1
|
Saha M, Dittami SM, Chan CX, Raina JB, Stock W, Ghaderiardakani F, Valathuparambil Baby John AM, Corr S, Schleyer G, Todd J, Cardini U, Bengtsson MM, Prado S, Skillings D, Sonnenschein EC, Engelen AH, Wang G, Wichard T, Brodie J, Leblanc C, Egan S. Progress and future directions for seaweed holobiont research. THE NEW PHYTOLOGIST 2024; 244:364-376. [PMID: 39137959 DOI: 10.1111/nph.20018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
In the marine environment, seaweeds (i.e. marine macroalgae) provide a wide range of ecological services and economic benefits. Like land plants, seaweeds do not provide these services in isolation, rather they rely on their associated microbial communities, which together with the host form the seaweed holobiont. However, there is a poor understanding of the mechanisms shaping these complex seaweed-microbe interactions, and of the evolutionary processes underlying these interactions. Here, we identify the current research challenges and opportunities in the field of seaweed holobiont biology. We argue that identifying the key microbial partners, knowing how they are recruited, and understanding their specific function and their relevance across all seaweed life history stages are among the knowledge gaps that are particularly important to address, especially in the context of the environmental challenges threatening seaweeds. We further discuss future approaches to study seaweed holobionts, and how we can apply the holobiont concept to natural or engineered seaweed ecosystems.
Collapse
Affiliation(s)
- Mahasweta Saha
- Plymouth Marine Laboratory, Marine Ecology and Biodiversity, Prospect Place, Plymouth, PL1 3DH, UK
| | - Simon M Dittami
- CNRS, Integrative Biology of Marine Models Laboratory (LBI2M, UMR 8227), Station Biologique de Roscoff, Place Georges Teissier, Sorbonne Université, Roscoff, 29680, France
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Willem Stock
- Phycology Research Group, Ghent University, Krijgslaan 281 Sterre S8, Ghent, 9000, Belgium
| | - Fatemeh Ghaderiardakani
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, Jena, 07743, Germany
| | | | - Shauna Corr
- Plymouth Marine Laboratory, Marine Ecology and Biodiversity, Prospect Place, Plymouth, PL1 3DH, UK
| | - Guy Schleyer
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, Jena, 07745, Germany
| | - Jonathan Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Ulisse Cardini
- Department of Integrative Marine Ecology (EMI), Genoa Marine Centre, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Genoa, 16126, Italy
| | - Mia M Bengtsson
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, Greifswald, 17489, Germany
| | - Soizic Prado
- National Museum of Natural History, Unit Molecules of Communication and Adaptation of Microorganisms (UMR 7245), Paris, France
| | - Derek Skillings
- Department of Philosophy, University of North Carolina Greensboro, Greensboro, NC, 27402, USA
| | - Eva C Sonnenschein
- Department of Biosciences, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | | | - Gaoge Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- MoE Key Laboratory of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, Jena, 07743, Germany
| | - Juliet Brodie
- Natural History Museum, Research, Cromwell Road, London, SW7 5BD, UK
| | - Catherine Leblanc
- CNRS, Integrative Biology of Marine Models Laboratory (LBI2M, UMR 8227), Station Biologique de Roscoff, Place Georges Teissier, Sorbonne Université, Roscoff, 29680, France
| | - Suhelen Egan
- Centre for Marine Science and Innovation (CMSI), School of Biological, Earth and Environmental Sciences (BEES), UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Sa'diyah W, Zhao YJ, Chiba Y, Kondo H, Suzuki N, Ban S, Yaguchi T, Urayama SI, Hagiwara D. New lineages of RNA viruses from clinical isolates of Rhizopus microsporus revealed by fragmented and primer-ligated dsRNA sequencing (FLDS) analysis. mSphere 2024; 9:e0034524. [PMID: 39072615 PMCID: PMC11351042 DOI: 10.1128/msphere.00345-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Rhizopus microsporus is a species in the order Mucorales that is known to cause mucormycosis, but it is poorly understood as a host of viruses. Here, we examined 25 clinical strains of R. microsporus for viral infection with a conventional double-stranded RNA (dsRNA) assay using agarose gel electrophoresis (AGE) and the recently established fragmented and primer-ligated dsRNA sequencing (FLDS) protocol. By AGE, five virus-infected strains were detected. Then, full-length genomic sequences of 12 novel RNA viruses were revealed by FLDS, which were related to the families Mitoviridae, Narnaviridae, and Endornaviridae, ill-defined groups of single-stranded RNA (ssRNA) viruses with similarity to the established families Virgaviridae and Phasmaviridae, and the proposed family "Ambiguiviridae." All the characterized viruses, except a potential phasmavirid with a negative-sense RNA genome, had positive-sense RNA genomes. One virus belonged to a previously established species within the family Mitoviridae, whereas the other 11 viruses represented new species or even new genera. These results show that the fungal pathogen R. microsporus harbors diverse RNA viruses and extend our understanding of the diversity of RNA viruses in the fungal order Mucorales, division Mucoromycota. Identifying RNA viruses from clinical isolates of R. microsporus may expand the repertoire of natural therapeutic agents for mucormycosis in the future.IMPORTANCEThe diversity of mycoviruses in fungal hosts in the division Mucoromycota has been underestimated, mainly within the species Rhizopus microsporus. Only five positive-sense RNA genomes had previously been discovered in this species. Because current sequencing methods poorly complete the termini of genomes, we used fragmented and primer-ligated double-stranded RNA sequencing to acquire the full-length genomes. Eleven novel mycoviruses were detected in this study, including the first negative-sense RNA genome reported in R. microsporus. Our findings extend the understanding of the viral diversity in clinical strains of Mucoromycota, may provide insights into the pathogenesis and ecology of this fungus, and may offer therapeutic options.
