1
|
He M, Nishitani SI, Haruta S. Syntrophic Interaction between an Anoxygenic Photosynthetic Bacterium and a Tetrathionate-reducing Bacterium in Anaerobic Benzoate Degradation. Microbes Environ 2025; 40:ME24105. [PMID: 40074335 PMCID: PMC11946414 DOI: 10.1264/jsme2.me24105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/07/2025] [Indexed: 03/14/2025] Open
Abstract
The present study exami-ned bacteria that anaerobically degrade the aromatic compound, benzoate, and obtained enrichment cultures from marine sediments under illumination. The enrichment culture contained anoxygenic photosynthetic bacteria and non-photosynthetic bacteria. The photosynthetic strain PS1, a purple sulfur bacterium in the genus Marichromatium, was unable to utilize benzoate; however, when combined with the non-photosynthetic bacterial isolate, Marinobacterium sp. strain BA1, the co-culture grew anaerobically on benzoate in the presence of thiosulfate or tetrathionate. Based on the metabolic profiles of the co-culture and axenic cultures, the following syntrophic interactions were proposed. Strain PS1 oxidizes thiosulfate as the electron source for photosynthesis to produce tetrathionate and relies on carbon dioxide produced through benzoate degradation by strain BA1. Strain BA1 oxidizes benzoate and reduces tetrathionate to provide thiosulfate to strain PS1 for photosynthetic carbon fixation. To the best of our knowledge, this is the first study to report anaerobic benzoate degradation in a photosynthetic co-culture through the syntrophic exchange of sulfur compounds.
Collapse
Affiliation(s)
- Miao He
- Department of Biological Sciences, Tokyo Metropolitan University, 1–1 Minami-Osawa, Hachioji, Tokyo 192–0397, Japan
| | - Shin-ichi Nishitani
- Department of Biological Sciences, Tokyo Metropolitan University, 1–1 Minami-Osawa, Hachioji, Tokyo 192–0397, Japan
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University, 1–1 Minami-Osawa, Hachioji, Tokyo 192–0397, Japan
| |
Collapse
|
2
|
Wang XW, Tan X, Dang CC, Lu Y, Xie GJ, Liu BF. Thermophilic microorganisms involved in the nitrogen cycle in thermal environments: Advances and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165259. [PMID: 37400035 DOI: 10.1016/j.scitotenv.2023.165259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Thermophilic microorganisms mediated significant element cycles and material conversion in the early Earth as well as mediating current thermal environments. Over the past few years, versatile microbial communities that drive the nitrogen cycle have been identified in thermal environments. Understanding the microbial-mediated nitrogen cycling processes in these thermal environments has important implications for the cultivation and application of thermal environment microorganisms as well as for exploring the global nitrogen cycle. This work provides a comprehensive review of different thermophilic nitrogen-cycling microorganisms and processes, which are described in detail according to several categories, including nitrogen fixation, nitrification, denitrification, anaerobic ammonium oxidation, and dissimilatory nitrate reduction to ammonium. In particular, we assess the environmental significance and potential applications of thermophilic nitrogen-cycling microorganisms, and highlight knowledge gaps and future research opportunities.
Collapse
Affiliation(s)
- Xiao-Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Tan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cheng-Cheng Dang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yang Lu
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
3
|
Zhang HS, Feng QD, Zhang DY, Zhu GL, Yang L. Bacterial community structure in geothermal springs on the northern edge of Qinghai-Tibet plateau. Front Microbiol 2023; 13:994179. [PMID: 37180363 PMCID: PMC10172933 DOI: 10.3389/fmicb.2022.994179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/13/2022] [Indexed: 03/19/2023] Open
Abstract
Introduction:In order to reveal the composition of the subsurface hydrothermal bacterial community in the zones of magmatic tectonics and their response to heat storage environments.Methods:In this study, we performed hydrochemical analysis and regional sequencing of the 16S rRNA microbial V4-V5 region in 7 Pleistocene and Lower Neogene hot water samples from the Gonghe basin.Results:Two geothermal hot spring reservoirs in the study area were found to be alkaline reducing environments with a mean temperature of 24.83°C and 69.28°C, respectively, and the major type of hydrochemistry was SO4-Cl·Na. The composition and structure of microorganisms in both types of geologic thermal storage were primarily controlled by temperature, reducing environment intensity, and hydrogeochemical processes. Only 195 ASVs were shared across different temperature environments, and the dominant bacterial genera in recent samples from temperate hot springs were Thermus and Hydrogenobacter, with both genera being typical of thermophiles. The correlation analysis showed that the overall level of relative abundance of the subsurface hot spring relied on a high temperature and a slightly alkaline reducing environment. Nearly all of the top 4 species in the abundance level (53.99% of total abundance) were positively correlated with temperature and pH, whereas they were negatively correlated with ORP (oxidation–reduction potential), nitrate, and bromine ions.Discussion:In general, the composition of bacteria in the groundwater in the study area was sensitive to the response of the thermal storage environment and also showed a relationship with geochemical processes, such as gypsum dissolution, mineral oxidation, etc.
Collapse
|
4
|
Sattley WM, Swingley WD, Burchell BM, Dewey ED, Hayward MK, Renbarger TL, Shaffer KN, Stokes LM, Gurbani SA, Kujawa CM, Nuccio DA, Schladweiler J, Touchman JW, Wang-Otomo ZY, Blankenship RE, Madigan MT. Complete genome of the thermophilic purple sulfur Bacterium Thermochromatium tepidum compared to Allochromatium vinosum and other Chromatiaceae. PHOTOSYNTHESIS RESEARCH 2022; 151:125-142. [PMID: 34669148 DOI: 10.1007/s11120-021-00870-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The complete genome sequence of the thermophilic purple sulfur bacterium Thermochromatium tepidum strain MCT (DSM 3771T) is described and contrasted with that of its mesophilic relative Allochromatium vinosum strain D (DSM 180T) and other Chromatiaceae. The Tch. tepidum genome is a single circular chromosome of 2,958,290 base pairs with no plasmids and is substantially smaller than the genome of Alc. vinosum. The Tch. tepidum genome encodes two forms of RuBisCO and contains nifHDK and several other genes encoding a molybdenum nitrogenase but lacks a gene encoding a protein that assembles the Fe-S cluster required to form a functional nitrogenase molybdenum-iron cofactor, leaving the phototroph phenotypically Nif-. Tch. tepidum contains genes necessary for oxidizing sulfide to sulfate as photosynthetic electron donor but is genetically unequipped to either oxidize thiosulfate as an electron donor or carry out assimilative sulfate reduction, both of which are physiological hallmarks of Alc. vinosum. Also unlike Alc. vinosum, Tch. tepidum is obligately phototrophic and unable to grow chemotrophically in darkness by respiration. Several genes present in the Alc. vinosum genome that are absent from the genome of Tch. tepidum likely contribute to the major physiological differences observed between these related purple sulfur bacteria that inhabit distinct ecological niches.
Collapse
Affiliation(s)
- W Matthew Sattley
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA.
| | - Wesley D Swingley
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - Brad M Burchell
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA
| | - Emma D Dewey
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA
| | - Mackenzie K Hayward
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA
| | - Tara L Renbarger
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA
| | - Kathryn N Shaffer
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA
| | - Lynn M Stokes
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA
| | - Sonja A Gurbani
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - Catrina M Kujawa
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - D Adam Nuccio
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - Jacob Schladweiler
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - Jeffrey W Touchman
- School of Life Sciences, Arizona State University, Tempe, AR, 85287, USA
| | | | - Robert E Blankenship
- Departments of Chemistry and Biology, Washington University, St. Louis, MO, 63130, USA
| | - Michael T Madigan
- Department of Microbiology, School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|
5
|
Chen Y, Nishihara A, Iino T, Ohkuma M, Haruta S. Caldicellulosiruptor diazotrophicus sp. nov., a thermophilic, nitrogen-fixing fermentative bacterium isolated from a terrestrial hot spring in Japan. Int J Syst Evol Microbiol 2021; 71. [PMID: 34542397 DOI: 10.1099/ijsem.0.005014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel nitrogen-fixing fermentative bacterium, designated as YA01T, was isolated from Nakabusa hot springs in Japan. The short-rod cells of strain YA01T were Gram-positive and non-sporulating. Phylogenetic trees of the 16S rRNA gene sequence and concatenated sequences of 40 single-copy ribosomal genes revealed that strain YA01T belonged to the genus Caldicellulosiruptor and was closely related to Caldicellulosiruptor hydrothermalis 108T, Caldicellulosiruptor bescii DSM 6725T and Caldicellulosiruptor kronotskyensis 2002T. The 16S rRNA gene sequence of strain YA01T shares less than 98.1 % identity to the known Caldicellulosiruptor species. The G+C content of the genomic DNA was 34.8 mol%. Strain YA01T shares low genome-wide average nucleotide identity (90.31-91.10 %), average amino acid identity (91.45-92.10 %) and <70 % digital DNA-DNA hybridization value (41.8-44.2 %) with the three related species of the genus Caldicellulosiruptor. Strain YA01T grew at 50-78 °C (optimum, 70 °C) and at pH 5.0-9.5 (optimum, pH 6.5). Strain YA01T mainly produced acetate by consuming d(+)-glucose as a carbon source. The main cellular fatty acids were iso-C17 : 0 (35.7 %), C16 : 0 (33.3 %), DMA16 : 0 (6.6 %) and iso-C15 : 0 (5.9 %). Based on its distinct phylogenetic position, biochemical and physiological characteristics, and the major cellular fatty acids, strain YA01T is considered to represent a novel species of the genus Caldicellulosiruptor for which the name Caldicellulosiruptor diazotrophicus sp. nov. is proposed (type strain YA01T=DSM 112098T=JCM 34253T).
