1
|
Deng JJ, Zhang JR, Mao HH, Zhang MS, Lu YS, Luo XC. Chitinases are important virulence factors in Vibrio for degrading the chitin-rich barrier of shrimp. Int J Biol Macromol 2024; 293:139215. [PMID: 39732246 DOI: 10.1016/j.ijbiomac.2024.139215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/05/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Vibrio-induced diseases pose a significant threat to shrimp aquaculture. While the mechanisms underlying Vibrio penetration of shrimp shells and the gastrointestinal tract remain unclear, this study implicates chitinases as critical virulence factors. Despite their inability to utilize chitin or shrimp shells as sole carbon and nitrogen sources, three major shrimp pathogens-V. alginolyticus, V. harveyi, and V. parahaemolyticus-thrive on chitin-supplemented media and efficiently degrade shrimp shells. Ten extracellular chitinases were identified and two clades, ChiA and ChiD, are conserved among three Vibrio, underscoring their critical role in chitin degradation by Vibrio. Furthermore, one or two copies of evolutionarily conserved ChtBD3 are identified, facilitating targeting chitin-rich structures as virulence factors. All chitinase genes rapidly respond to shrimp shell or colloidal chitin, particularly Vpchi90, which exhibited a 33,340.8-fold increase in expression, correlating with enhanced chitinase activity. To further investigate their functional role, rVaChi89 (ChiD) and rVpChi90 (ChiA) was successfully heterologous expressed in Bacillus subtilis, achieving yields of 0.58 and 0.91 U/mL, respectively. In vitro assay confirmed their ability to degrade shrimp shells into GlcNAc and chitooligomers, further supporting their role in host invasion. This study highlights Vibrio chitinases as critical virulence factors and potential drug targets, with implications for chitin waste recycling.
Collapse
Affiliation(s)
- Jun-Jin Deng
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China
| | - Jia-Rui Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China
| | - He-Hua Mao
- The Affiliated Middle School of Lingnan Normal University, Chikan District, Zhanjiang, Guangdong 524048, China
| | - Ming-Shu Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China
| | - Yi-Shan Lu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong 518120, China; Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Xiao-Chun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
2
|
Itoh T, Ogawa T, Hibi T, Kimoto H. Characterization of the extracellular domain of sensor histidine kinase NagS from Paenibacillus sp. str. FPU-7: nagS interacts with oligosaccharide binding protein NagB1 in complexes with N, N'-diacetylchitobiose. Biosci Biotechnol Biochem 2024; 88:294-304. [PMID: 38059852 DOI: 10.1093/bbb/zbad173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
We have previously isolated the Gram-positive chitin-degrading bacterium Paenibacillus sp. str. FPU-7. This bacterium traps chitin disaccharide (GlcNAc)2 on its cell surface using two homologous solute-binding proteins, NagB1 and NagB2. Bacteria use histidine kinase (HK) of the two-component regulatory system as an extracellular environment sensor. In this study, we found that nagS, which encodes a HK, is located next to the nagB1 gene. Biochemical experiments revealed that the NagS sensor domain (NagS30-294) interacts with the NagB1-(GlcNAc)2 complex. However, proof of NagS30-294 interacting with NagB1 without (GlcNAc)2 is currently unavailable. In contrast to NagB1, no complex formation was observed between NagS30-294 and NagB2, even in the presence of (GlcNAc)2. The NagS30-294 crystal structure at 1.8 Å resolution suggested that the canonical tandem-Per-Arnt-Sim fold recognizes the NagB1-(GlcNAc)2 complex. This study provides insight into the recognition of chitin oligosaccharides by bacteria.