Collapse
Grants
- Institute for Fermentation, Osaka (IFO)
- 22KJ0440 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H04879 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21K18217 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Wasiatus Sa'diyah
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba, Ibaraki, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Yan-Jie Zhao
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba, Ibaraki, Japan
| | - Yuto Chiba
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba, Ibaraki, Japan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Sayaka Ban
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Syun-ichi Urayama
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan
| | - Daisuke Hagiwara
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
3
|
Urayama SI, Zhao YJ, Kuroki M, Chiba Y, Ninomiya A, Hagiwara D. Greetings from virologists to mycologists: A review outlining viruses that live in fungi. MYCOSCIENCE 2024; 65:1-11. [PMID: 39239117 PMCID: PMC11371549 DOI: 10.47371/mycosci.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 09/07/2024]
Abstract
Viruses are genetic elements that parasitize self-replicating cells. Therefore, organisms parasitized by viruses are not limited to animals and plants but also include microorganisms. Among these, viruses that parasitize fungi are known as mycoviruses. Mycoviruses with an RNA genome persistently replicate inside fungal cells and coevolve with their host cells, similar to a cellular organelle. Within host cells, mycoviruses can modulate various fungal characteristics and activities, including pathogenicity and the production of enzymes and secondary metabolites. In this review, we provide an overview of the mycovirus research field as introduction to fungal researchers. Recognition of all genetic elements in fungi aids towards better understanding and control of fungi, and makes fungi a significant model system for studying microorganisms containing multiple genetic elements.
Collapse
Affiliation(s)
- Syun-Ichi Urayama
- a Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba
- b Microbiology Research Center for Sustainability (MiCS), University of Tsukuba
| | - Yan-Jie Zhao
- a Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba
| | - Misa Kuroki
- c Department of Biotechnology, Laboratory of Brewing Microbiology (donated by Kikkoman), The University of Tokyo
| | - Yuto Chiba
- d School of Agriculture, Meiji University
| | - Akihiro Ninomiya
- e Graduate School of Agricultural and Life Sciences, Laboratory of Aquatic Natural Products Chemistry, The University of Tokyo
| | - Daisuke Hagiwara
- a Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba
- b Microbiology Research Center for Sustainability (MiCS), University of Tsukuba
| |
Collapse
|
4
|
van der Loos LM, De Coninck L, Zell R, Lequime S, Willems A, De Clerck O, Matthijnssens J. Highly divergent CRESS DNA and picorna-like viruses associated with bleached thalli of the green seaweed Ulva. Microbiol Spectr 2023; 11:e0025523. [PMID: 37724866 PMCID: PMC10581178 DOI: 10.1128/spectrum.00255-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/19/2023] [Indexed: 09/21/2023] Open
Abstract
Marine macroalgae (seaweeds) are important primary producers and foundation species in coastal ecosystems around the world. Seaweeds currently contribute to an estimated 51% of the global mariculture production, with a long-term growth rate of 6% per year, and an estimated market value of more than US$11.3 billion. Viral infections could have a substantial impact on the ecology and aquaculture of seaweeds, but surprisingly little is known about virus diversity in macroalgal hosts. Using metagenomic sequencing, we characterized viral communities associated with healthy and bleached specimens of the commercially important green seaweed Ulva. We identified 20 putative new and divergent viruses, of which the majority belonged to the Circular Rep-Encoding Single-Stranded (CRESS) DNA viruses [single-stranded (ss)DNA genomes], Durnavirales [double-stranded (ds)RNA], and Picornavirales (ssRNA). Other newly identified RNA viruses were related to the Ghabrivirales, the Mitoviridae, and the Tombusviridae. Bleached Ulva samples contained particularly high viral read numbers. While reads matching assembled CRESS DNA viruses and picorna-like viruses were nearly absent from the healthy Ulva samples (confirmed by qPCR), they were very abundant in the bleached specimens. Therefore, bleaching in Ulva could be caused by one or a combination of the identified viruses but may also be the result of another causative agent or abiotic stress, with the viruses simply proliferating in already unhealthy seaweed tissue. This study highlights how little we know about the diversity and ecology of seaweed viruses, especially in relation to the health and diseases of the algal host, and emphasizes the need to better characterize the algal virosphere. IMPORTANCE Green seaweeds of the genus Ulva are considered a model system to study microbial interactions with the algal host. Remarkably little is known, however, about viral communities associated with green seaweeds, especially in relation to the health of the host. In this study, we characterized the viral communities associated with healthy and bleached Ulva. Our findings revealed the presence of 20 putative novel viruses associated with Ulva, encompassing both DNA and RNA viruses. The majority of these viruses were found to be especially abundant in bleached Ulva specimens. This is the first step toward understanding the role of viruses in the ecology and aquaculture of this green seaweed.
