of Biomedicinal Science and Biotechnology, Paichai University, Daejeon 35345, Republic of Korea
| | - Viktorija Mikolaityte
- Department of Biomedicinal Science and Biotechnology, Paichai University, Daejeon 35345, Republic of Korea
| | - Yea-Won Kim
- Department of Biomedicinal Science and Biotechnology, Paichai University, Daejeon 35345, Republic of Korea
| | - Haeyoung Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Chung-Hak Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung-Kee Lee
- Department of Biomedicinal Science and Biotechnology, Paichai University, Daejeon 35345, Republic of Korea,Corresponding author Phone: +82-42-520-5940 Fax: +82-42-070-4850-8446 E-mail:
| |
Collapse
|
4
|
Sarveswari HB, Solomon AP. Profile of the Intervention Potential of the Phylum Actinobacteria Toward Quorum Sensing and Other Microbial Virulence Strategies. Front Microbiol 2019; 10:2073. [PMID: 31636609 PMCID: PMC6787268 DOI: 10.3389/fmicb.2019.02073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/22/2019] [Indexed: 12/22/2022] Open
Abstract
The rapid dissemination of antimicrobial resistance amongst microorganisms and their deleterious effect on public health has propelled the exploration of alternative interventions that target microbial virulence rather than viability. In several microorganisms, the expression of virulence factors is controlled by quorum sensing systems. A comprehensive understanding into microbial quorum sensing systems, virulence strategies and pathogenesis has exposed potential targets whose attenuation may alleviate infectious diseases. Such virulence attenuating natural products sourced from the different phyla of bacteria from diverse ecosystems have been identified. In this review, we discuss chemical entities derived from the phylum Actinobacteria that have demonstrated the potential to inhibit microbial biofilms, enzymes, and other virulence factors both in vivo and in vitro. We also review Actinobacteria-derived compounds that can degrade quorum sensing signal molecules, and the genes encoding such molecules. As many Actinobacteria-derived compounds have been translated into pharmaceutically important agents including antibiotics, the identification of virulence attenuating compounds from this phylum exemplifies their significance as a prospective source for anti-virulent drugs.
Collapse
Affiliation(s)
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
5
|
Liu J, Eng CY, Ho JS, Chong TH, Wang L, Zhang P, Zhou Y. Quorum quenching in anaerobic membrane bioreactor for fouling control. WATER RESEARCH 2019; 156:159-167. [PMID: 30913419 DOI: 10.1016/j.watres.2019.03.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Quorum quenching (QQ) is an effective method to control membrane biofouling in aerobic membrane bioreactors (AeMBRs). However, it is not clear if QQ is feasible in an anaerobic membrane bioreactor (AnMBR). In this study, Microbacterium. sp that has QQ capability was embedded in alginate beads, known as QQ beads (QQB), and applied in a lab-scale AnMBR to investigate their potential in fouling control. With the addition of QQB, the operating period of AnMBR-QQB reactor was prolonged by about 8-10 times at constant flux operation before reaching the pre-set maximum transmembrane pressure (TMP). The concentration of Acyl-homoserine lactones (AHLs) in the bulk liquid was significantly higher during the 'TMP jump' period compared to QQB and control phases, while AHLs in the membrane foulants were remarkably lower in QQB phase compared to control phase. Furthermore, a much lower level of soluble microbial production (SMP) was observed in QQB phases. Extracellular polymeric substance (EPS), protein in particular, was reduced by 39.73-80.58% in the cake layer of the membrane from QQB phases. Significant changes of organic functional groups were observed in cake layer from QQB membrane as compared with that from control membrane. At the end of operation, bio-polymer (BP), building blocks (BB) and low molecular weight (LMW) organic matters increased in the foulant from control phases but such increase was not observed in QQB phase. After long-term operation, revival of QQB is required due to the declined activity for AHLs degradation.