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Arisa Nishihara
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-0856, Japan
| | - Takao Iino
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.,Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
6
|
Kawai S, Martinez JN, Lichtenberg M, Trampe E, Kühl M, Tank M, Haruta S, Nishihara A, Hanada S, Thiel V. In-Situ Metatranscriptomic Analyses Reveal the Metabolic Flexibility of the Thermophilic Anoxygenic Photosynthetic Bacterium Chloroflexus aggregans in a Hot Spring Cyanobacteria-Dominated Microbial Mat. Microorganisms 2021; 9:microorganisms9030652. [PMID: 33801086 PMCID: PMC8004040 DOI: 10.3390/microorganisms9030652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Chloroflexus aggregans is a metabolically versatile, thermophilic, anoxygenic phototrophic member of the phylum Chloroflexota (formerly Chloroflexi), which can grow photoheterotrophically, photoautotrophically, chemoheterotrophically, and chemoautotrophically. In hot spring-associated microbial mats, C. aggregans co-exists with oxygenic cyanobacteria under dynamic micro-environmental conditions. To elucidate the predominant growth modes of C. aggregans, relative transcription levels of energy metabolism- and CO2 fixation-related genes were studied in Nakabusa Hot Springs microbial mats over a diel cycle and correlated with microscale in situ measurements of O2 and light. Metatranscriptomic analyses indicated two periods with different modes of energy metabolism of C. aggregans: (1) phototrophy around midday and (2) chemotrophy in the early morning hours. During midday, C. aggregans mainly employed photoheterotrophy when the microbial mats were hyperoxic (400–800 µmol L−1 O2). In the early morning hours, relative transcription peaks of genes encoding uptake hydrogenase, key enzymes for carbon fixation, respiratory complexes as well as enzymes for TCA cycle and acetate uptake suggest an aerobic chemomixotrophic lifestyle. This is the first in situ study of the versatile energy metabolism of C. aggregans based on gene transcription patterns. The results provide novel insights into the metabolic flexibility of these filamentous anoxygenic phototrophs that thrive under dynamic environmental conditions.
Collapse
Affiliation(s)
- Shigeru Kawai
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
- Correspondence: (S.K.); (V.T.)
| | - Joval N. Martinez
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
- Department of Natural Sciences, College of Arts and Sciences, University of St. La Salle, Bacolod City, Negros Occidental 6100, Philippines
| | - Mads Lichtenberg
- Department of Biology, Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark; (M.L.); (E.T.); (M.K.)
| | - Erik Trampe
- Department of Biology, Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark; (M.L.); (E.T.); (M.K.)
| | - Michael Kühl
- Department of Biology, Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark; (M.L.); (E.T.); (M.K.)
| | - Marcus Tank
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
- DSMZ—German Culture Collection of Microorganisms and Cell Culture, GmbH Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
| | - Arisa Nishihara
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan
| | - Satoshi Hanada
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
| | - Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
- DSMZ—German Culture Collection of Microorganisms and Cell Culture, GmbH Inhoffenstraße 7B, 38124 Braunschweig, Germany
- Correspondence: (S.K.); (V.T.)
| |
Collapse
|
7
|
Izaki K, Haruta S. Aerobic Production of Bacteriochlorophylls in the Filamentous Anoxygenic Photosynthetic Bacterium, Chloroflexus aurantiacus in the Light. Microbes Environ 2020; 35. [PMID: 32418929 PMCID: PMC7308566 DOI: 10.1264/jsme2.me20015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Filamentous anoxygenic photosynthetic bacteria grow by photosynthesis and aerobic respiration. The present study investigated the effects of light and O2 on bacteriochlorophyll contents and the transcription levels of photosynthesis-related genes in Chloroflexus aurantiacus J-10-fl T. Under aerobic conditions, C. aurantiacus produced marked amounts of bacteriochlorophylls in the presence of light, although their production was strongly suppressed in the dark. The transcription levels of genes related to the synthesis of bacteriochlorophylls, photosystems, and chlorosomes: bchM, bchU, pufL, pufBA, and csmM, were markedly increased by illumination. These results suggest that C. aurantiacus continuously synthesizes ATP by photophosphorylation even in the presence of O2.
Collapse
Affiliation(s)
- Kazaha Izaki
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University
| |
Collapse
|
8
|
A widely distributed hydrogenase oxidises atmospheric H 2 during bacterial growth. ISME JOURNAL 2020; 14:2649-2658. [PMID: 32647310 PMCID: PMC7784904 DOI: 10.1038/s41396-020-0713-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 11/09/2022]
Abstract
Diverse aerobic bacteria persist by consuming atmospheric hydrogen (H2) using group 1h [NiFe]-hydrogenases. However, other hydrogenase classes are also distributed in aerobes, including the group 2a [NiFe]-hydrogenase. Based on studies focused on Cyanobacteria, the reported physiological role of the group 2a [NiFe]-hydrogenase is to recycle H2 produced by nitrogenase. However, given this hydrogenase is also present in various heterotrophs and lithoautotrophs lacking nitrogenases, it may play a wider role in bacterial metabolism. Here we investigated the role of this enzyme in three species from different phylogenetic lineages and ecological niches: Acidithiobacillus ferrooxidans (phylum Proteobacteria), Chloroflexus aggregans (phylum Chloroflexota), and Gemmatimonas aurantiaca (phylum Gemmatimonadota). qRT-PCR analysis revealed that the group 2a [NiFe]-hydrogenase of all three species is significantly upregulated during exponential growth compared to stationary phase, in contrast to the profile of the persistence-linked group 1h [NiFe]-hydrogenase. Whole-cell biochemical assays confirmed that all three strains aerobically respire H2 to sub-atmospheric levels, and oxidation rates were much higher during growth. Moreover, the oxidation of H2 supported mixotrophic growth of the carbon-fixing strains C. aggregans and A. ferrooxidans. Finally, we used phylogenomic analyses to show that this hydrogenase is widely distributed and is encoded by 13 bacterial phyla. These findings challenge the current persistence-centric model of the physiological role of atmospheric H2 oxidation and extend this process to two more phyla, Proteobacteria and Gemmatimonadota. In turn, these findings have broader relevance for understanding how bacteria conserve energy in different environments and control the biogeochemical cycling of atmospheric trace gases.
Collapse
|
9
|
Kawai S, Nishihara A, Matsuura K, Haruta S. Hydrogen-dependent autotrophic growth in phototrophic and chemolithotrophic cultures of thermophilic bacteria, Chloroflexus aggregans and Chloroflexus aurantiacus, isolated from Nakabusa hot springs. FEMS Microbiol Lett 2020; 366:5510454. [PMID: 31158281 DOI: 10.1093/femsle/fnz122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/01/2019] [Indexed: 11/14/2022] Open
Abstract
The genus Chloroflexus is a deeply branching group of thermophilic filamentous anoxygenic phototrophic bacteria. The bacteria in this genus have been shown to grow well heterotrophically under anaerobic photosynthetic and aerobic respiratory conditions. We examined autotrophic growth in new isolates of Chloroflexus strains from hot springs in Nakabusa, Japan. The isolates belonging to Chloroflexus aggregans (98.7% identity of 16S rRNA gene sequence to the respective type strain) and Chloroflexus aurantiacus (99.9% identity to the respective type strain) grew photoautotrophically under a 24% H2 atmosphere. We also observed chemolithotrophic growth of these isolates under 80% H2 and 5% O2 conditions in the dark. This is the first report showing that Chloroflexus grew under both photoautotrophic and chemolithotrophic conditions in addition to photoheterotrophic and aerobic chemoheterotrophic conditions.
