1
|
Mohd Hanafiah Z, Hafsari AR, Elango M, Ilham Z, Doni F, Wan Mohtar WHM, Gafforov Y, Wong YJ, Abdul Maulud KN, Ismail NH, Putera Mohd Yusof MY, Wan-Mohtar WAAQI. Removal of cyanobacterial harmful algal blooms (HABs) from contaminated local park lake using Ganoderma lucidum mycelial pellets. Heliyon 2025; 11:e41205. [PMID: 39811270 PMCID: PMC11730225 DOI: 10.1016/j.heliyon.2024.e41205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/22/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Eutrophication and hypereutrophication in lakes foster harmful blue-green algal blooms, which pose a significant threat to the ecological health of freshwater reservoirs. This study investigated the effectiveness of the bio-flocculation approach using the Ganoderma lucidum fungus strain BGF4A1 to remove these harmful blooms, specifically targeting cyanobacterial species like Microcystis PCC-7914. Key flocculation parameters, cyanobacterial concentrations, adsorption kinetics, and pellet morphology were explored in this research. Our results demonstrate that G. lucidum can effectively remove up to 93.70 % of cyanobacteria (measured as chlorophyll-a absorbance), 75.28 % of chemical oxygen demand (COD), and 92.09 % of total suspended solids (TSS) under optimal conditions: an initial pH of 4, 1 % fungal volume (w/v), 48 h of contact time, and 100 rpm agitation at room temperature. Microscopic examination of water samples before and after treatment confirmed a significant reduction in cyanobacterial colonies, indicating the death or decline of the targeted organisms. Morphological analysis using field emission scanning electron microscopy (FESEM) revealed that Microcystis cells were deposited on the hyphae of the G. lucidum pellets, in contrast to the smooth surface of control pellets. These novel culture technologies show great promise as bio-flocculating agents for removing blue-green algae and potentially be adapted for microalgae harvesting in biodiesel production.
Collapse
Affiliation(s)
- Zarimah Mohd Hanafiah
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
- Department of Civil Engineering, Faculty of Engineering and Build Environment, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Malaysia
| | - Anggita Rahmi Hafsari
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Malini Elango
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Zul Ilham
- Biomass Energy Laboratory, Faculty of Science, Institute of Biological Sciences, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Febri Doni
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Wan Hanna Melini Wan Mohtar
- Department of Civil Engineering, Faculty of Engineering and Build Environment, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Malaysia
| | - Yusufjon Gafforov
- Central Asian Center for Development Studies, New Uzbekistan University, 100000, Tashkent, Uzbekistan
| | - Yong Jie Wong
- Department of Bioenvironmental Design, Faculty of Bioenvironmental Sciences, Kyoto University of Advanced Science, Kyoto, 606-8501, Japan
| | - Khairul Nizam Abdul Maulud
- Department of Civil Engineering, Faculty of Engineering and Build Environment, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Malaysia
| | - Nor Hidayah Ismail
- Research Grant Management Division, Department of Research Management, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohd Yusmiaidil Putera Mohd Yusof
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA Selangor, Sungai Buloh, Selangor, Malaysia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA Selangor, Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
2
|
Tang J, Jiang Y, Hu Z, Zhou H, You D, Daroch M. Genomic and phenotypic characterization of Thermosynechococcus-like strains reveals eight species within the genus Thermosynechococcus and a novel genus Parathermosynechococcus gen. nov. Mol Phylogenet Evol 2024; 197:108094. [PMID: 38723792 DOI: 10.1016/j.ympev.2024.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Thermophilic unicellular cyanobacteria of the family Thermosynechococcaceae are essential primary producers and integral components of many microbial mats found in hot springs of Asia and North America. Historically, based on their simple morphology, these organisms, along with members of taxonomically unrelated thermophilic Thermostichaceae have been described with a generic term, "Synechococcus", used for elongated unicellular cyanobacteria. This has created significant misperception in the scientific literature regarding the taxonomic status of these essential thermophilic primary producers and their relationship with Synechococcus sensu stricto. In this manuscript, we attempted a genome-driven taxonomic reevaluation of the family Thermosynechococcaceae. Application of genomic analyses such as GTDB classification, ANI/AAI and phylogenomics support the delineation of eight species within genus Thermosynechococcus. Two subspecies were further identified within T. taiwanensis by dDDH and phylogenomics. Moreover, the results also suggest the presence of two putative new genera phylogenetically alongside genus Thermosynechococcus, a thermophilic genus Parathermosynechococcus represented by PCC 6715 and a non-thermophilic genus represented by PCC 6312. The proposed genospecies and new genera were further integrated with morphological and/or ecological information. Interestingly, the phylogeny of 16S-23S ITS achieved a better taxonomic relationship than that of 16S rRNA and supported the genome-based classification of Thermosynechococcus spp. Finally, the pan-genome analysis indicated a conserved pattern of genomic core among known members of Thermosynechococcus.