Collapse
Affiliation(s)
- Takafumi Itoh
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | - Tomoki Ogawa
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | - Takao Hibi
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | - Hisashi Kimoto
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| |
Collapse
|
3
|
Sanram S, Aunkham A, Robinson R, Suginta W. Structural displacement model of chitooligosaccharide transport through chitoporin. J Biol Chem 2023; 299:105000. [PMID: 37394001 PMCID: PMC10406626 DOI: 10.1016/j.jbc.2023.105000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023] Open
Abstract
VhChiP is a chitooligosaccharide-specific porin identified in the outer membrane of Vibrio campbellii type strain American Type Culture Collection BAA 1116. VhChiP contains three identical subunits, and in each subunit, the 19-amino acid N-terminal segment serves as a molecular plug (the "N-plug") that controls the closed/open dynamics of the neighboring pores. In this study, the crystal structures of VhChiP lacking the N-plug were determined in the absence and presence of chitohexaose. Binding studies of sugar-ligand interactions by single-channel recordings and isothermal microcalorimetry experiments suggested that the deletion of the N-plug peptide significantly weakened the sugar-binding affinity due to the loss of hydrogen bonds around the central affinity sites. Steered molecular dynamic simulations revealed that the movement of the sugar chain along the sugar passage triggered the ejection of the N-plug, while the H-bonds transiently formed between the reducing end GlcNAc units of the sugar chain with the N-plug peptide may help to facilitate sugar translocation. The findings enable us to propose the structural displacement model, which enables us to understand the molecular basis of chitooligosaccharide uptake by marine Vibrio bacteria.
Collapse
Affiliation(s)
- Surapoj Sanram
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Anuwat Aunkham
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Robert Robinson
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| |
Collapse
|
4
|
Lei Y, Asamizu S, Ishizuka T, Onaka H. Regulation of Multidrug Efflux Pumps by TetR Family Transcriptional Repressor Negatively Affects Secondary Metabolism in Streptomyces coelicolor A3(2). Appl Environ Microbiol 2023; 89:e0182222. [PMID: 36790176 PMCID: PMC10056966 DOI: 10.1128/aem.01822-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
Streptomyces spp. are well-known producers of bioactive secondary metabolites (SMs) that serve as pharmaceutical agents. In addition to their ability to produce SMs, Streptomyces spp. have evolved diverse membrane transport systems to protect cells against antibiotics produced by itself or other microorganisms. We previously screened mutants of Streptomyces coelicolor that show a phenotype of reduced undecylprodigiosin (RED) production in a combined-culture with Tsukamurella pulmonis. Here, we identified a point mutation, which reduced RED production, by performing genome resequencing and genetic complementation. We found that inactivation of the sco1718 gene encoding the TetR family transcriptional regulator (TFR) produced a deficient phenotype for several SMs in Streptomyces coelicolor A3(2). In the genome of S. coelicolor A3(2), two other sets of TFR and two-component ATP-binding cassette (ABC) transporter genes (sco4358-4360 and sco5384-5382) were found which had similar effects on the phenotype for both secondary metabolism and antibiotic resistance. An electrophoretic mobility shift assay and quantitative reverse transcription-PCR experiments demonstrated that TFRs repressed the expression of each adjacent two-component ABC transporter genes by binding to the operator sequence. Notably, the Δsco1718 mutant showed increased resistance to several antibiotics of other actinomycete origin. Our results imply the switching of cell metabolism to direct offense (antibiotic production) or defense (efflux pump activation) using costly and limited quantities of cell energy sources (e.g., ATP) in the soil ecosystem. IMPORTANCE The bacterial metabolic potential to synthesize diverse secondary metabolites in the environment has been revealed by recent (meta)genomics of both unculturable and culturable bacteria. These studies imply that bacteria are continuously exposed to harmful chemical compounds in the environment. Streptomyces spp. contain antibiotic efflux pumps and SM biosynthetic gene clusters. However, the mechanism by which soil bacteria, including Streptomyces, survive against toxic compounds in the environment remains unclear. Here, we identified three sets of TFR-ABC transporter genes in Streptomyces coelicolor A3(2). We found that each TFR controlled the expression of respective ABC transporter, and the expression of all ABC transporters negatively impacted SM production and increased antibiotic resistance. Notably, bioinformatic analysis indicated that these TFR-ABC transporter gene sets are highly conserved and widely distributed in the genome of Streptomyces species, indicating the importance of systematic regulation that directs antibiotic production and xenobiotic excretion.
Collapse
Affiliation(s)
- Yukun Lei
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shumpei Asamizu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Tokyo, Japan
| | - Takumi Ishizuka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyasu Onaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Tokyo, Japan
| |
Collapse
|