Collapse
Affiliation(s)
- Luna M. van der Loos
- Phycology Research Group, Department of Biology, Ghent University, Ghent, Belgium
- Laboratory of Microbiology, Department Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Lander De Coninck
- Laboratory of Clinical and Epidemiological Virology, Laboratory of Viral Metagenomics, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Roland Zell
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Sebastian Lequime
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Anne Willems
- Laboratory of Microbiology, Department Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Olivier De Clerck
- Phycology Research Group, Department of Biology, Ghent University, Ghent, Belgium
| | - Jelle Matthijnssens
- Laboratory of Clinical and Epidemiological Virology, Laboratory of Viral Metagenomics, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Chiba Y, Yabuki A, Takaki Y, Nunoura T, Urayama SI, Hagiwara D. The First Identification of a Narnavirus in Bigyra, a Marine Protist. Microbes Environ 2023; 38:ME22077. [PMID: 36858534 PMCID: PMC10037099 DOI: 10.1264/jsme2.me22077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/18/2022] [Indexed: 03/03/2023] Open
Abstract
Current information on the diversity and evolution of eukaryotic RNA viruses is biased towards host lineages, such as animals, plants, and fungi. Although protists represent the majority of eukaryotic diversity, our understanding of the protist RNA virosphere is still limited. To reveal untapped RNA viral diversity, we screened RNA viruses from 30 marine protist isolates and identified a novel RNA virus named Haloplacidia narnavirus 1 (HpNV1). A phylogenetic ana-lysis revealed that HpNV1 is a new member of the family Narnaviridae. The present study filled a gap in the distribution of narnaviruses and implies their wide distribution in Stramenopiles.
Collapse
Affiliation(s)
- Yuto Chiba
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
| | - Akinori Yabuki
- Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka 237–0061, Japan
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, JAMSTEC, 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), JAMSTEC, 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Syun-ichi Urayama
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
| | - Daisuke Hagiwara
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
| |
Collapse
|
6
|
Charon J, Kahlke T, Larsson ME, Abbriano R, Commault A, Burke J, Ralph P, Holmes EC. Diverse RNA Viruses Associated with Diatom, Eustigmatophyte, Dinoflagellate, and Rhodophyte Microalgae Cultures. J Virol 2022; 96:e0078322. [PMID: 36190242 PMCID: PMC9599419 DOI: 10.1128/jvi.00783-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/20/2022] [Indexed: 11/20/2022] Open
Abstract
Unicellular microalgae are of immense ecological importance with growing commercial potential in industries such as renewable energy, food, and pharmacology. Viral infections can have a profound impact on the growth and evolution of their hosts. However, very little is known of the diversity within, and the effect of, unicellular microalgal RNA viruses. In addition, identifying RNA viruses in these organisms that could have originated more than a billion years ago constitutes a robust data set to dissect molecular events and address fundamental questions in virus evolution. We assessed the diversity of RNA viruses in eight microalgal cultures, including representatives from the diatom, eustigmatophyte, dinoflagellate, red algae, and euglenid groups. Using metatranscriptomic sequencing combined with bioinformatic approaches optimized to detect highly divergent RNA viruses, we identified 10 RNA virus sequences, with nine constituting new viral species. Most of the newly identified RNA viruses belonged to the double-stranded Totiviridae, Endornaviridae, and Partitiviridae, greatly expanding the reported host range for these families. Two new species belonging to the single-stranded RNA viral clade Marnaviridae, commonly associated with microalgal hosts, were also identified. This study highlights that a substantial diversity of RNA viruses likely exists undetected within the unicellular microalgae. It also highlights the necessity for RNA viral characterization and for investigation of the effects of viral infections on microalgal physiology, biology, and growth, considering their environmental and industrial roles. IMPORTANCE Our knowledge of the diversity of RNA viruses infecting microbial algae-the microalgae-is minimal. However, describing the RNA viruses infecting these organisms is of primary importance at both the ecological and economic scales because of the fundamental roles these organisms play in aquatic environments and their growing value across a range of industrial fields. Using metatranscriptomic sequencing, we aimed to reveal the RNA viruses present in cultures of eight microalgae species belonging to the diatom, dinoflagellate, eustigmatophyte, rhodophyte, and euglena major clades of algae. Accordingly, we identified 10 new divergent RNA virus species belonging to RNA virus families as diverse as the double-stranded Totiviridae, Endornaviridae, and Partitiviridae and the single-stranded Marnaviridae. By expanding the known diversity of RNA viruses infecting unicellular eukaryotes, this study contributes to a better understanding of the early evolution of the virosphere and will inform the use of microalgae in industrial applications.