Collapse
Affiliation(s)
- Shigeru Kawai
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Arisa Nishihara
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Katsumi Matsuura
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Shin Haruta
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
10
|
Shimizu T, Masuda S. Persulphide-responsive transcriptional regulation and metabolism in bacteria. J Biochem 2020; 167:125-132. [PMID: 31385583 DOI: 10.1093/jb/mvz063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/02/2019] [Indexed: 12/17/2022] Open
Abstract
Hydrogen sulphide (H2S) impacts on bacterial growth both positively and negatively; it is utilized as an electron donor for photosynthesis and respiration, and it inactivates terminal oxidases and iron-sulphur clusters. Therefore, bacteria have evolved H2S-responsive detoxification mechanisms for survival. Sulphur assimilation in bacteria has been well studied, and sulphide:quinone oxidoreductase, persulphide dioxygenase, rhodanese and sulphite oxidase were reported as major sulphide-oxidizing enzymes of sulphide assimilation and detoxification pathways. However, how bacteria sense sulphide availability to control H2S and sulphide metabolism remains largely unknown. Recent studies have identified several bacterial (per)sulphide-sensitive transcription factors that change DNA-binding affinity through persulphidation of specific cysteine residues in response to highly reactive sulphur-containing chemicals and reactive sulphur species (RSS). This review focuses on current understanding of the persulphide-responsive transcription factors and RSS metabolism regulated by RSS sensory proteins.
Collapse
Affiliation(s)
- Takayuki Shimizu
- Department of General Systems Studies, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komana, Meguro-ku, Tokyo 153-8902, Japan
| | - Shinji Masuda
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
11
|
Martinez JN, Nishihara A, Lichtenberg M, Trampe E, Kawai S, Tank M, Kühl M, Hanada S, Thiel V. Vertical Distribution and Diversity of Phototrophic Bacteria within a Hot Spring Microbial Mat (Nakabusa Hot Springs, Japan). Microbes Environ 2019; 34:374-387. [PMID: 31685759 PMCID: PMC6934398 DOI: 10.1264/jsme2.me19047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Phototrophic microbial mats are assemblages of vertically layered microbial populations dominated by photosynthetic microorganisms. In order to elucidate the vertical distribution and diversity of phototrophic microorganisms in a hot spring-associated microbial mat in Nakabusa (Japan), we analyzed the 16S rRNA gene amplicon sequences of the microbial mat separated into five depth horizons, and correlated them with microsensor measurements of O2 and spectral scalar irradiance. A stable core community and high diversity of phototrophic organisms dominated by the filamentous anoxygenic phototrophs, Roseiflexus castenholzii and Chloroflexus aggregans were identified together with the spectral signatures of bacteriochlorophylls (BChls) a and c absorption in all mat layers. In the upper mat layers, a high abundance of cyanobacteria (Thermosynechococcus sp.) correlated with strong spectral signatures of chlorophyll a and phycobiliprotein absorption near the surface in a zone of high O2 concentrations during the day. Deeper mat layers were dominated by uncultured chemotrophic Chlorobi such as the novel putatively sulfate-reducing “Ca. Thermonerobacter sp.”, which showed increasing abundance with depth correlating with low O2 in these layers enabling anaerobic metabolism. Oxygen tolerance and requirements for the novel phototroph “Ca. Chloroanaerofilum sp.” and the uncultured chemotrophic Armatimonadetes member type OS-L detected in Nakabusa hot springs, Japan appeared to differ from previously suggested lifestyles for close relatives identified in hot springs in Yellowstone National Park, USA. The present study identified various microenvironmental gradients and niche differentiation enabling the co-existence of diverse chlorophototrophs in metabolically diverse communities in hot springs.
Collapse
Affiliation(s)
- Joval N Martinez
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University.,Department of Natural Sciences, College of Arts and Sciences, University of St. La Salle
| | - Arisa Nishihara
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Mads Lichtenberg
- Marine Biological Section, Department of Biology, University of Copenhagen
| | - Erik Trampe
- Marine Biological Section, Department of Biology, University of Copenhagen
| | - Shigeru Kawai
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University
| | - Marcus Tank
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen
| | - Satoshi Hanada
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University
| | - Vera Thiel
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University
| |
Collapse
|
12
|
Wang H, Qin X, Mi S, Li X, Wang X, Yan W, Zhang C. Contamination of yellow-feathered broiler carcasses: Microbial diversity and succession during processing. Food Microbiol 2019; 83:18-26. [DOI: 10.1016/j.fm.2019.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022]
|
13
|
Kanno N, Haruta S, Hanada S. Sulfide-dependent Photoautotrophy in the Filamentous Anoxygenic Phototrophic Bacterium, Chloroflexus aggregans. Microbes Environ 2019; 34:304-309. [PMID: 31391357 PMCID: PMC6759344 DOI: 10.1264/jsme2.me19008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chloroflexus aggregans is a thermophilic filamentous anoxygenic phototrophic bacterium frequently found in microbial mats in natural hot springs. C. aggregans often thrives with cyanobacteria that engage in photosynthesis to provide it with an organic substrate; however, it sometimes appears as the dominant phototroph in microbial mats without cyanobacteria. This suggests that C. aggregans has the ability to grow photoautotrophically. However, photoautotrophic growth has not been observed in any cultured strains of C. aggregans. We herein attempted to isolate a photoautotrophic strain from C. aggregansdominated microbial mats in Nakabusa hot spring in Japan. Using an inorganic medium, we succeeded in isolating a new strain that we designated "ACA-12". A phylogenetic analysis based on 16S rRNA gene and 16S-23S rRNA gene internal transcribed spacer (ITS) region sequences revealed that strain ACA-12 was closely related to known C. aggregans strains. Strain ACA-12 showed sulfide consumption along with autotrophic growth under anaerobic light conditions. The deposited elemental sulfur particles observed by microscopy indicated that sulfide oxidation occurred, similar to that in photoautotrophic strains in the related species, C. aurantiacus. Moreover, we found that other strains of C. aggregans, including the type strain, also exhibited a slight photoautotrophic growing ability, whereas strain ACA-12 showed the fastest growth rate. This is the first demonstration of photoautotrophic growth with sulfide in C. aggregans. The present results strongly indicate that C. aggregans is associated with inorganic carbon incorporation using sulfide as an electron donor in hot spring microbial mats.
Collapse
Affiliation(s)
- Nanako Kanno
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University
| | - Shin Haruta
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University
| | - Satoshi Hanada
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University
| |
Collapse
|
14
|
Lázaro WL, Díez S, Bravo AG, da Silva CJ, Ignácio ÁRA, Guimaraes JRD. Cyanobacteria as regulators of methylmercury production in periphyton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:723-729. [PMID: 30861408 DOI: 10.1016/j.scitotenv.2019.02.233] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/18/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Biotic mercury (Hg) methylation appears to depend on factors such as microbial activity and the concentration and bioavailability of Hg2+ to the Hg-methylating organisms. Recently, the presence of cyanobacteria has been linked with high methylmercury (MeHg) concentrations. The aim of this work was to test MeHg production in microcosms, in relation to the amount of periphytic cyanobacteria, dissolved organic matter (DOM) and phosphorus concentrations, as well as periphytic primary production rates. Water and periphyton samples were collected for cultivation and isolation of cyanobacteria from the Guaporé River floodplain, Brazil. We cultivated the periphyton in microcosms with different concentrations of cyanobacteria, total phosphorus and DOM. The highest net MeHg production (6.8 to 24.6% of added Hg d-1) occurred in the microcosm with added cyanobacteria, followed by microcosms with added phosphorus (6.1 to 11.4%) and added DOM (6.4 to 9.1%). Positive correlations were found between MeHg production, addition of cyanobacteria, phosphorus and DOM and periphytic primary productivity. Our results bring the first direct experimental evidence of the relevance of cyanobacteria and primary production as regulators of MeHg production in periphyton. These findings have numerous implications for the management of natural and engineered wetlands.