Collapse
Affiliation(s)
- Jianbo Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Chin Yee Eng
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jia Shin Ho
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Tzyy Haur Chong
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Li Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Panyue Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
6
|
Distribution and characterization of N-acylhomoserine lactone (AHL)-degrading activity and AHL lactonase gene (qsdS) in Sphingopyxis. J Biosci Bioeng 2019; 127:411-417. [DOI: 10.1016/j.jbiosc.2018.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/27/2018] [Accepted: 10/07/2018] [Indexed: 11/18/2022]
|
7
|
Yavuztürk Gül B, Koyuncu I. Assessment of new environmental quorum quenching bacteria as a solution for membrane biofouling. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.05.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Polkade AV, Mantri SS, Patwekar UJ, Jangid K. Quorum Sensing: An Under-Explored Phenomenon in the Phylum Actinobacteria. Front Microbiol 2016; 7:131. [PMID: 26904007 PMCID: PMC4748050 DOI: 10.3389/fmicb.2016.00131] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/25/2016] [Indexed: 01/05/2023] Open
Abstract
Quorum sensing is known to play a major role in the regulation of secondary metabolite production, especially, antibiotics, and morphogenesis in the phylum Actinobacteria. Although it is one of the largest bacterial phylum, only 25 of the 342 genera have been reported to use quorum sensing. Of these, only nine have accompanying experimental evidence; the rest are only known through bioinformatic analysis of gene/genome sequences. It is evident that this important communication mechanism is not extensively explored in Actinobacteria. In this review, we summarize the different quorum sensing systems while identifying the limitations of the existing screening strategies and addressing the improvements that have taken place in this field in recent years. The γ-butyrolactone system turned out to be almost exclusively limited to this phylum. In addition, methylenomycin furans, AI-2 and other putative AHL-like signaling molecules are also reported in Actinobacteria. The lack of existing screening systems in detecting minute quantities and of a wider range of signaling molecules was a major reason behind the limited information available on quorum sensing in this phylum. However, recent improvements in screening strategies hold a promising future and are likely to increase the discovery of new signaling molecules. Further, the quorum quenching ability in many Actinobacteria has a great potential in controlling the spread of plant and animal pathogens. A systematic and coordinated effort is required to screen and exploit the enormous potential that quorum sensing in the phylum Actinobacteria has to offer for human benefit.
Collapse
Affiliation(s)
| | | | | | - Kamlesh Jangid
- Microbial Culture Collection, National Centre for Cell Science, Savitribai Phule Pune University CampusPune, India
| |
Collapse
|
9
|
Helman Y, Chernin L. Silencing the mob: disrupting quorum sensing as a means to fight plant disease. MOLECULAR PLANT PATHOLOGY 2015; 16:316-29. [PMID: 25113857 PMCID: PMC6638422 DOI: 10.1111/mpp.12180] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bacteria are able to sense their population's density through a cell-cell communication system, termed 'quorum sensing' (QS). This system regulates gene expression in response to cell density through the constant production and detection of signalling molecules. These molecules commonly act as auto-inducers through the up-regulation of their own synthesis. Many pathogenic bacteria, including those of plants, rely on this communication system for infection of their hosts. The finding that the countering of QS-disrupting mechanisms exists in many prokaryotic and eukaryotic organisms offers a promising novel method to fight disease. During the last decade, several approaches have been proposed to disrupt QS pathways of phytopathogens, and hence to reduce their virulence. Such studies have had varied success in vivo, but most lend promising support to the idea that QS manipulation could be a potentially effective method to reduce bacterial-mediated plant disease. This review discusses the various QS-disrupting mechanisms found in both bacteria and plants, as well as the different approaches applied artificially to interfere with QS pathways and thus protect plant health.
Collapse
Affiliation(s)
- Yael Helman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | |
Collapse
|
10
|
Pedroza CJ, Flórez AM, Ruiz OS, Orduz S. Enzymatic hydrolysis of molecules associated with bacterial quorum sensing using an acyl homoserine lactonase from a novel Bacillus thuringiensis strain. Antonie Van Leeuwenhoek 2014; 105:253-64. [PMID: 24233057 DOI: 10.1007/s10482-013-0072-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 10/31/2013] [Indexed: 11/26/2022]
Abstract
N-acyl homoserine lactones are key components of quorum sensing, the bacterial communication system. This communication mechanism regulates the expression of genes, including those involved in virulence and biofilm formation. This system can be interrupted by the action of enzymes that hydrolyze the signaling molecules. In this work, we studied the enzymatic properties of a recombinant AHL-lactonase from Bacillus thuringiensis strain 147-11516, using substrates with acyl chains of different length (C4-HSL, C6-HSL, C7-HSL, C8-HSL and C10-HSL), we also investigated the effect of pH (5.0–9.0), temperature (20–70 °C), concentration of monovalent, divalent and trivalent metals ions (0.2 and 2.0 mM) and EDTA. The results showed that the recombinant AHL-lactonase had biological activity in alkaline pH conditions (8.0) and high temperature (47 % of hydrolyzed substrate at 60 °C). The recombinant AHL-lactonase has activity on substrates with different acyl chain length. However, the activity of the recombinant enzyme was decreased in the two concentrations of all metal ions evaluated but was not inhibited by EDTA. The affinity of the enzyme for all substrates tested and its performance, in the evaluated conditions, suggest that the AHL-lactonase from B. thuringiensis strain 147-11516 could be used as a strategy for disruption of the Gram-negative bacteria communication system under normal and challenging conditions.