Collapse
Affiliation(s)
- Justine Charon
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Tim Kahlke
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Michaela E. Larsson
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Raffaela Abbriano
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Audrey Commault
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Joel Burke
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Peter Ralph
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Munke A, Kimura K, Tomaru Y, Wang H, Yoshida K, Mito S, Hongo Y, Okamoto K. Primordial Capsid and Spooled ssDNA Genome Structures Unravel Ancestral Events of Eukaryotic Viruses. mBio 2022; 13:e0015622. [PMID: 35856561 PMCID: PMC9426455 DOI: 10.1128/mbio.00156-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/28/2022] [Indexed: 01/08/2023] Open
Abstract
Marine algae viruses are important for controlling microorganism communities in the marine ecosystem and played fundamental roles during the early events of viral evolution. Here, we have focused on one major group of marine algae viruses, the single-stranded DNA (ssDNA) viruses from the Bacilladnaviridae family. We present the capsid structure of the bacilladnavirus Chaetoceros tenuissimus DNA virus type II (CtenDNAV-II), determined at 2.4-Å resolution. A structure-based phylogenetic analysis supported the previous theory that bacilladnaviruses have acquired their capsid protein via horizontal gene transfer from a ssRNA virus. The capsid protein contains the widespread virus jelly-roll fold but has additional unique features; a third β-sheet and a long C-terminal tail. Furthermore, a low-resolution reconstruction of the CtenDNAV-II genome revealed a partially spooled structure, an arrangement previously only described for dsRNA and dsDNA viruses. Together, these results exemplify the importance of genetic recombination for the emergence and evolution of ssDNA viruses and provide important insights into the underlying mechanisms that dictate genome organization. IMPORTANCE Single-stranded DNA (ssDNA) viruses are an extremely widespread group of viruses that infect diverse hosts from all three domains of life, consequently having great economic, medical, and ecological importance. In particular, bacilladnaviruses are highly abundant in marine sediments and greatly influence the dynamic appearance and disappearance of certain algae species. Despite the importance of ssDNA viruses and the last couple of years' advancements in cryo-electron microscopy, structural information on the genomes of ssDNA viruses remains limited. This paper describes two important achievements: (i) the first atomic structure of a bacilladnavirus capsid, which revealed that the capsid protein gene presumably was acquired from a ssRNA virus in early evolutionary events; and (ii) the structural organization of a ssDNA genome, which retains a spooled arrangement that previously only been observed for double-stranded viruses.
Collapse
Affiliation(s)
- Anna Munke
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Kei Kimura
- Department of Biological Resource Science, Faculty of Agriculture, Saga University, Saga, Japan
| | - Yuji Tomaru
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Hatsukaichi, Hiroshima, Japan
| | - Han Wang
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Seiya Mito
- Department of Biological Resource Science, Faculty of Agriculture, Saga University, Saga, Japan
| | - Yuki Hongo
- Bioinformatics and Biosciences Division, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Fukuura, Kanazawa, Yokohama, Kanagawa, Japan
| | - Kenta Okamoto
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Kolundžija S, Cheng DQ, Lauro FM. RNA Viruses in Aquatic Ecosystems through the Lens of Ecological Genomics and Transcriptomics. Viruses 2022; 14:702. [PMID: 35458432 PMCID: PMC9029791 DOI: 10.3390/v14040702] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Massive amounts of data from nucleic acid sequencing have changed our perspective about diversity and dynamics of marine viral communities. Here, we summarize recent metatranscriptomic and metaviromic studies targeting predominantly RNA viral communities. The analysis of RNA viromes reaffirms the abundance of lytic (+) ssRNA viruses of the order Picornavirales, but also reveals other (+) ssRNA viruses, including RNA bacteriophages, as important constituents of extracellular RNA viral communities. Sequencing of dsRNA suggests unknown diversity of dsRNA viruses. Environmental metatranscriptomes capture the dynamics of ssDNA, dsDNA, ssRNA, and dsRNA viruses simultaneously, unravelling the full complexity of viral dynamics in the marine environment. RNA viruses are prevalent in large size fractions of environmental metatranscriptomes, actively infect marine unicellular eukaryotes larger than 3 µm, and can outnumber bacteriophages during phytoplankton blooms. DNA and RNA viruses change abundance on hourly timescales, implying viral control on a daily temporal basis. Metatranscriptomes of cultured protists host a diverse community of ssRNA and dsRNA viruses, often with multipartite genomes and possibly persistent intracellular lifestyles. We posit that RNA viral communities might be more diverse and complex than formerly anticipated and that the influence they exert on community composition and global carbon flows in aquatic ecosystems may be underestimated.