Collapse
Affiliation(s)
- Wilkinson L Lázaro
- Centro de Estudos em Limnologia Biodiversidade e Etnobiologia do Pantanal, Universidade do Estado de Mato Grosso (UNEMAT), Brasil. Avenida Santos Dummont, Cidade Universitária, 78200-000 Cáceres, MT, Brazil.
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research (IDAEA-CSIC). C/Jordi Girona, 18-26, 08034 Barcelona, Spain.
| | - Andrea G Bravo
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research (IDAEA-CSIC). C/Jordi Girona, 18-26, 08034 Barcelona, Spain.
| | - Carolina J da Silva
- Centro de Estudos em Limnologia Biodiversidade e Etnobiologia do Pantanal, Universidade do Estado de Mato Grosso (UNEMAT), Brasil. Avenida Santos Dummont, Cidade Universitária, 78200-000 Cáceres, MT, Brazil; Rede Bionorte, Doutorado em Biodiversidade e Biotecnologia da Amazônia Legal. Avenida Fernando Correa da Costa, 2.367, Boa Esperança, 78060-900, Cuiabá, Brazil.
| | - Áurea R A Ignácio
- Centro de Estudos em Limnologia Biodiversidade e Etnobiologia do Pantanal, Universidade do Estado de Mato Grosso (UNEMAT), Brasil. Avenida Santos Dummont, Cidade Universitária, 78200-000 Cáceres, MT, Brazil.
| | - Jean R D Guimaraes
- Laboratório de Traçadores, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ). Av. Carlos Chagas Filho 373 Bloco G, CCS, Cidade Universitária, 21941-902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
15
|
Kawai S, Kamiya N, Matsuura K, Haruta S. Symbiotic Growth of a Thermophilic Sulfide-Oxidizing Photoautotroph and an Elemental Sulfur-Disproportionating Chemolithoautotroph and Cooperative Dissimilatory Oxidation of Sulfide to Sulfate. Front Microbiol 2019; 10:1150. [PMID: 31178849 PMCID: PMC6543001 DOI: 10.3389/fmicb.2019.01150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/06/2019] [Indexed: 11/13/2022] Open
Abstract
A thermophilic filamentous anoxygenic photosynthetic bacterium, Chloroflexus aggregans, is widely distributed in neutral to slightly alkaline hot springs. Sulfide has been suggested as an electron donor for autotrophic growth in microbial mats dominated with C. aggregans, but remarkable photoautotrophic growth of isolated C. aggregans has not been observed with sulfide as the sole electron source. From the idea that sulfide is oxidized to elemental sulfur by C. aggregans and the accumulation of elemental sulfur may have an inhibitory effect for the growth, the effects of an elemental sulfur-disproportionating bacterium that consumes elemental sulfur was examined on the autotrophic growth of C. aggregans, strain NA9-6, isolated from Nakabusa hot spring. A sulfur-disproportionating bacterium, Caldimicrobium thiodismutans strain TF1, also isolated from Nakabusa hot spring was co-cultured with C. aggregans. C. aggregans and C. thiodismutans were successfully co-cultured in a medium containing thiosulfate as the sole electron source and bicarbonate as the sole carbon source. Quantitative conversion of thiosulfate to sulfate and a small transient accumulation of sulfide was observed in the co-culture. Then the electron source of the established co-culture was changed from thiosulfate to sulfide, and the growth of C. aggregans and C. thiodismutans was successfully observed with sulfide as the sole electron donor for the autotrophic growth of the co-culture. During the cultivation in the light, simultaneous consumption and accumulation of sulfide and sulfate, respectively, were observed, accompanied with the increase of cellular DNAs of both species. C. thiodismutans likely works as an elemental sulfur scavenger for C. aggregans, and C. aggregans seems to work as a sulfide scavenger for C. thiodismutans. These results suggest that C. aggregans grows autotrophically with sulfide as the electron donor in the co-culture with C. thiodismutans, and the consumption of elemental sulfur by C. thiodismutans enabled the continuous growth of the C. aggregans in the symbiotic system. This study shows a novel symbiotic relationship between a sulfide-oxidizing photoautotroph and an elemental sulfur-disproportionating chemolithoautotroph via cooperative dissimilatory sulfide oxidation to sulfate.
Collapse
Affiliation(s)
- Shigeru Kawai
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Naoki Kamiya
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Katsumi Matsuura
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
16
|
Teng Y, Xu Y, Wang X, Christie P. Function of Biohydrogen Metabolism and Related Microbial Communities in Environmental Bioremediation. Front Microbiol 2019; 10:106. [PMID: 30837956 PMCID: PMC6383490 DOI: 10.3389/fmicb.2019.00106] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/17/2019] [Indexed: 01/30/2023] Open
Abstract
Hydrogen (H2) metabolism has attracted considerable interest because the activities of H2-producing and consuming microbes shape the global H2 cycle and may have vital relationships with the global cycling of other elements. There are many pathways of microbial H2 emission and consumption which may affect the structure and function of microbial communities. A wide range of microbial groups employ H2 as an electron donor to catalyze the reduction of pollutants such as organohalides, azo compounds, and trace metals. Syntrophy coupled mutualistic interaction between H2-producing and H2-consuming microorganisms can transfer H2 and be accompanied by the removal of toxic compounds. Moreover, hydrogenases have been gradually recognized to have a key role in the progress of pollutant degradation. This paper reviews recent advances in elucidating role of H2 metabolism involved in syntrophy and hydrogenases in environmental bioremediation. Further investigations should focus on the application of bioenergy in bioremediation to make microbiological H2 metabolism a promising remediation strategy.
Collapse
Affiliation(s)
- Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
17
|
Nishihara A, Thiel V, Matsuura K, McGlynn SE, Haruta S. Phylogenetic Diversity of Nitrogenase Reductase Genes and Possible Nitrogen-Fixing Bacteria in Thermophilic Chemosynthetic Microbial Communities in Nakabusa Hot Springs. Microbes Environ 2018; 33:357-365. [PMID: 30404970 PMCID: PMC6307998 DOI: 10.1264/jsme2.me18030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chemosynthetic microbial communities develop and form dense cell aggregates in slightly alkaline sulfidic hot springs in the temperature range of 70–86°C at Nakabusa, Japan. Nitrogenase activity has recently been detected in the microbial communities collected. To identify possible members capable of nitrogen fixation, we examined the diversities of 16S rRNA and nitrogenase reductase (NifH) gene sequences in four types of chemosynthetic communities with visually different colors and thicknesses. The results of a 16S rRNA gene analysis indicated that all four microbial communities had similar bacterial constituents; the phylum Aquificae was the dominant member, followed in abundance by Thermodesulfobacteria, Firmicutes, and Thermotogae. Most of the NifH sequences were related to sequences reported in hydrothermal vents and terrestrial hot springs. The results of a phylogenetic analysis of NifH sequences revealed diversity in this gene among the communities collected, distributed within 7 phylogenetic groups. NifH sequences affiliated with Aquificae (Hydrogenobacter/Thermocrinis) and Firmicutes (Caldicellulosiruptor) were abundant. At least two different energy metabolic pathways appeared to be related to nitrogen fixation in the communities analyzed; aerobic sulfur/hydrogen-oxidizing bacteria in Aquificae and fermentative bacteria in Firmicutes. The metabolic characteristics of these two dominant phyla differed from those previously inferred from nitrogenase activity assays on chemosynthetic communities, which were associated with hydrogen-dependent autotrophic sulfate reduction. These assays may correspond to the observed NifH sequences that are distantly related to the known species of Thermodesulfovibrio sp. (Nitrospirae) detected in the present study. The activities of nitrogen-fixing organisms in communities may depend on redox states as well as the availability of electron donors, acceptors, and carbon sources.