Collapse
Affiliation(s)
- Jie Tang
- School of Food and Bioengineering, Chengdu University, Chengdu 610052, Sichuan, China
| | - Ying Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| | - Zhe Hu
- School of Food and Bioengineering, Chengdu University, Chengdu 610052, Sichuan, China
| | - Huizhen Zhou
- School of Food and Bioengineering, Chengdu University, Chengdu 610052, Sichuan, China
| | - Dawei You
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
3
|
Revealing Physiochemical Factors and Zooplankton Influencing Microcystis Bloom Toxicity in a Large-Shallow Lake Using Bayesian Machine Learning. Toxins (Basel) 2022; 14:toxins14080530. [PMID: 36006192 PMCID: PMC9413751 DOI: 10.3390/toxins14080530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Toxic cyanobacterial blooms have become a severe global hazard to human and environmental health. Most studies have focused on the relationships between cyanobacterial composition and cyanotoxins production. Yet, little is known about the environmental conditions influencing the hazard of cyanotoxins. Here, we analysed a unique 22 sites dataset comprising monthly observations of water quality, cyanobacterial genera, zooplankton assemblages, and microcystins (MCs) quota and concentrations in a large-shallow lake. Missing values of MCs were imputed using a non-negative latent factor (NLF) analysis, and the results achieved a promising accuracy. Furthermore, we used the Bayesian additive regression tree (BART) to quantify how Microcystis bloom toxicity responds to relevant physicochemical characteristics and zooplankton assemblages. As expected, the BART model achieved better performance in Microcystis biomass and MCs concentration predictions than some comparative models, including random forest and multiple linear regression. The importance analysis via BART illustrated that the shade index was overall the best predictor of MCs concentrations, implying the predominant effects of light limitations on the MCs content of Microcystis. Variables of greatest significance to the toxicity of Microcystis also included pH and dissolved inorganic nitrogen. However, total phosphorus was found to be a strong predictor of the biomass of total Microcystis and toxic M. aeruginosa. Together with the partial dependence plot, results revealed the positive correlations between protozoa and Microcystis biomass. In contrast, copepods biomass may regulate the MC quota and concentrations. Overall, our observations arouse universal demands for machine-learning strategies to represent nonlinear relationships between harmful algal blooms and environmental covariates.