Collapse
Affiliation(s)
- Sandra Kolundžija
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
| | - Dong-Qiang Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
| | - Federico M. Lauro
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
| |
Collapse
|
9
|
Luo X, Jiang D, Xie J, Jia J, Duan J, Cheng J, Fu Y, Chen T, Yu X, Li B, Lin Y. Genome Characterization and Phylogenetic Analysis of a Novel Endornavirus That Infects Fungal Pathogen Sclerotinia sclerotiorum. Viruses 2022; 14:v14030456. [PMID: 35336865 PMCID: PMC8953294 DOI: 10.3390/v14030456] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Endornaviruses are capsidless linear (+) ssRNA viruses in the family Endornaviridae. In this study, Scelrotinia sclerotiorum endornavirus 11 (SsEV11), a novel endornavirus infecting hypovirulent Sclerotinia sclerotiorum strain XY79, was identified and cloned using virome sequencing analysis and rapid amplification of cDNA ends (RACE) techniques. The full-length genome of SsEV11 is 11906 nt in length with a large ORF, which encodes a large polyprotein of 3928 amino acid residues, containing a viral methyltransferase domain, a cysteine-rich region, a putative DEADc, a viral helicase domain, and an RNA-dependent RNA polymerase (RdRp) 2 domain. The 5’ and 3’ untranslated regions (UTR) are 31 nt and 90 nt, respectively. According to the BLAST result of the nucleotide sequence, SsEV11 shows the highest identity (45%) with Sclerotinia minor endornavirus 1 (SmEV1). Phylogenetic analysis based on amino acid sequence of RdRp demonstrated that SsEV11 clusters to endornavirus and has a close relationship with Betaendornavirus. Phylogenetic analysis based on the sequence of endornaviral RdRp domain indicated that there were three large clusters in the phylogenetic tree. Combining the results of alignment analysis, Cluster I at least has five subclusters including typical members of Alphaendornavirus and many unclassified endornaviruses that isolated from fungi, oomycetes, algae, and insects; Cluster II also has five subclusters including typical members of Betaendornavirus, SsEV11, and other unclassified viruses that infected fungi; Cluster III includes many endorna-like viruses that infect nematodes, mites, and insects. Viruses in Cluster I and Cluster II are close to each other and relatively distant to those in Cluster III. Our study characterized a novel betaendornavirus, SsEV11, infected fungal pathogen S. sclerotiorum, and suggested that notable phylogenetic diverse exists in endornaviruses. In addition, at least, one novel genus, Gammaendornavirus, should be established to accommodate those endorna-like viruses in Cluster III.
Collapse
Affiliation(s)
- Xin Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (D.J.); (J.X.); (J.J.); (T.C.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (D.J.); (J.X.); (J.J.); (T.C.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (D.J.); (J.X.); (J.J.); (T.C.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Jichun Jia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (D.J.); (J.X.); (J.J.); (T.C.)
| | - Jie Duan
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Jiasen Cheng
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (D.J.); (J.X.); (J.J.); (T.C.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Xiao Yu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Bo Li
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
- Correspondence:
| |
Collapse
|
10
|
Urayama SI, Takaki Y, Chiba Y, Zhao Y, Kuroki M, Hagiwara D, Nunoura T. Eukaryotic Microbial RNA Viruses-Acute or Persistent? Insights into Their Function in the Aquatic Ecosystem. Microbes Environ 2022; 37:ME22034. [PMID: 35922920 PMCID: PMC9763035 DOI: 10.1264/jsme2.me22034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Isolated RNA viruses mainly parasitize eukaryotes. RNA viruses either expand horizontally by infecting hosts (acute type) or coexist with the host and are vertically inherited (persistent type). The significance of persistent-type RNA viruses in environmental viromes (the main hosts are expected to be microbes) was only recently reported because they had previously been overlooked in virology. In this review, we summarize the host-virus relationships of eukaryotic microbial RNA viruses. Picornavirales and Reoviridae are recognized as representative acute-type virus families, and most of the microbial viruses in Narnaviridae, Totiviridae, and Partitiviridae are categorized as representative persistent-type viruses. Acute-type viruses have only been found in aquatic environments, while persistent-type viruses are present in various environments, including aquatic environments. Moreover, persistent-type viruses are potentially widely spread in the RNA viral sequence space. This emerging evidence provides novel insights into RNA viral diversity, host-virus relationships, and their history of co-evolution.