Collapse
Affiliation(s)
- Arisa Nishihara
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Katsumi Matsuura
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Shawn E McGlynn
- Department of Biological Sciences, Tokyo Metropolitan University.,Earth-Life Science Institute, Tokyo Institute of Technology.,Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science.,Blue Marble Space Institute of Science
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University
| |
Collapse
|
18
|
Nishihara A, Haruta S, McGlynn SE, Thiel V, Matsuura K. Nitrogen Fixation in Thermophilic Chemosynthetic Microbial Communities Depending on Hydrogen, Sulfate, and Carbon Dioxide. Microbes Environ 2018; 33:10-18. [PMID: 29367473 PMCID: PMC5877335 DOI: 10.1264/jsme2.me17134] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/28/2017] [Indexed: 12/20/2022] Open
Abstract
The activity of nitrogen fixation measured by acetylene reduction was examined in chemosynthetic microbial mats at 72-75°C in slightly-alkaline sulfidic hot springs in Nakabusa, Japan. Nitrogenase activity markedly varied from sampling to sampling. Nitrogenase activity did not correlate with methane production, but was detected in samples showing methane production levels less than the maximum amount, indicating a possible redox dependency of nitrogenase activity. Nitrogenase activity was not affected by 2-bromo-ethane sulfonate, an inhibitor of methanogenesis. However, it was inhibited by the addition of molybdate, an inhibitor of sulfate reduction and sulfur disproportionation, suggesting the involvement of sulfate-reducing or sulfur-disproportionating organisms. Nitrogenase activity was affected by different O2 concentrations in the gas phase, again supporting the hypothesis of a redox potential dependency, and was decreased by the dispersion of mats with a homogenizer. The loss of activity that occurred from dispersion was partially recovered by the addition of H2, sulfate, and carbon dioxide. These results suggested that the observed activity of nitrogen fixation was related to chemoautotrophic sulfate reducers, and fixation may be active in a limited range of ambient redox potential. Since thermophilic chemosynthetic communities may resemble ancient microbial communities before the appearance of photosynthesis, the present results may be useful when considering the ancient nitrogen cycle on earth.
Collapse
Affiliation(s)
- Arisa Nishihara
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
| | - Shawn E. McGlynn
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
- Earth-Life Science Institute, Tokyo Institute of TechnologyOokayama, Meguro-ku, Tokyo 152–8551Japan
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource ScienceWako-shi 351–0198Japan
- Blue Marble Space Institute of ScienceSeattle, WA 98145–1561USA
| | - Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
| | - Katsumi Matsuura
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
| |
Collapse
|
19
|
Ward LM, Hemp J, Shih PM, McGlynn SE, Fischer WW. Evolution of Phototrophy in the Chloroflexi Phylum Driven by Horizontal Gene Transfer. Front Microbiol 2018. [PMID: 29515543 PMCID: PMC5826079 DOI: 10.3389/fmicb.2018.00260] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The evolutionary mechanisms behind the extant distribution of photosynthesis is a point of substantial contention. Hypotheses range from the presence of phototrophy in the last universal common ancestor and massive gene loss in most lineages, to a later origin in Cyanobacteria followed by extensive horizontal gene transfer into the extant phototrophic clades, with intermediate scenarios that incorporate aspects of both end-members. Here, we report draft genomes of 11 Chloroflexi: the phototrophic Chloroflexia isolate Kouleothrix aurantiaca as well as 10 genome bins recovered from metagenomic sequencing of microbial mats found in Japanese hot springs. Two of these metagenome bins encode photrophic reaction centers and several of these bins form a metabolically diverse, monophyletic clade sister to the Anaerolineae class that we term Candidatus Thermofonsia. Comparisons of organismal (based on conserved ribosomal) and phototrophy (reaction center and bacteriochlorophyll synthesis) protein phylogenies throughout the Chloroflexi demonstrate that two new lineages acquired phototrophy independently via horizontal gene transfer (HGT) from different ancestral donors within the classically phototrophic Chloroflexia class. These results illustrate a complex history of phototrophy within this group, with metabolic innovation tied to HGT. These observations do not support simple hypotheses for the evolution of photosynthesis that require massive character loss from many clades; rather, HGT appears to be the defining mechanic for the distribution of phototrophy in many of the extant clades in which it appears.
Collapse
Affiliation(s)
- Lewis M Ward
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | - James Hemp
- Department of Gastroenterology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Patrick M Shih
- Department of Energy, Joint BioEnergy Institute, Emeryville, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Shawn E McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Japan
| | - Woodward W Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
20
|
Effect of light wavelength on hot spring microbial mat biodiversity. PLoS One 2018; 13:e0191650. [PMID: 29381713 PMCID: PMC5790269 DOI: 10.1371/journal.pone.0191650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/09/2018] [Indexed: 11/19/2022] Open
Abstract
Hot spring associated phototrophic microbial mats are purely microbial communities, in which phototrophic bacteria function as primary producers and thus shape the community. The microbial mats at Nakabusa hot springs in Japan harbor diverse photosynthetic bacteria, mainly Thermosynechococcus, Chloroflexus, and Roseiflexus, which use light of different wavelength for energy conversion. The aim of this study was to investigate the effect of the phototrophs on biodiversity and community composition in hot spring microbial mats. For this, we specifically activated the different phototrophs by irradiating the mats with different wavelengths in situ. We used 625, 730, and 890 nm wavelength LEDs alone or in combination and confirmed the hypothesized increase in relative abundance of different phototrophs by 16S rRNA gene sequencing. In addition to the increase of the targeted phototrophs, we studied the effect of the different treatments on chemotrophic members. The specific activation of Thermosynechococcus led to increased abundance of several other bacteria, whereas wavelengths specific to Chloroflexus and Roseiflexus induced a decrease in >50% of the community members as compared to the dark conditions. This suggests that the growth of Thermosynechococcus at the surface layer benefits many community members, whereas less benefit is obtained from an increase in filamentous anoxygenic phototrophs Chloroflexus and Roseiflexus. The increases in relative abundance of chemotrophs under different light conditions suggest a relationship between the two groups. Aerobic chemoheterotrophs such as Thermus sp. and Meiothermus sp. are thought to benefit from aerobic conditions and organic carbon in the form of photosynthates by Thermosynechococcus, while the oxidation of sulfide and production of elemental sulfur by filamentous anoxygenic phototrophs benefit the sulfur-disproportionating Caldimicrobium thiodismutans. In this study, we used an experimental approach under controlled environmental conditions for the analysis of natural microbial communities, which proved to be a powerful tool to study interspecies relationships in the microbiome.
Collapse
|
21
|
Differences in Temperature and Water Chemistry Shape Distinct Diversity Patterns in Thermophilic Microbial Communities. Appl Environ Microbiol 2017; 83:AEM.01363-17. [PMID: 28821552 DOI: 10.1128/aem.01363-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/11/2017] [Indexed: 01/22/2023] Open
Abstract
This report describes the biodiversity and ecology of microbial mats developed in thermal gradients (20 to 65°C) in the surroundings of three drillings (Chiraleu [CH], Ciocaia [CI], and Mihai Bravu [MB]) tapping a hyperthermal aquifer in Romania. Using a metabarcoding approach, 16S rRNA genes were sequenced from both DNA and RNA transcripts (cDNA) and compared. The relationships between the microbial diversity and the physicochemical factors were explored. Additionally, the cDNA data were used for in silico functionality predictions, bringing new insights into the functional potential and dynamics of these communities. The results showed that each hot spring determined the formation of distinct microbial communities. In the CH mats (40 to 53°C), the abundance of Cyanobacteria decreased with temperature, opposite to those of Chloroflexi and ProteobacteriaEctothiorhodospira, Oscillatoria, and methanogenic archaea dominated the CI communities (20 to 65°C), while the MB microbial mats (53 to 65°C) were mainly composed of Chloroflexi, Hydrogenophilus, Thermi, and Aquificae Alpha-diversity was negatively correlated with the increase in water temperature, while beta-diversity was shaped in each hot spring by the unique combination of physicochemical parameters, regardless of the type of nucleic acid analyzed (DNA versus cDNA). The rank correlation analysis revealed a unique model that associated environmental data with community composition, consisting in the combined effect of Na+, K+, HCO3-, and PO43- concentrations, together with temperature and electrical conductivity. These factors seem to determine the grouping of samples according to location, rather than with the similarities in thermal regimes, showing that other parameters beside temperature are significant drivers of biodiversity.IMPORTANCE Hot spring microbial mats represent a remarkable manifestation of life on Earth and have been intensively studied for decades. Moreover, as hot spring areas are isolated and have a limited exchange of organisms, nutrients, and energy with the surrounding environments, hot spring microbial communities can be used in model studies to elucidate the colonizing potential within extreme settings. Thus, they are of great importance in evolutionary biology, microbial ecology, and exobiology. In spite of all the efforts that have been made, the current understanding of the influence of temperature and water chemistry on the microbial community composition, diversity, and abundance in microbial mats is limited. In this study, the composition and diversity of microbial communities developed in thermal gradients in the vicinity of three hot springs from Romania were investigated, each having particular physicochemical characteristics. Our results expose new factors that could determine the formation of these ecosystems, expanding the current knowledge in this regard.