Collapse
|
11
|
Affiliation(s)
- Koki Toyota
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology
| | | |
Collapse
|
12
|
Tinh NTN, Dung NV, Trung CT, Thuy VT. In Vitro Characterization of a Recombinant AHL-Lactonase from Bacillus cereus Isolated from a Striped Catfish (Pangasianodon hypophthalmus) Pond. Indian J Microbiol 2013; 53:485-7. [PMID: 24426155 DOI: 10.1007/s12088-013-0415-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/08/2013] [Indexed: 10/26/2022] Open
Abstract
aiiA gene encoding AHL-lactonase was isolated from Bacillus cereus strain N26.2, originating from a striped catfish (Pangasianodon hypophthalmus) pond in Vietnam. This gene, abbreviated as aiiA(N26.2), was cloned and expressed in a competent Escherichia coli strain BL21(DE3)pLysS. The resulting protein, abbreviated as AiiAN26.2, was highly active in the pH range of 6-8 and could retain 80 % of the maximum activity under storage for 5 days at 4 °C or for 3 days at 20 °C. These properties of AiiAN26.2 protein confers its future application via feed supplementation, with the purpose of controlling aquaculture pathogens which regulate the virulence via a quorum sensing system.
Collapse
Affiliation(s)
- Nguyen Thi Ngoc Tinh
- Research Institute for Aquaculture No. 2, 116 Nguyen Dinh Chieu, District 1, Ho Chi Minh City, Vietnam
| | - Nguyen Viet Dung
- Research Institute for Aquaculture No. 2, 116 Nguyen Dinh Chieu, District 1, Ho Chi Minh City, Vietnam
| | - Cao Thanh Trung
- Research Institute for Aquaculture No. 2, 116 Nguyen Dinh Chieu, District 1, Ho Chi Minh City, Vietnam
| | - Van Thi Thuy
- Research Institute for Aquaculture No. 2, 116 Nguyen Dinh Chieu, District 1, Ho Chi Minh City, Vietnam
| |
Collapse
|
13
|
Tashiro Y, Yawata Y, Toyofuku M, Uchiyama H, Nomura N. Interspecies interaction between Pseudomonas aeruginosa and other microorganisms. Microbes Environ 2013; 28:13-24. [PMID: 23363620 PMCID: PMC4070684 DOI: 10.1264/jsme2.me12167] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Microbes interact with each other in multicellular communities and this interaction enables certain microorganisms to survive in various environments. Pseudomonas aeruginosa is a highly adaptable bacterium that ubiquitously inhabits diverse environments including soil, marine habitats, plants and animals. Behind this adaptivity, P. aeruginosa has abilities not only to outcompete others but also to communicate with each other to develop a multispecies community. In this review, we focus on how P. aeruginosa interacts with other microorganisms. P. aeruginosa secretes antimicrobial chemicals to compete and signal molecules to cooperate with other organisms. In other cases, it directly conveys antimicrobial enzymes to other bacteria using the Type VI secretion system (T6SS) or membrane vesicles (MVs). Quorum sensing is a central regulatory system used to exert their ability including antimicrobial effects and cooperation with other microbes. At least three quorum sensing systems are found in P. aeruginosa, Las, Rhl and Pseudomonas quinolone signal (PQS) systems. These quorum-sensing systems control the synthesis of extracellular antimicrobial chemicals as well as interaction with other organisms via T6SS or MVs. In addition, we explain the potential of microbial interaction analysis using several micro devices, which would bring fresh sensitivity to the study of interspecies interaction between P. aeruginosa and other organisms.
Collapse
Affiliation(s)
- Yosuke Tashiro
- Division of Environmental Engineering, Hokkaido University, Hokkaido, Japan
| | | | | | | | | |
Collapse
|
14
|
AidC, a novel N-acylhomoserine lactonase from the potato root-associated cytophaga-flavobacteria-bacteroides (CFB) group bacterium Chryseobacterium sp. strain StRB126. Appl Environ Microbiol 2012; 78:7985-92. [PMID: 22941089 DOI: 10.1128/aem.02188-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
N-acylhomoserine lactones (AHLs) are used as quorum-sensing (QS) signal molecules by many gram-negative bacteria. We have reported that Chryseobacterium sp. strain StRB126, which was isolated from the root surface of potato, has AHL-degrading activity. In this study, we cloned and characterized the aidC gene from the genomic library of StRB126. AidC has AHL-degrading activity and shows homology to several metallo-β-lactamase proteins from Bacteroidetes, although not to any known AHL-degrading enzymes. Purified AidC, as a maltose-binding fusion protein, showed high degrading activity against all tested AHLs, whether short- or long-chain forms, with or without substitution at carbon 3. High-performance liquid chromatography (HPLC) analysis revealed that AidC functions as an AHL lactonase catalyzing AHL ring opening by hydrolyzing lactones. An assay to determine the effects of covalent and ionic bonding showed that Zn(2+) is important to AidC activity both in vitro and in vivo. In addition, the aidC gene could also be PCR amplified from several other Chryseobacterium strains. In conclusion, this study indicated that the aidC gene, encoding a novel AHL lactonase, may be widespread throughout the genus Chryseobacterium. Our results extend the diversity and known bacterial hosts of AHL-degrading enzymes.
Collapse
|