Collapse
Affiliation(s)
- Syun-ichi Urayama
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan,Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan, Corresponding author. E-mail: ; Tel: +81–29–853–6636; Fax: +81–29–853–4605
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Yuto Chiba
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
| | - Yanjie Zhao
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
| | - Misa Kuroki
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
| | - Daisuke Hagiwara
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan,Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), JAMSTEC, 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| |
Collapse
|
11
|
Hirai J, Urayama SI, Takaki Y, Hirai M, Nagasaki K, Nunoura T. RNA Virosphere in a Marine Zooplankton Community in the Subtropical Western North Pacific. Microbes Environ 2022; 37:ME21066. [PMID: 34980753 PMCID: PMC9763039 DOI: 10.1264/jsme2.me21066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Zooplankton and viruses play a key role in marine ecosystems; however, their interactions have not been examined in detail. In the present study, the diversity of viruses associated with zooplankton collected using a plankton net (mesh size: 100 μm) in the subtropical western North Pacific was investigated by fragmented and primer ligated dsRNA sequencing. We obtained 21 and 168 operational taxonomic units (OTUs) of ssRNA and dsRNA viruses, respectively, containing RNA-dependent RNA polymerase (RdRp). These OTUs presented average amino acid similarities of 43.5 and 44.0% to the RdRp genes of known viruses in ssRNA viruses and dsRNA viruses, respectively. Dominant OTUs mainly belonged to narna-like and picorna-like ssRNA viruses and chryso-like, partiti-like, picobirna-like, reo-like, and toti-like dsRNA viruses. Phylogenetic ana-lyses of the RdRp gene revealed that OTUs were phylogenetically diverse and clustered into distinct clades from known viral groups. The community structure of the same zooplankton sample was investigated using small subunit (SSU) rRNA sequences assembled from the metatranscriptome of single-stranded RNA. More than 90% of the sequence reads were derived from metazoan zooplankton; copepods comprised approximately 70% of the sequence reads. Although this ana-lysis provided no direct evidence of the host species of RNA viruses, these dominant zooplankton are expected to be associated with the RNA viruses detected in the present study. The present results indicate that zooplankton function as a reservoir of diverse RNA viruses and suggest that investigations of zooplankton viruses will provide a more detailed understanding of the role of viruses in marine ecosystems.
Collapse
Affiliation(s)
- Junya Hirai
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5–1–5 Kashiwanoha, Kashiwa, Chiba 277–8564, Japan, Corresponding author. E-mail: ; Tel: +81–4–7136–6163; Fax: +81–4–7136–6172
| | - Syun-ichi Urayama
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan,Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan,Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Yoshiro Takaki
- Super-cuttingedge Grand and Advanced Research (SUGAR) Program, JAMSTEC, 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Miho Hirai
- Super-cuttingedge Grand and Advanced Research (SUGAR) Program, JAMSTEC, 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Keizo Nagasaki
- Faculty of Science and Technology, Kochi University, 200 Monobe Otsu, Nankoku, Kochi 783–8502, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| |
Collapse
|
12
|
Mizutani Y, Chiba Y, Urayama SI, Tomaru Y, Hagiwara D, Kimura K. Detection and Characterization of RNA Viruses in Red Macroalgae (Bangiaceae) and Their Food Product (Nori Sheets). Microbes Environ 2022; 37:ME21084. [PMID: 35691910 PMCID: PMC9763034 DOI: 10.1264/jsme2.me21084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/30/2022] [Indexed: 01/05/2023] Open
Abstract
Persistent RNA viruses, which have been suggested to form symbiotic relationships with their hosts, have been reported to occur in eukaryotes, such as plants, fungi, and algae. Based on empirical findings, these viruses may also be present in commercially cultivated macroalgae. Accordingly, the present study aimed to screen red macroalgae (family Bangiaceae conchocelis and Neopyropia yezoensis thallus) and processed nori sheets (N. yezoensis) for persistent RNA viruses using fragmented and primer-ligated dsRNA sequencing (FLDS) and targeted reverse transcription PCR (RT-PCR). A Totiviridae-related virus was detected in the conchocelis of Neoporphyra haitanensis, which is widely cultivated in China, while two Mitoviridae-related viruses were found in several conchocelis samples and all N. yezoensis-derived samples (thallus and nori sheets). Mitoviridae-related viruses in N. yezoensis are widespread among cultivated species and not expected to inhibit host growth. Mitoviridae-related viruses were also detected in several phylogenetically distant species in the family Bangiaceae, which suggests that these viruses persisted and coexist in the family Bangiaceae over a long period of time. The present study is the first to report persistent RNA viruses in nori sheets and their raw materials.