Collapse
|
22
|
Amin A, Ahmed I, Salam N, Kim BY, Singh D, Zhi XY, Xiao M, Li WJ. Diversity and Distribution of Thermophilic Bacteria in Hot Springs of Pakistan. MICROBIAL ECOLOGY 2017; 74:116-127. [PMID: 28105510 DOI: 10.1007/s00248-017-0930-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Chilas and Hunza areas, located in the Main Mantle Thrust and Main Karakoram Thrust of the Himalayas, host a range of geochemically diverse hot springs. This Himalayan geothermal region encompassed hot springs ranging in temperature from 60 to 95 °C, in pH from 6.2 to 9.4, and in mineralogy from bicarbonates (Tato Field), sulfates (Tatta Pani) to mixed type (Murtazaabad). Microbial community structures in these geothermal springs remained largely unexplored to date. In this study, we report a comprehensive, culture-independent survey of microbial communities in nine samples from these geothermal fields by employing a bar-coded pyrosequencing technique. The bacterial phyla Proteobacteria and Chloroflexi were dominant in all samples from Tato Field, Tatta Pani, and Murtazaabad. The community structures however depended on temperature, pH, and physicochemical parameters of the geothermal sites. The Murtazaabad hot springs with relatively higher temperature (90-95 °C) favored the growth of phylum Thermotogae, whereas the Tatta Pani thermal spring site TP-H3-b (60 °C) favored the phylum Proteobacteria. At sites with low silica and high temperature, OTUs belonging to phylum Chloroflexi were dominant. Deep water areas of the Murtazaabad hot springs favored the sulfur-reducing bacteria. About 40% of the total OTUs obtained from these samples were unclassified or uncharacterized, suggesting the presence of many undiscovered and unexplored microbiota. This study has provided novel insights into the nature of ecological interactions among important taxa in these communities, which in turn will help in determining future study courses in these sites.
Collapse
Affiliation(s)
- Arshia Amin
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China
- Institute of Microbial Culture Collection of Pakistan (IMCCP), National Agricultural Research Centre (NARC), Islamabad, 45500, Pakistan
- Department of Microbiology, Quaid-e-Azam University, Islamabad, 45320, Pakistan
| | - Iftikhar Ahmed
- Institute of Microbial Culture Collection of Pakistan (IMCCP), National Agricultural Research Centre (NARC), Islamabad, 45500, Pakistan.
| | - Nimaichand Salam
- State Key Laboratory of Biocontrol and Guandong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Byung-Yong Kim
- Chun Lab Inc., Seoul National University, Seoul, 151-742, Republic of South Korea
| | - Dharmesh Singh
- Environmental Genomics Division, National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, 440024, India
| | - Xiao-Yang Zhi
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Min Xiao
- State Key Laboratory of Biocontrol and Guandong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Jun Li
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China.
- State Key Laboratory of Biocontrol and Guandong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, People's Republic of China.
| |
Collapse
|
23
|
In Situ Hydrogen Dynamics in a Hot Spring Microbial Mat during a Diel Cycle. Appl Environ Microbiol 2016; 82:4209-4217. [PMID: 27208140 DOI: 10.1128/aem.00710-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/29/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Microbes can produce molecular hydrogen (H2) via fermentation, dinitrogen fixation, or direct photolysis, yet the H2 dynamics in cyanobacterial communities has only been explored in a few natural systems and mostly in the laboratory. In this study, we investigated the diel in situ H2 dynamics in a hot spring microbial mat, where various ecotypes of unicellular cyanobacteria (Synechococcus sp.) are the only oxygenic phototrophs. In the evening, H2 accumulated rapidly after the onset of darkness, reaching peak values of up to 30 μmol H2 liter(-1) at about 1-mm depth below the mat surface, slowly decreasing to about 11 μmol H2 liter(-1) just before sunrise. Another pulse of H2 production, reaching a peak concentration of 46 μmol H2 liter(-1), was found in the early morning under dim light conditions too low to induce accumulation of O2 in the mat. The light stimulation of H2 accumulation indicated that nitrogenase activity was an important source of H2 during the morning. This is in accordance with earlier findings of a distinct early morning peak in N2 fixation and expression of Synechococcus nitrogenase genes in mat samples from the same location. Fermentation might have contributed to the formation of H2 during the night, where accumulation of other fermentation products lowered the pH in the mat to less than pH 6 compared to a spring source pH of 8.3. IMPORTANCE Hydrogen is a key intermediate in anaerobic metabolism, and with the development of a sulfide-insensitive microsensor for H2, it is now possible to study the microdistribution of H2 in stratified microbial communities such as the photosynthetic microbial mat investigated here. The ability to measure H2 profiles within the mat compared to previous measurements of H2 emission gives much more detailed information about the sources and sinks of H2 in such communities, and it was demonstrated that the high rates of H2 formation in the early morning when the mat was exposed to low light intensities might be explained by nitrogen fixation, where H2 is formed as a by-product.
Collapse
|
24
|
Tamazawa S, Yamamoto K, Takasaki K, Mitani Y, Hanada S, Kamagata Y, Tamaki H. In Situ Gene Expression Responsible for Sulfide Oxidation and CO2 Fixation of an Uncultured Large Sausage-Shaped Aquificae Bacterium in a Sulfidic Hot Spring. Microbes Environ 2016; 31:194-8. [PMID: 27297893 PMCID: PMC4912159 DOI: 10.1264/jsme2.me16013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We investigated the in situ gene expression profile of sulfur-turf microbial mats dominated by an uncultured large sausage-shaped Aquificae bacterium, a key metabolic player in sulfur-turfs in sulfidic hot springs. A reverse transcription-PCR analysis revealed that the genes responsible for sulfide, sulfite, and thiosulfate oxidation and carbon fixation via the reductive TCA cycle were continuously expressed in sulfur-turf mats taken at different sampling points, seasons, and years. These results suggest that the uncultured large sausage-shaped bacterium has the ability to grow chemolithoautotrophically and plays key roles as a primary producer in the sulfidic hot spring ecosystem in situ.
Collapse
Affiliation(s)
- Satoshi Tamazawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | | | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Koji Mori
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE)
| | | |
Collapse
|
26
|
Nozhevnikova AN, Botchkova EA, Plakunov VK. Multi-species biofilms in ecology, medicine, and biotechnology. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715060107] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
Estrella Alcamán M, Fernandez C, Delgado A, Bergman B, Díez B. The cyanobacterium Mastigocladus fulfills the nitrogen demand of a terrestrial hot spring microbial mat. THE ISME JOURNAL 2015; 9:2290-303. [PMID: 26230049 PMCID: PMC4579480 DOI: 10.1038/ismej.2015.63] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 11/09/2022]
Abstract
Cyanobacteria from Subsection V (Stigonematales) are important components of microbial mats in non-acidic terrestrial hot springs. Despite their diazotrophic nature (N2 fixers), their impact on the nitrogen cycle in such extreme ecosystems remains unknown. Here, we surveyed the identity and activity of diazotrophic cyanobacteria in the neutral hot spring of Porcelana (Northern Patagonia, Chile) during 2009 and 2011-2013. We used 16S rRNA and the nifH gene to analyze the distribution and diversity of diazotrophic cyanobacteria. Our results demonstrate the dominance of the heterocystous genus Mastigocladus (Stigonematales) along the entire temperature gradient of the hot spring (69-38 °C). In situ nitrogenase activity (acetylene reduction), nitrogen fixation rates (cellular uptake of (15)N2) and nifH transcription levels in the microbial mats showed that nitrogen fixation and nifH mRNA expression were light-dependent. Nitrogen fixation activities were detected at temperatures ranging from 58 °C to 46 °C, with maximum daily rates of 600 nmol C2H4 cm(-2) per day and 94.1 nmol N cm(-2) per day. These activity patterns strongly suggest a heterocystous cyanobacterial origin and reveal a correlation between nitrogenase activity and nifH gene expression during diurnal cycles in thermal microbial mats. N and C fixation in the mats contributed ~3 g N m(-2) per year and 27 g C m(-2) per year, suggesting that these vital demands are fully met by the diazotrophic and photoautotrophic capacities of the cyanobacteria in the Porcelana hot spring.