Collapse
|
4
|
Yu J, Zhu H, Shutes B, Wang X. Salt-alkalization may potentially promote Microcystis aeruginosa blooms and the production of microcystin-LR. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:118971. [PMID: 35167928 DOI: 10.1016/j.envpol.2022.118971] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The development of saline-alkali lands has contributed to the increasing discharge of alkaline salt-laden wastewater, which poses a threat to aquatic organisms. However, the comprehensive effect of alkaline salt on Microcystis aeruginosa, a harmful cyanobacterium, remains unclear. In this study, the growth, physiology, cell ultrastructure and production of microcystin-LR (MC-LR) in Microcystis aeruginosa exposed to four levels of alkaline salt stress were evaluated. The growth of Microcystis aeruginosa was stimulated at an electrical conductivity (EC) of 2.5 mS/cm compared to the control, as supported by the increased cell density, photosynthetic pigment and protein contents. Microcystis aeruginosa could tolerate a certain level of alkaline salt (i.e., EC of 5 mS/cm) via increasing photosynthetic pigment contents to protect cells from alkaline salt stress, but the antioxidant defence system and cell ultrastructure were not affected. When EC increased to 7.5 mS/cm, alkaline salt caused oxidative stress and toxicity in Microcystis aeruginosa, as evidenced by analysis of the integrated biomarker response (IBR). Furthermore, the photosynthetic pigment and protein contents decreased, and cell apoptosis associated with ultrastructural changes was observed. Therefore, we propose that EC of 7.5 mS/cm is a threshold for growth of Microcystis aeruginosa. Additionally, the intracellular MC-LR content was stimulated by alkaline salt, and the highest value was observed at EC of 2.5 mS/cm. The extracellular MC-LR content increased with the increasing alkaline salt concentration. When EC was 7.5 mS/cm, the extracellular MC-LR content was significantly higher than in the control and was associated with the upregulated mcyH gene. This study recommends that more attention should be paid to the risk of Microcystis aeruginosa bloom and microcystin-LR pollution in lakes located in salinization regions.
Collapse
Affiliation(s)
- Jing Yu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China.
| | - Brian Shutes
- Department of Natural Sciences, Middlesex University, Hendon, London, NW4 4BT, UK
| | - Xinyi Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China
| |
Collapse
|
5
|
Hu L, Shan K, Huang L, Li Y, Zhao L, Zhou Q, Song L. Environmental factors associated with cyanobacterial assemblages in a mesotrophic subtropical plateau lake: A focus on bloom toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146052. [PMID: 33677307 DOI: 10.1016/j.scitotenv.2021.146052] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Harmful algal blooms caused by cyanobacteria have been increasing in frequency worldwide. However, the main environmental drivers of this change are often difficult to identify because of the effects of the interaction between eutrophication and climate change. Recently, filamentous N2-fixing cyanobacteria and non-diazotrophic Microcystis have been observed to be co-existing and undergoing succession in some eutrophic lakes. However, the succession patterns of dominant cyanobacteria and the factors driving this in mesotrophic lakes are not well understood. We hypothesized that the changes in cyanobacterial assemblages in mesotrophic lakes could result in a relatively high risks of toxic blooms, and that these changes are associated with the global climatic changes. We tested these hypotheses using data from the subtropical mesotrophic Lake Erhai. We found that the high spatiotemporal variability in the cyanobacterial community, and the increase in biomass were driven primarily by the growth of bloom-forming cyanobacterial taxa. Species-specific biomasses were related to a different environmental stressor; increases in dissolved organic carbon (DOC) concentrations were statistically associated with an increase of Microcystis biomass, whereas increases in surface water temperature favored higher biomass of Pseudanabaena at low transparency and high concentration of phosphorus. In addition, low nitrogen- to- phosphorus ratios were identified as potential determinants of the abundance of N2-fixing Dolichospermum. Furthermore, changes in the concentration of DOC, total nitrogen, pH and water transparency levels were found to affect the composition of Microcystis morphotypes and genotypes mostly. This study highlights that the toxic to non-toxic Microcystis ratio might increase with the water darkening and browning (which occurs in many subtropical plateau lakes). Lake management strategies, therefore, need to consider the toxicity of cyanobacterial assemblages in mesotrophic lakes over the intensity of the cyanobacterial blooms.
Collapse
Affiliation(s)
- Lili Hu
- Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kun Shan
- Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Licheng Huang
- Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Research Academy of Eco-environmental Sciences, Kunming 650034, China
| | - Yuanrui Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China
| | - Lei Zhao
- School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China
| | - Qichao Zhou
- Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Research Academy of Eco-environmental Sciences, Kunming 650034, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China.
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|