Collapse
Affiliation(s)
- Yukino Mizutani
- Analytical Research Center for Experimental Sciences, Saga University, Honjo-machi 1, Saga 840–8502, Japan
| | - Yuto Chiba
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki, 305–8577, Japan
| | - Syun-ichi Urayama
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki, 305–8577, Japan
| | - Yuji Tomaru
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2–17–5 Maruishi, Hatsukaichi, Hiroshima 739–0452, Japan
| | - Daisuke Hagiwara
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki, 305–8577, Japan
| | - Kei Kimura
- Faculty of Agriculture, Saga University, Honjo-machi 1, Saga 840–8502, Japan
| |
Collapse
|
13
|
Crucitti D, Chiapello M, Oliva D, Forgia M, Turina M, Carimi F, La Bella F, Pacifico D. Identification and Molecular Characterization of Novel Mycoviruses in Saccharomyces and Non- Saccharomyces Yeasts of Oenological Interest. Viruses 2021; 14:v14010052. [PMID: 35062256 PMCID: PMC8778689 DOI: 10.3390/v14010052] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022] Open
Abstract
Wine yeasts can be natural hosts for dsRNA, ssRNA viruses and retrotransposon elements. In this study, high-throughput RNA sequencing combined with bioinformatic analyses unveiled the virome associated to 16 Saccharomyces cerevisiae and 8 non-Saccharomyces strains of oenological interest. Results showed the presence of six viruses and two satellite dsRNAs from four different families, two of which-Partitiviridae and Mitoviridae-were not reported before in yeasts, as well as two ORFan contigs of viral origin. According to phylogenetic analysis, four new putative mycoviruses distributed in Totivirus, Cryspovirus, and Mitovirus genera were identified. The majority of commercial S. cerevisiae strains were confirmed to be the host for helper L-A type totiviruses and satellite M dsRNAs associated with the killer phenotype, both in single and mixed infections with L-BC totiviruses, and two viral sequences belonging to a new cryspovirus putative species discovered here for the first time. Moreover, single infection by a narnavirus 20S-related sequence was also found in one S. cerevisiae strain. Considering the non-Saccharomyces yeasts, Starmerella bacillaris hosted four RNAs of viral origin-two clustering in Totivirus and Mitovirus genera, and two ORFans with putative satellite behavior. This study confirmed the infection of wine yeasts by viruses associated with useful technological characteristics and demonstrated the presence of complex mixed infections with unpredictable biological effects.
Collapse
Affiliation(s)
- Dalila Crucitti
- Dipartimento di Scienze Bio-Agroalimentari, Istituto di Bioscienze e BioRisorse (IBBR), C.N.R., Corso Calatafimi 414, 90129 Palermo, Italy; (F.C.); (F.L.B.)
- Correspondence: (D.C.); (D.P.); Tel.: +39-091-657-4578 (D.C.)
| | - Marco Chiapello
- Dipartimento di Scienze Bio-Agroalimentari, Istituto per la Protezione Sostenibile delle Piante (IPSP), C.N.R., Strada delle Cacce, 73, 10135 Torino, Italy; (M.C.); (M.F.); (M.T.)
| | - Daniele Oliva
- Istituto Regionale del Vino e dell’Olio (IRVO), Via Libertà 66, 90143 Palermo, Italy;
| | - Marco Forgia
- Dipartimento di Scienze Bio-Agroalimentari, Istituto per la Protezione Sostenibile delle Piante (IPSP), C.N.R., Strada delle Cacce, 73, 10135 Torino, Italy; (M.C.); (M.F.); (M.T.)
| | - Massimo Turina
- Dipartimento di Scienze Bio-Agroalimentari, Istituto per la Protezione Sostenibile delle Piante (IPSP), C.N.R., Strada delle Cacce, 73, 10135 Torino, Italy; (M.C.); (M.F.); (M.T.)
| | - Francesco Carimi
- Dipartimento di Scienze Bio-Agroalimentari, Istituto di Bioscienze e BioRisorse (IBBR), C.N.R., Corso Calatafimi 414, 90129 Palermo, Italy; (F.C.); (F.L.B.)
| | - Francesca La Bella
- Dipartimento di Scienze Bio-Agroalimentari, Istituto di Bioscienze e BioRisorse (IBBR), C.N.R., Corso Calatafimi 414, 90129 Palermo, Italy; (F.C.); (F.L.B.)
| | - Davide Pacifico
- Dipartimento di Scienze Bio-Agroalimentari, Istituto di Bioscienze e BioRisorse (IBBR), C.N.R., Corso Calatafimi 414, 90129 Palermo, Italy; (F.C.); (F.L.B.)