Collapse
Affiliation(s)
- María Estrella Alcamán
- Department of Molecular Genetics and Microbiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Fernandez
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, UPMC Univ Paris 06, UMR 7621, Banyuls/mer, France
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Banyuls/mer, France
- Department of Oceanography, Interdisciplinary Center for Aquaculture Research (INCAR) and COPAS SURAUSTRAL Program, University of Concepción, Concepción, Chile
| | - Antonio Delgado
- Instituto Andaluz de Ciencias de la Tierra (CSIC-Univ. Granada), Armilla, Granada, Spain
| | - Birgitta Bergman
- Department of Ecology, Environment and Plant Sciences and Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Climate and Resilience Research (CR)2, Santiago, Chile
| |
Collapse
|
28
|
Nielsen M, Revsbech NP, Kühl M. Microsensor measurements of hydrogen gas dynamics in cyanobacterial microbial mats. Front Microbiol 2015; 6:726. [PMID: 26257714 PMCID: PMC4508582 DOI: 10.3389/fmicb.2015.00726] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/02/2015] [Indexed: 11/16/2022] Open
Abstract
We used a novel amperometric microsensor for measuring hydrogen gas production and consumption at high spatio-temporal resolution in cyanobacterial biofilms and mats dominated by non-heterocystous filamentous cyanobacteria (Microcoleus chtonoplastes and Oscillatoria sp.). The new microsensor is based on the use of an organic electrolyte and a stable internal reference system and can be equipped with a chemical sulfide trap in the measuring tip; it exhibits very stable and sulfide-insensitive measuring signals and a high sensitivity (1.5–5 pA per μmol L-1 H2). Hydrogen gas measurements were done in combination with microsensor measurements of scalar irradiance, O2, pH, and H2S and showed a pronounced H2 accumulation (of up to 8–10% H2 saturation) within the upper mm of cyanobacterial mats after onset of darkness and O2 depletion. The peak concentration of H2 increased with the irradiance level prior to darkening. After an initial build-up over the first 1–2 h in darkness, H2 was depleted over several hours due to efflux to the overlaying water, and due to biogeochemical processes in the uppermost oxic layers and the anoxic layers of the mats. Depletion could be prevented by addition of molybdate pointing to sulfate reduction as a major sink for H2. Immediately after onset of illumination, a short burst of presumably photo-produced H2 due to direct biophotolysis was observed in the illuminated but anoxic mat layers. As soon as O2 from photosynthesis started to accumulate, the H2 was consumed rapidly and production ceased. Our data give detailed insights into the microscale distribution and dynamics of H2 in cyanobacterial biofilms and mats, and further support that cyanobacterial H2 production can play a significant role in fueling anaerobic processes like e.g., sulfate reduction or anoxygenic photosynthesis in microbial mats.
Collapse
Affiliation(s)
- Michael Nielsen
- Section of Microbiology, Department of Bioscience, Aarhus University Aarhus, Denmark
| | - Niels P Revsbech
- Section of Microbiology, Department of Bioscience, Aarhus University Aarhus, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen Helsingør, Denmark ; Plant Functional Biology and Climate Change Cluster, University of Technology, Sydney, Ultimo NSW, Australia
| |
Collapse
|
29
|
Greater temporal changes of sediment microbial community than its waterborne counterpart in Tengchong hot springs, Yunnan Province, China. Sci Rep 2014; 4:7479. [PMID: 25524763 PMCID: PMC5378992 DOI: 10.1038/srep07479] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/25/2014] [Indexed: 01/01/2023] Open
Abstract
Temporal variation in geochemistry can cause changes in microbial community structure and diversity. Here we studied temporal changes of microbial communities in Tengchong hot springs of Yunnan Province, China in response to geochemical variations by using microbial and geochemical data collected in January, June and August of 2011. Greater temporal variations were observed in individual taxa than at the whole community structure level. Water and sediment communities exhibited different temporal variation patterns. Water communities were largely stable across three sampling times and dominated by similar microbial lineages: Hydrogenobaculum in moderate-temperature acidic springs, Sulfolobus in high-temperature acidic springs, and Hydrogenobacter in high-temperature circumneutral to alkaline springs. Sediment communities were more diverse and responsive to changing physicochemical conditions. Most of the sediment communities in January and June were similar to those in waters. However, the August sediment community was more diverse and contained more anaerobic heterotrophs than the January and June: Desulfurella and Acidicaldus in moderate-temperature acidic springs, Ignisphaera and Desulfurococcus in high-temperature acidic springs, the candidate division OP1 and Fervidobacterium in alkaline springs, and Thermus and GAL35 in neutral springs. Temporal variations in physicochemical parameters including temperature, pH, and dissolved organic carbon may have triggered the observed microbial community shifts.
Collapse
|
30
|
Morohoshi S, Matsuura K, Haruta S. Secreted protease mediates interspecies interaction and promotes cell aggregation of the photosynthetic bacterium Chloroflexus aggregans. FEMS Microbiol Lett 2014; 362:1-5. [PMID: 25673656 DOI: 10.1093/femsle/fnu046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Interspecies interactions were studied in hot spring microbial mats where diverse species of bacterial cells are densely packed. The anoxygenic photosynthetic bacterium, Chloroflexus aggregans, has been widely found in the microbial mats as a major component in terrestrial hot springs in Japan at the temperature from 50 to 70°C. C. aggregans shows cellular motility to form a microbial mat-like dense cell aggregate. The aggregating ability of C. aggregans was affected by another bacterial species, strain BL55a (related to Bacillus licheniformis) isolated from the microbial mats containing C. aggregans. Cell aggregation rate of C. aggregans was promoted by the addition of culture supernatants of strain BL55a. Similar effects were also detected from other bacterial isolates, specifically Geobacillus sp. and Aeribacillus sp. Protease activity was detected from the culture supernatants from all of these isolates. The promoting effect of strain BL55a was suppressed by a serine protease inhibitor, phenylmethylsulfonyl fluoride. A purified serine protease, subtilisin obtained from B. licheniformis, showed a promoting effect on the cell aggregation. These results suggest that an extracellular protease, secreted from co-existing bacterial species promoted the aggregating motility of C. aggregans. This is the first report that exogenous protease affects bacterial cellular motility.
Collapse
Affiliation(s)
- Sho Morohoshi
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Katsumi Matsuura
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Shin Haruta
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
31
|
Mori K, Yamazoe A, Hosoyama A, Ohji S, Fujita N, Ishibashi JI, Kimura H, Suzuki KI. Thermotoga
profunda sp. nov. and Thermotoga
caldifontis sp. nov., anaerobic thermophilic bacteria isolated from terrestrial hot springs. Int J Syst Evol Microbiol 2014; 64:2128-2136. [DOI: 10.1099/ijs.0.060137-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two thermophilic, strictly anaerobic, Gram-negative bacteria, designated strains AZM34c06T and AZM44c09T, were isolated from terrestrial hot springs in Japan. The optimum growth conditions for strain AZM34c06T were 60 °C, pH 7.4 and 0 % additional NaCl, and those for strain AZM44c09T were 70 °C, pH 7.4 and 0 % additional NaCl. Complete genome sequencing was performed for both strains, revealing genome sizes of 2.19 Mbp (AZM34c06T) and 2.01 Mbp (AZM44c09T). Phylogenetic analyses based on 16S rRNA gene sequences and the concatenated predicted amino acid sequences of 33 ribosomal proteins showed that both strains belonged to the genus
Thermotoga
. The closest relatives of strains AZM34c06T and AZM44c09T were the type strains of
Thermotoga lettingae
(96.0 % similarity based on the 16S rRNA gene and 84.1 % similarity based on ribosomal proteins) and
Thermotoga hypogea
(98.6 and 92.7 % similarity), respectively. Using blast, the average nucleotide identity was 70.4–70.5 % when comparing strain AZM34c06T and
T. lettingae
TMOT and 76.6 % when comparing strain AZM44c09T and
T. hypogea
NBRC 106472T. Both values are far below the 95 % threshold value for species delineation. In view of these data, we propose the inclusion of the two isolates in the genus
Thermotoga
within two novel species, Thermotoga profunda sp. nov. (type strain AZM34c06T = NBRC 106115T = DSM 23275T) and Thermotoga caldifontis sp. nov. (type strain AZM44c09T = NBRC 106116T = DSM 23272T).