- Correspondence: (D.C.); (D.P.); Tel.: +39-091-657-4578 (D.C.)
| |
Collapse
|
14
|
Charon J, Murray S, Holmes EC. Revealing RNA virus diversity and evolution in unicellular algae transcriptomes. Virus Evol 2021; 7:veab070. [PMID: 36819971 PMCID: PMC9927876 DOI: 10.1093/ve/veab070] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022] Open
Abstract
Remarkably little is known about the diversity and evolution of RNA viruses in unicellular eukaryotes. We screened a total of 570 transcriptomes from the Marine Microbial Eukaryote Transcriptome Sequencing Project that encompasses a wide diversity of microbial eukaryotes, including most major photosynthetic lineages (i.e. the microalgae). From this, we identified thirty new and divergent RNA virus species, occupying a range of phylogenetic positions within the overall diversity of RNA viruses. Approximately one-third of the newly described viruses comprised single-stranded positive-sense RNA viruses from the order Lenarviricota associated with fungi, plants, and protists, while another third were related to the order Ghabrivirales, including members of the protist and fungi-associated Totiviridae. Other viral species showed sequence similarity to positive-sense RNA viruses from the algae-associated Marnaviridae, the double-stranded RNA (ds-RNA) Partitiviridae, as well as tentative evidence for one negative-sense RNA virus related to the Qinviridae. Importantly, we were able to identify divergent RNA viruses from distant host taxa, revealing the ancestry of these viral families and greatly extending our knowledge of the RNA viromes of microalgal cultures. Both the limited number of viruses detected per sample and the low sequence identity to known RNA viruses imply that additional microalgal viruses exist that could not be detected at the current sequencing depth or were too divergent to be identified using sequence similarity. Together, these results highlight the need for further investigation of algal-associated RNA viruses as well as the development of new tools to identify RNA viruses that exhibit very high levels of sequence divergence.
Collapse
Affiliation(s)
- Justine Charon
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shauna Murray
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | | |
Collapse
|
15
|
Charon J, Marcelino VR, Wetherbee R, Verbruggen H, Holmes EC. Metatranscriptomic Identification of Diverse and Divergent RNA Viruses in Green and Chlorarachniophyte Algae Cultures. Viruses 2020; 12:v12101180. [PMID: 33086653 PMCID: PMC7594059 DOI: 10.3390/v12101180] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Our knowledge of the diversity and evolution of the virosphere will likely increase dramatically with the study of microbial eukaryotes, including the microalgae within which few RNA viruses have been documented. By combining total RNA sequencing with sequence and structural-based homology detection, we identified 18 novel RNA viruses in cultured samples from two major groups of microbial algae: the chlorophytes and the chlorarachniophytes. Most of the RNA viruses identified in the green algae class Ulvophyceae were related to the Tombusviridae and Amalgaviridae viral families commonly associated with land plants. This suggests that the evolutionary history of these viruses extends to divergence events between algae and land plants. Seven Ostreobium sp-associated viruses exhibited sequence similarity to the mitoviruses most commonly found in fungi, compatible with horizontal virus transfer between algae and fungi. We also document, for the first time, RNA viruses associated with chlorarachniophytes, including the first negative-sense (bunya-like) RNA virus in microalgae, as well as a distant homolog of the plant virus Virgaviridae, potentially signifying viral inheritance from the secondary chloroplast endosymbiosis that marked the origin of the chlorarachniophytes. More broadly, these data suggest that the scarcity of RNA viruses in algae results from limited investigation rather than their absence.
Collapse
Affiliation(s)
- Justine Charon
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.); (V.R.M.)
| | - Vanessa Rossetto Marcelino
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.); (V.R.M.)
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Richard Wetherbee
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; (R.W.); (H.V.)
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; (R.W.); (H.V.)
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.); (V.R.M.)
- Correspondence: ; Tel.: +61-2-9351-5591
| |
Collapse
|
16
|
Charon J, Marcelino VR, Wetherbee R, Verbruggen H, Holmes EC. Metatranscriptomic Identification of Diverse and Divergent RNA Viruses in Green and Chlorarachniophyte Algae Cultures. Viruses 2020; 12:v12101180. [PMID: 33086653 DOI: 10.1101/2020.06.08.141184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 05/26/2023] Open
Abstract
Our knowledge of the diversity and evolution of the virosphere will likely increase dramatically with the study of microbial eukaryotes, including the microalgae within which few RNA viruses have been documented. By combining total RNA sequencing with sequence and structural-based homology detection, we identified 18 novel RNA viruses in cultured samples from two major groups of microbial algae: the chlorophytes and the chlorarachniophytes. Most of the RNA viruses identified in the green algae class Ulvophyceae were related to the Tombusviridae and Amalgaviridae viral families commonly associated with land plants. This suggests that the evolutionary history of these viruses extends to divergence events between algae and land plants. Seven Ostreobium sp-associated viruses exhibited sequence similarity to the mitoviruses most commonly found in fungi, compatible with horizontal virus transfer between algae and fungi. We also document, for the first time, RNA viruses associated with chlorarachniophytes, including the first negative-sense (bunya-like) RNA virus in microalgae, as well as a distant homolog of the plant virus Virgaviridae, potentially signifying viral inheritance from the secondary chloroplast endosymbiosis that marked the origin of the chlorarachniophytes. More broadly, these data suggest that the scarcity of RNA viruses in algae results from limited investigation rather than their absence.
Collapse
Affiliation(s)
- Justine Charon
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Vanessa Rossetto Marcelino
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Richard Wetherbee
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|