Collapse
Affiliation(s)
- Koji Mori
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Atsushi Yamazoe
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Akira Hosoyama
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Shoko Ohji
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Nobuyuki Fujita
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | | | - Hiroyuki Kimura
- Department of Geosciences, Graduate School of Science, Shizuoka University, 836 Oya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Ken-ichiro Suzuki
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
32
|
Lee JZ, Burow LC, Woebken D, Everroad RC, Kubo MD, Spormann AM, Weber PK, Pett-Ridge J, Bebout BM, Hoehler TM. Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats. Front Microbiol 2014; 5:61. [PMID: 24616716 PMCID: PMC3935151 DOI: 10.3389/fmicb.2014.00061] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/30/2014] [Indexed: 11/17/2022] Open
Abstract
Past studies of hydrogen cycling in hypersaline microbial mats have shown an active nighttime cycle, with production largely from Cyanobacteria and consumption from sulfate-reducing bacteria (SRB). However, the mechanisms and magnitude of hydrogen cycling have not been extensively studied. Two mats types near Guerrero Negro, Mexico-permanently submerged Microcoleus microbial mat (GN-S), and intertidal Lyngbya microbial mat (GN-I)-were used in microcosm diel manipulation experiments with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), molybdate, ammonium addition, and physical disruption to understand the processes responsible for hydrogen cycling between mat microbes. Across microcosms, H2 production occurred under dark anoxic conditions with simultaneous production of a suite of organic acids. H2 production was not significantly affected by inhibition of nitrogen fixation, but rather appears to result from constitutive fermentation of photosynthetic storage products by oxygenic phototrophs. Comparison to accumulated glycogen and to CO2 flux indicated that, in the GN-I mat, fermentation released almost all of the carbon fixed via photosynthesis during the preceding day, primarily as organic acids. Across mats, although oxygenic and anoxygenic phototrophs were detected, cyanobacterial [NiFe]-hydrogenase transcripts predominated. Molybdate inhibition experiments indicated that SRBs from a wide distribution of DsrA phylotypes were responsible for H2 consumption. Incubation with (13)C-acetate and NanoSIMS (secondary ion mass-spectrometry) indicated higher uptake in both Chloroflexi and SRBs relative to other filamentous bacteria. These manipulations and diel incubations confirm that Cyanobacteria were the main fermenters in Guerrero Negro mats and that the net flux of nighttime fermentation byproducts (not only hydrogen) was largely regulated by the interplay between Cyanobacteria, SRBs, and Chloroflexi.
Collapse
Affiliation(s)
- Jackson Z. Lee
- Exobiology Branch, NASA Ames Research CenterMoffett Field, CA, USA
- Bay Area Environmental Research InstituteSonoma, CA, USA
| | - Luke C. Burow
- Exobiology Branch, NASA Ames Research CenterMoffett Field, CA, USA
- Departments of Civil and Environmental Engineering, and Chemical Engineering, Stanford UniversityStanford, CA, USA
| | - Dagmar Woebken
- Exobiology Branch, NASA Ames Research CenterMoffett Field, CA, USA
- Departments of Civil and Environmental Engineering, and Chemical Engineering, Stanford UniversityStanford, CA, USA
| | | | - Mike D. Kubo
- Exobiology Branch, NASA Ames Research CenterMoffett Field, CA, USA
- The SETI InstituteMountain View, CA, USA
| | - Alfred M. Spormann
- Departments of Civil and Environmental Engineering, and Chemical Engineering, Stanford UniversityStanford, CA, USA
| | - Peter K. Weber
- Lawrence Livermore National Lab, Chemical Sciences DivisionLivermore, CA, USA
| | - Jennifer Pett-Ridge
- Lawrence Livermore National Lab, Chemical Sciences DivisionLivermore, CA, USA
| | - Brad M. Bebout
- Exobiology Branch, NASA Ames Research CenterMoffett Field, CA, USA
| | - Tori M. Hoehler
- Exobiology Branch, NASA Ames Research CenterMoffett Field, CA, USA
| |
Collapse
|
33
|
Zheng H, Bodington D, Zhang C, Miyanaga K, Tanji Y, Hongoh Y, Xing XH. Comprehensive phylogenetic diversity of [FeFe]-hydrogenase genes in termite gut microbiota. Microbes Environ 2013; 28:491-4. [PMID: 24240187 PMCID: PMC4070709 DOI: 10.1264/jsme2.me13082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phylogenetic diversity of [FeFe]-hydrogenase (HydA) in termite guts was assessed by pyrosequencing PCR amplicons obtained using newly designed primers. Of 8,066 reads, 776 hydA phylotypes, defined with 97% nucleotide sequence identity, were recovered from the gut homogenates of three termite species, Hodotermopsis sjoestedti, Reticulitermes speratus, and Nasutitermes takasagoensis. The phylotype coverage was 92–98%, and the majority shared only low identity with database sequences. It was estimated that 194–745 hydA phylotypes existed in the gut of each termite species. Our results demonstrate that hydA gene diversity in the termite gut microbiota is much higher than previously estimated.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Chemical Engineering, Tsinghua University
| | | | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Shin Haruta
- Graduate School of Science and Engineering, Tokyo Metropolitan University
| |
Collapse
|
35
|
Control of temperature on microbial community structure in hot springs of the Tibetan Plateau. PLoS One 2013; 8:e62901. [PMID: 23667538 PMCID: PMC3647046 DOI: 10.1371/journal.pone.0062901] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 03/26/2013] [Indexed: 11/24/2022] Open
Abstract
The Tibetan Plateau in Northwest China hosts a number of hot springs that represent a biodiversity hotspot for thermophiles, yet their diversity and relationship to environmental conditions are poorly explored in these habitats. In this study we investigated microbial diversity and community composition in 13 Tibetan hot springs with a wide range of temperatures (22.1–75°C) and other geochemical conditions by using the 16S rRNA gene pyrosequencing approach. Bacteria (108–1011 copy/g; 42 bacterial phyla) in Tibetan hot springs were more abundant and far more diverse than Archaea (107–1010 copy/g; 5 archaeal phyla). The dominant bacterial phyla systematically varied with temperature. Moderate temperatures (75–66°C) favored Aquificae, GAL35, and novel Bacteria, whereas low temperatures (60–22.1°C) selected for Deinococcus-Thermus, Cyanobacteria, and Chloroflexi. The relative abundance of Aquificae was correlated positively with temperature, but the abundances of Deinococcus-Thermus, Cyanobacteria, and Chloroflexi were negatively correlated with temperature. Cyanobacteria and Chloroflexi were abundant in Tibetan hot springs and their abundances were positively correlated at low temperatures (55–43°C) but negatively correlated at moderate temperatures (75–55°C). These correlation patterns suggest a complex physiological relationship between these two phyla. Most archaeal sequences were related to Crenarchaeota with only a few related to Euryarchaeota and Thaumarchaeota. Despite the fact that microbial composition in Tibetan hot springs was strongly shaped by temperature, microbial diversity (richness, evenness and Shannon diversity) was not significantly correlated with temperature change. The results of this study expand our current understanding of microbial ecology in Tibetan hot springs and provide a basis for a global comparison.
Collapse
|
36
|
Everroad RC, Otaki H, Matsuura K, Haruta S. Diversification of bacterial community composition along a temperature gradient at a thermal spring. Microbes Environ 2012; 27:374-81. [PMID: 22673306 PMCID: PMC4103544 DOI: 10.1264/jsme2.me11350] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
To better understand the biogeography and relationship between temperature and community structure within microbial mats, the bacterial diversity of mats at a slightly alkaline, sulfide-containing hot spring was explored. Microbial mats that developed at temperatures between 75-52°C were collected from an area of approximately 1 m(2) in Nakabusa, Nagano, Japan. Bacterial 16S rRNA genes from these samples were examined by terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis. T-RFLP profiles revealed 66 unique fragments (T-RFs). Based on total T-RFs observed in environmental profiles and clone libraries, a temperature effect on diversity was determined, with complexity in the community increasing as temperature decreased. The T-RF pattern indicated four distinct community assemblages related to temperature. Members of the Aquificales and particularly the sulfur-oxidizing bacterium Sulfurihydrogenibium were present at all temperatures and were the dominant component of mats taken at 75-67°C. Sulfide oxidation, which persisted throughout the temperature gradient, was the presumed dominant pathway of primary production above 67°C. As temperature decreased, successive additions of anoxygenic and oxygenic phototrophs increased primary productivity, allowing for diversification of the community.
Collapse
Affiliation(s)
- R Craig Everroad
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1–1 Minami-Osawa, Hachioji-shi, Tokyo 192–0397, Japan
| | | | | | | |
Collapse
|